MANAGING TOP AND GO TRAFFIC WITH AI

Neerati Rachana[1], Shivakumaran A R[2]
M.Tech[1], Professor[2]

Department of Computer Science and engineering MALLA REDDY ENGINEERING COLLEGE FOR WOMEN
(Autonomous Institution-UGC, Govt. of India) Maisammaguda, Secunderabad–500100
Telangana-India

ABSTRACT

Congestion in big cities is becoming more problematic as urban populations & automobile ownership both grow. Everyone suffers inconvenient delays when traffic is backed up, motorists, but it does increase fuel consumption and pollution. Despite its apparent global prevalence, big urban centers are especially at risk. Therefore, it is becoming more vital to calculate traffic density in real-time in order to optimize signal timing and manage traffic flow. The traffic controller plays a crucial role in the smooth flow of traffic. Therefore, there is an urgent need for enhanced traffic management to fulfill the expanding demands of the public.

To measure traffic levels, our system would utilize artificial intelligence and processing of images to examine live feeds via cameras installed at crossings. The algorithm for adjusting the timing of traffic lights in response to traffic volumes is also highlighted in an effort to make travel more efficient for passengers and reduce pollution.

INTRODUCTION

As the number of automobiles in urban areas continues to rise, congestion and a decrease in the Level of Service are becoming problems on many road networks. Congestion is often caused by traffic control systems that include rigidly timed signals. They repeat the same cycles over and over again, each lasting the same length of time.

As traffic numbers continue to rise, new approaches to traffic management are needed; that's where intelligent transportation systems come in. Take the city of Bengaluru as an example. Bangalore has the highest traffic flow out of the world, according to a study recording the status of traffic in 416 cities across 57 countries, with Mumbai
following in as number four. Travel times in Bangalore rise by an average of 71% during peak commuting times. In Mumbai, the length of time is 65% longer [1]. There are currently three methods for controlling traffic that have gained widespread acceptance: The first approach, called "manual controlling," traffic is controlled by the use of human labor.

In order to keep everything under control, the police have stations in certain areas. The police utilize a variety of tools, including signs, lights, and whistles, to control traffic flow. The second category of traffic signals is similar to the design of conventional lights but makes use of static timers. A predetermined duration is stored in the timer's memory. The lights will blink among red and green at intervals determined by the timer setting. Finally, electronic sensors like sensing devices and proximity sensors might be placed all along the route. This sensor reports on the movement of vehicles on the road. Sensor data is used to control the traffic lights. These time-honored methods aren't without their drawbacks. The work involved in the manual controlsystem is somewhat expensive. Because of a lack of personnel, traffic police are unable to physically regulate traffic in every area of a town or city. Therefore, a more efficient form of traffic control is essential. Static traffic control, in contrast with dynamic traffic management, employs a traffic light whose phases occur at regular intervals. As electronic sensors, including detection devices or loop detectors, rely on complicated and expensive technology, limited budgets will ultimately result in fewer facilities. In addition, an excessive number of sensors are frequently needed to give enough coverage across a network of services because of the usual low effectiveness among most sensors. Security, slope metering, and providing drivers with up-to-the-minute information and updates are just some of the many uses for video surveillance and security systems, which have become more common in traffic control in recent years. In addition to keeping an eye on things, video surveillance systems may be used to assess traffic density and categorize cars, which can then be used to optimize the timing for the traffic signals.

The primary objective of our proposed system is to develop an Artificial Vision-based traffic signal system that can adapt to the volume of traffic. Surveillance camera data from congested junctions may be analyzed in real time to ascertain traffic volumes, allowing for more precise timing during the green light [16]. Vehicles may be divided into four groups—cars, bikes, trucks, and rickshaws—to more accurately predict how long the signal will be green.

YOLO is used by the system to calculate the flow of traffic in each direction and regulate the timing of the lights appropriately. Compared to a stationary system, this enables for more efficient use of green light time and faster clearing of traffic jams, cutting down on wait times, congestion, and energy consumption needed to keep cars moving.
WORKINRELATION

"Automated Control of Traffic Lights with the Help of Image Processing"

As both the urban population and the number of vehicles increase, traffic congestion becomes an increasingly pressing issue. Congestion not only negatively impacts drivers by increasing their wait times and stress levels, but also the expense of transportation, the amount of carbon dioxide released into the environment, and the amount of petroleum wasted. The controller plays a crucial role in traffic management. Complex, nonlinear, and focused on duration rather than traffic, traditional circulation patterns are difficult to understand and implement. In this study, we propose a MATLAB-based traffic management system that uses image processing to determine the optimal timing for each color light depending on the number and velocity of oncoming cars. One Arduino UNO manages the green & yellow lights, while another handles the red. This is a process that never ends.

"Improved Traffic Signal Timing Using Fuzzy Logic,"

Increasing urban congestion is a direct result of more automobiles on the road each year. Because of this, traffic builds up, commute times lengthen, gas prices rise, and other transportation issues arise. This study presents an adaptive roadway signal controller based on fuzzy logic, which is shown to improve traffic flow efficiency at a single intersection. A series of fuzzing have been designed to evaluate whether the next phase should be shortened or extended based on data obtained from sensors on the road (queue time frame, arrival flow, or departure flow). That fuzzy-based control approach encompasses both the main driveway and the minor driveway, which sees far less traffic. In three scenarios with varied traffic demand, the suggested controller is compared to a predetermined signal program to verify the produced decision criteria.

"Titled "Intelligent Timing Control for Traffic Lights,"

Congestion and accidents caused by it are a significant source of financial stress in metropolitan areas. Those who use a timer to detect when each light becomes green are doing it for the wrong reasons, since traffic lights are necessary for controlling vehicular flow by signaling when cars are authorized to enter and depart. As part of a system for intelligent transportation, this research develops a self-regulating algorithm for traffic signals using AI techniques and photographs of vehicles at crossings, and then checks its usefulness by comparing its results with those acquired manually. Using the proposed algorithm in the transportation system will increase efficiency and decrease delays at junctions and while driving.
METHODOLOGY

Our proposed system takes use of data from CCTV cameras stationed at junctions to perform real-time traffic density analysis using image processing and object identification. As can be seen in Fig. 1, this image is then sent to the YOLO-based car recognition system for processing. Sensors monitor the number of vehicles on the road at any one moment (including automobiles, bicycles, buses, and lorries) to calculate traffic density. When deciding whether to provide greenlights to lanes, the signal switching algorithms take density into consideration along with other factors. The time of the red warning has been fine-tuned. The maximum and lowest values for this period of time have been established to ensure that no single lane will ever be stopped by a red light. A simulator is built to demonstrate the system's efficacy and enable comparison with the existing static system.

MotorVehicleDetectionSystem

The proposed system uses YOLO (You only look once) for vehicle detection, which achieves the necessary accuracy while processing time. There is a specially trained YOLO model that can distinguish between automobiles, motorbikes, buses, tractors, and rickshaws, among other vehicle types.
RESULT AND DISCUSSION

The figure attached shows the outcome of a PYGAME simulated run; see how the blue and redliness shift when the traffic density within each lane is calculated. To access the subsequent YOLO module in the simulation itself, you must close it down by using the Windows key, and then launch it again.

You may adjust your departure and arrival timings based on the screen above, which displays traffic conditions and estimates of the number of cars on the route. If you're using a regular laptop, wait for YOLO to finish processing every frame before checking for results. A high-definition MP4 video file that may be viewed on any standard videoplayer.

CONCLUSION

In conclusion, the proposed system favors the direction with the biggest amount of traffic by dynamically adjusting the duration of the green light depending on the number of cars approaching the signal. Green signal for a longer duration than the less-used path. As a consequence, there will be less traffic, shorter wait times, less need for more fuel, and less pollutants released into the atmosphere.

According to the results of the simulation, the number of vehicles using the junction will rise by around 23% when compared with the current setup. Further calibration using data from real CCTV cameras for model training has the possibility to make the system even more successful. In addition, the proposed system is robust enough to compete with established intelligent traffic control tools like Gravity Mats and Ir Sensors. The system requires little additional hardware, even at high-traffic intersections, since it uses footage from existing CCTV cameras attached to traffic lights. It may just take minor tweaks to the alignment to solve the problem. Pressure mats and similar traffic monitoring devices put on highways are expensive to maintain because of the constant pounding they take from vehicles. Thus, the proposed system may be integrated...
with citywide monitoring infrastructure to enhance TFM. The project might be expanded to includethe following elements to enhance traffic management and decrease congestion:

1) By establishing a violation barrier and retrieving the registration number of the vehicle in question if the boundary is crossed during the signal's red phase, red light jumpers may be caught in still images or live video feeds. Likewise, lane shifts might be recognized. Image processing techniques like background subtraction might be useful here.

2) Accident and failure detection: Left-turn and angle crashes at intersections are particularly hazardous because of the high volume of traffic. As a result, locating incidents at intersections quickly and accurately may save lives and property, as well as reduce congestion and delays. One solution is to provide a buffer zone between parked automobiles and those that sit still in a dangerous area of the road, such as the middle of the lane.

3) Ambulances and other emergency vehicles need to be given precedence at intersections. The model may be trained to recognize the presence of not only automobiles, but also ambulances, and to change the timings such that the urgent evacuation is given priority and is permitted to pass the alert at the earliest possible time.

REFERENCES


controller" , IIT KANPUR, NERD MAGAZINE


