ON THE NEGATIVE PELL EQUATION

\[y^2 = 13x^2 - 12 \]

Dr. A. Kavitha
Professor, Department Mathematics, J.J College of Engineering and Technology, Trichy-620002, India

Abstract: This paper concerns with the problem of obtaining infinitely many non-zero distinct integer solutions of the binary quadratic Diophantine equation \(y^2 = 13x^2 - 12 \). Employing the lemma of Brahmagupta, we find infinitely many integral solutions of the above equation. The recurrence relations on the solutions are presented. An interesting relations among the solutions are presented.

Key Words: Binary quadratic, Pell equation, integral solutions.

2010 mathematics subject classification: 11D09

I. INTRODUCTION

Equations with integer co-efficient which are to be solved integer are called Diophantine equations. Consider the linear Diophantine equation \(2x + 3y = 4 \) has \((-1, 2)\) as a solution. In fact it has finitely many solutions \((2 + 3t, -2t)\), where \(t\) is an arbitrary integer.

A Pell equation is a type of non-linear Diophantine equation in the form \(y^2 = Dx^2 \pm 1 \), where \(D\) is non-square positive integer.

When \(D\) takes different integral values \([1-4]\). For an extensive review of various problems, one may refer \([5-10]\). The above equation is also called the Pell Fermat equation.

In this communication, we obtain infinitely many integer solutions to the negative Pell equation \(y^2 = 13x^2 - 12 \).

We also obtained different relations among the solutions, different choices of hyperbolas, parabolas and Pythagorean triangle together with their solutions

II. METHOD OF ANALYSIS:

The Negative Pell equation under consideration is

\[y^2 = 13x^2 - 12 \]

(1.1)

whose smallest positive integer solution is

\(x_0 = 1, \ y_0 = 1 \)

To obtain the other solutions of (1.1), consider the Pell equation

\[y^2 = 13x^2 + 1 \]

(1.2)

whose general solution is given by

\[x_n = \frac{1}{2\sqrt{13}} g_n \]

\[y_n = \frac{1}{2} f_n \]

where

\[f_n = (649 + 180\sqrt{13})^{n+1} + (649 - 180\sqrt{13})^{n+1}, \]

\[g_n = (649 + 180\sqrt{13})^{n+1} - (649 - 180\sqrt{13})^{n+1}, \]

\(n = -1, 0, 1, \ldots \)

Applying Brahmagupta lemma between \((x_0, y_0)\) and \((\bar{x}_n, \bar{y}_n)\), the other integer solutions of (1.1) are given by

\[x_{n+1} = \frac{\sqrt{13} f_n + g_n}{2} \]
\[y_{n+1} = \frac{f_n + \sqrt{13} g_n}{2} \]

\[2\sqrt{13}x_{n+1} = \sqrt{13}f_n + g_n \quad \text{(1.3)} \]

\[2\sqrt{13}y_{n+1} = \sqrt{13}f_n + 13g_n \quad \text{(1.4)} \]

A few numerical examples are given in the following Table: 1.1

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x_{n+1})</th>
<th>(y_{n+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>829</td>
<td>2989</td>
</tr>
<tr>
<td>1</td>
<td>1076041</td>
<td>3879721</td>
</tr>
<tr>
<td>2</td>
<td>1396700389</td>
<td>5035874869</td>
</tr>
<tr>
<td>3</td>
<td>1812916028881</td>
<td>6536561700241</td>
</tr>
<tr>
<td>4</td>
<td>2353163608787149</td>
<td>6824452051037949</td>
</tr>
<tr>
<td>5</td>
<td>3054404551289690521</td>
<td>11012812225685557561</td>
</tr>
</tbody>
</table>

The recurrence relations satisfied by the values of \(x_{n+1} \) and \(y_{n+1} \) are respectively,

\[x_{n+3} - 1298x_{n+2} + x_{n+1} = 0, n = -1,0,1,... \]

\[y_{n+3} - 1298y_{n+2} + y_{n+1} = 0, n = -1,0,1,... \]

1. A few relations among the solutions are given below:

(i). \(x_{n+1} \) and \(y_{n+1} \) are always odd.

(ii). \(x_{n+1} - y_{n+1} \equiv 0 \pmod{2} \)

2. Relations among the solutions:

- \(649x_{n+2} - x_{n+1} - 180y_{n+2} = 0 \)
- \(84240lx_{n+2} - 649x_{n+1} - 180y_{n+3} = 0 \)
- \(x_{n+3} - 84240lx_{n+1} - 233640y_{n+1} = 0 \)
- \(x_{n+3} - x_{n+1} - 360y_{n+2} = 0 \)
- \(2340x_{n+1} + 649y_{n+1} - y_{n+2} = 0 \)
- \(3037320x_{n+1} + 842401y_{n+1} - y_{n+3} = 0 \)
- \(2340x_{n+1} + 842401y_{n+2} - 649y_{n+3} = 0 \)
- \(649x_{n+3} - 84240lx_{n+2} - 180y_{n+3} = 0 \)
- \(x_{n+3} - 649x_{n+2} - 180y_{n+2} = 0 \)
- \(649x_{n+3} - 180y_{n+3} - x_{n+2} = 0 \)
- \(2340x_{n+2} + y_{n+1} - 649y_{n+2} = 0 \)
- \(4680x_{n+2} + y_{n+1} - y_{n+3} = 0 \)
- \(2340y_{n+2} + 649y_{n+2} - y_{n+3} = 0 \)
- \(649x_{n+3} - 180y_{n+3} - 84240lx_{n+2} = 0 \)
- \(649y_{n+1} + 2340x_{n+3} - 842401y_{n+2} = 0 \)
- \(y_{n+1} + 3037320x_{n+3} - 842401y_{n+3} = 0 \)
- \(y_{n+2} + 2340x_{n+3} - 649y_{n+3} = 0 \)
- \(842401y_{n+2} - 649x_{n+1} - 2340x_{n+3} = 0 \)
- \(649x_{n+3} - 180y_{n+3} - x_{n+2} = 0 \)

...
3. Each of the following expressions represents a Nasty number:

\[\frac{1}{1401840} (23278326x_{2n+2} - 6x_{2n+4} + 16822080) \]
\[\frac{1}{6} (78x_{2n+2} - 6y_{2n+2} + 72) \]
\[\frac{1}{3894} (64662x_{2n+2} - 6y_{2n+3} + 46728) \]
\[\frac{1}{5054406} (83931198x_{2n+2} - 6y_{2n+4} + 60652872) \]
\[\frac{1}{1080} (23278326x_{2n+3} - 17934x_{2n+4} + 12960) \]
\[\frac{1}{3894} (78x_{2n+3} - 17934y_{2n+2} + 46728) \]
\[\frac{1}{6} (64662x_{2n+3} - 17934y_{2n+3} + 72) \]
\[\frac{1}{3894} (83931198x_{2n+3} - 17934y_{2n+4} + 46728) \]
\[\frac{1}{5054406} (78x_{2n+4} - 23278326y_{2n+2} + 60652872) \]
\[\frac{1}{3894} (10777x_{2n+4} - 3879721y_{2n+3} + 46728) \]
\[\frac{1}{6} (83931198x_{2n+4} - 232783267y_{2n+4} + 72) \]
\[\frac{1}{14040} (78y_{2n+3} - 64662y_{2n+2} + 168480) \]
\[\frac{1}{18223920} (78y_{2n+4} - 83931198y_{2n+2} + 218687040) \]
\[\frac{1}{14040} (64662x_{2n+4} - 83931198y_{2n+3} + 168480) \]
\[\frac{1}{1080} (17934x_{2n+2} - 6x_{2n+3} + 12960) \]

4. Each of the following expressions represents a Cubical Integer:

\[\frac{1}{1401840} [3879721x_{3n+3} - x_{3n+5} + 11639163x_{n+1} - 3x_{n+3}] \]
\[\frac{1}{6} [13x_{3n+3} - y_{3n+3} + 39x_{n+1} - 3y_{n+1}] \]
\[\frac{1}{3894} [10777x_{3n+3} - y_{3n+4} + 32331x_{n+1} - 3y_{n+2}] \]
\[\frac{1}{5054406} [13988533x_{3n+3} - y_{3n+5} + 41965599x_{n+1} - 3y_{n+3}] \]
\[\frac{1}{1080} [3879721x_{3n+4} - 2989x_{3n+5} + 11639163x_{n+2} - 8967x_{n+3}] \]
5. Each of the following expressions represents a Bi-quadratic integer:

\[
\frac{1}{3894} \left[13x_{n+4} - 2989y_{n+3} + 39x_{n+2} - 8967y_{n+1} \right]
\]

\[
\frac{1}{6} \left[10777x_{n+4} - 2989y_{n+4} + 32331x_{n+2} - 8967y_{n+2} \right]
\]

\[
\frac{1}{3894} \left[13988533x_{n+4} - 2989y_{n+5} + 41965599x_{n+2} - 8967y_{n+3} \right]
\]

\[
\frac{1}{5054406} \left[13x_{n+5} - 3879721y_{n+3} + 39x_{n+3} - 11639163y_{n+1} \right]
\]

\[
\frac{1}{3894} \left[10777x_{n+5} - 3879721y_{n+4} + 32331x_{n+3} - 11639163y_{n+2} \right]
\]

\[
\frac{1}{6} \left[13988533x_{n+5} - 3879721y_{n+5} + 41965599x_{n+3} - 11639163y_{n+3} \right]
\]

\[
\frac{1}{14040} \left[10777y_{n+3} - 13y_{n+4} + 32331y_{n+1} - 39y_{n+2} \right]
\]

\[
\frac{1}{18223920} \left[13y_{n+3} - 13988533y_{n+3} + 39y_{n+3} - 41965599y_{n+1} \right]
\]

\[
\frac{1}{14040} \left[10777y_{n+5} - 13988533y_{n+4} + 32331y_{n+3} - 41965599y_{n+2} \right]
\]

\[
\frac{1}{1080} \left[2989x_{n+1} - x_{n+4} + 8967x_{n+1} - 3x_{n+2} \right]
\]
\[
\frac{1}{3894}
\left[
10777x_{4n+6} - 3879721y_{4n+5} + 43108x_{2n+4} - 15518884y_{2n+3}
\right] + 23364
\]
\[
\frac{1}{6}
\left[
13x_{4n+4} - y_{4n+4} + 52x_{2n+2} - 4y_{2n+2} + 36
\right]
\]
\[
\frac{1}{3894}
\left[
10777x_{4n+4} - y_{4n+4} + 43108x_{2n+2} - 4y_{2n+3} + 23364
\right]
\]
\[
\frac{1}{1080}
\left[
2989x_{4n+4} - x_{4n+5} + 11956x_{2n+2} - 4x_{2n+3} + 6480
\right]
\]

6. Each of the following expressions represents a Quintic integer:

\[
\frac{1}{14040}
\left[
107770y_{n+3} - 139885330y_{n+2} + 53885y_{3n+5} - 69942665y_{3n+4}
\right] + 10777y_{5n+7} - 13988533y_{5n+6}
\]
\[
\frac{1}{14040}
\left[
38797210x_{n+1} - 10x_{n+1} + 19398605x_{3n+3} - 5x_{3n+5}
\right]
\]
\[
\frac{1}{14040}
\left[
130y_{n+2} - 107770y_{n+1} + 65y_{3n+4} - 53885y_{3n+3} + 13y_{5n+6}
\right] - 10777y_{5n+5}
\]
\[
\frac{1}{18223920}
\left[
130y_{n+3} - 139885330y_{n+1} + 165y_{3n+5} - 69942665y_{3n+3}
\right] + 13y_{5n+7} - 13988533y_{5n+5}
\]
\[
\frac{1}{10777}
\left[
107770x_{n+1} - 10y_{n+2} + 53885x_{3n+3} - 5y_{3n+4}
\right]
\]
\[
\frac{1}{3894}
\left[
139885330x_{n+1} - 10y_{n+1} + 69942665x_{3n+3} - 5y_{3n+5}
\right]
\]
\[
\frac{1}{5054406}
\left[
38797210x_{n+2} - 29890x_{n+2} + 19398605x_{3n+4} - 14945x_{3n+5}
\right] + 3879721x_{5n+6} - 2989x_{5n+7}
\]
\[
\frac{1}{1080}
\left[
130x_{n+2} - 29890y_{n+1} + 65x_{3n+4} - 14945y_{3n+3} + 13x_{5n+6}
\right]
\]
\[
\frac{1}{6}
\left[
130x_{n+1} - 10y_{n+1} + 65x_{3n+3} - 5y_{3n+3} + 13x_{5n+5} - y_{5n+5}
\right]
\]
\[
\frac{1}{6}
\left[
107770x_{n+2} - 29890y_{n+2} + 53885x_{3n+4} - 14945y_{3n+4}
\right] + 10777x_{5n+6} - 2989y_{5n+6}
\]
\[
\frac{1}{3894}
\left[
139885330x_{n+2} - 29890y_{n+2} + 69942665x_{3n+4} - 14945x_{3n+5}
\right]
\]
\[
\frac{1}{5054406}
\left[
130x_{n+3} - 38797210y_{n+1} + 65x_{3n+5} - 19398605y_{3n+3}
\right] + 13x_{5n+7} - 3879721y_{5n+5}
\]
\[
\frac{1}{3894}
\left[
107770x_{n+3} - 38797210y_{n+2} + 53885x_{3n+5} - 19398605y_{3n+4}
\right] + 10777x_{5n+7} - 3879721y_{5n+6}
\]
\[
\frac{1}{1080}
\left[
2989x_{5n+5} - x_{5n+6} + 14945x_{3n+3} - 5x_{3n+4} + 29890x_{n+1} - 10x_{n+2}
\right]
\]
III. REMARKABLE OBSERVATIONS:

1. Employing linear combinations among the solutions of (1.1), one may generate integer solutions for other choices of hyperbola which are presented below:

<table>
<thead>
<tr>
<th>S. No</th>
<th>Hyperbolas</th>
<th>((X, Y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(X^2 - 13Y^2 = 7860621542400)</td>
<td>(\begin{cases} 387972x_{n+1} - x_{n+3}, \ 1076041x_{n+1} \end{cases})</td>
</tr>
<tr>
<td>2</td>
<td>(X^2 - 13Y^2 = 144)</td>
<td>(\begin{cases} 13x_{n+1} - y_{n+1}, \ y_{n+1} - x_{n+1} \end{cases})</td>
</tr>
<tr>
<td>3</td>
<td>(X^2 - 13Y^2 = 60652944)</td>
<td>(\begin{cases} 10777x_{n+1} - y_{n+2}, \ y_{n+2} - 2989x_{n+1} \end{cases})</td>
</tr>
<tr>
<td>4</td>
<td>(X^2 - 13Y^2 = 10218808051344)</td>
<td>(\begin{cases} 13988533x_{n+1} - y_{n+3}, \ y_{n+3} - 387972x_{n+1} \end{cases})</td>
</tr>
<tr>
<td>5</td>
<td>(X^2 - 13Y^2 = 4665600)</td>
<td>(\begin{cases} 387972x_{n+2} - 2989x_{n+3}, \ 829x_{n+3} - 1076041x_{n+2} \end{cases})</td>
</tr>
<tr>
<td>6</td>
<td>(X^2 - 13Y^2 = 60652944)</td>
<td>(\begin{cases} 13x_{n+2} - 2989y_{n+1}, \ 829y_{n+1} - x_{n+2} \end{cases})</td>
</tr>
<tr>
<td>7</td>
<td>(X^2 - 13Y^2 = 144)</td>
<td>(\begin{cases} 10777x_{n+2} - 2989y_{n+2}, \ 829y_{n+2} - 2989x_{n+2} \end{cases})</td>
</tr>
<tr>
<td>8</td>
<td>(X^2 - 13Y^2 = 60652944)</td>
<td>(\begin{cases} 13988533x_{n+2} - 2989y_{n+3}, \ 829y_{n+3} - 387972x_{n+2} \end{cases})</td>
</tr>
<tr>
<td>9</td>
<td>(X^2 - 13Y^2 = 10218808051344)</td>
<td>(\begin{cases} 13x_{n+3} - 3879721y_{n+1}, \ 1076041y_{n+1} - x_{n+3} \end{cases})</td>
</tr>
<tr>
<td>10</td>
<td>(X^2 - 13Y^2 = 60652944)</td>
<td>(\begin{cases} 10777x_{n+3} - 3879721y_{n+2}, \ 1076041y_{n+2} - 2989x_{n+3} \end{cases})</td>
</tr>
<tr>
<td>11</td>
<td>(X^2 - 13Y^2 = 144)</td>
<td>(\begin{cases} 13988533x_{n+3} - 3879721y_{n+3}, \ 1076041y_{n+3} - 3879721x_{n+3} \end{cases})</td>
</tr>
</tbody>
</table>
2. Employing linear combinations among the solutions of (1.1), one may generate integer solutions for other choices of parabolas which are presented below:

<table>
<thead>
<tr>
<th>S. No</th>
<th>Parabolas</th>
<th>((X, Y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1401840X - 13Y^2 = 786062154200)</td>
<td>(\begin{cases} 3879721x_{n+1} - x_{n+3}, \ x_{n+3} - 1076041x_{n+1} \end{cases})</td>
</tr>
<tr>
<td>2</td>
<td>(6X - 13Y^2 = 144)</td>
<td>(\begin{cases} 13x_{2n+2} - y_{2n+2}, \ y_{n+1} - x_{n+1} \end{cases})</td>
</tr>
<tr>
<td>3</td>
<td>(3894X - 13Y^2 = 60652944)</td>
<td>(\begin{cases} 10777x_{2n+2} - y_{2n+3}, \ y_{n+2} - 2989x_{n+1} \end{cases})</td>
</tr>
<tr>
<td>4</td>
<td>(5054406X - 13Y^2 = 10218808061344)</td>
<td>(\begin{cases} 13988533x_{2n+2} - y_{2n+4}, \ y_{n+3} - 3879721x_{n+1} \end{cases})</td>
</tr>
<tr>
<td>5</td>
<td>(1080X - 13Y^2 = 4665600)</td>
<td>(\begin{cases} 3879721x_{2n+3} - 2989x_{2n+4}, \ 829x_{n+3} - 1076041x_{n+2} \end{cases})</td>
</tr>
<tr>
<td>6</td>
<td>(3894X - 13Y^2 = 60652944)</td>
<td>(\begin{cases} 13x_{2n+3} - 2989y_{2n+2}, \ 829y_{n+1} - x_{n+2} \end{cases})</td>
</tr>
<tr>
<td>7</td>
<td>(6X - 13Y^2 = 144)</td>
<td>(\begin{cases} 10777x_{2n+3} - 2989y_{2n+3}, \ 829y_{n+2} - 2989y_{n+2} \end{cases})</td>
</tr>
</tbody>
</table>
3. Employing linear combinations among the solutions of (1.1), one may generate integer solutions for other choices of straight lines which are presented below:

<table>
<thead>
<tr>
<th>S.No</th>
<th>Straight lines</th>
<th>((X_n, Y_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Y_n = 180X_n)</td>
<td>(\begin{cases} 2989x_{n+1} - x_{n+2} \ 13x_{n+1} - y_{n+1} \end{cases})</td>
</tr>
<tr>
<td>2</td>
<td>(Y_n = \frac{180}{649} X_n)</td>
<td>(\begin{cases} 2989x_{n+1} - x_{n+2} \ 10777x_{n+1} - y_{n+2} \end{cases})</td>
</tr>
<tr>
<td>3</td>
<td>(Y_n = \frac{180}{842401} X_n)</td>
<td>(\begin{cases} 2989x_{n+1} - x_{n+2} \ 13988533x_{n+1} - y_{n+3} \end{cases})</td>
</tr>
<tr>
<td>4</td>
<td>(Y_n = X_n)</td>
<td>(\begin{cases} 2989x_{n+1} - x_{n+2} \ 3879721x_{n+2} - 2989x_{n+3} \end{cases})</td>
</tr>
<tr>
<td>5</td>
<td>(Y_n = \frac{1}{13} X_n)</td>
<td>(\begin{cases} 2989x_{n+1} - x_{n+2} \ 13y_{n+2} - 10777y_{n+1} \end{cases})</td>
</tr>
</tbody>
</table>
| | \(Y_n = \frac{1}{16874} X_n \) | \[
 \begin{align*}
 2989x_{n+1} - x_{n+2}, \\
 13y_{n+3} - 13988533y_{n+1},
 \end{align*}
\] |
|---|---|---|
| 7 | \(Y_n = 233640X_n \) | \[
 \begin{align*}
 x_{n+3} - 1076041x_{n+1}, \\
 13x_{n+1} - y_{n+1}
 \end{align*}
\] |
| 8 | \(Y_n = \frac{233640}{649} X_n \) | \[
 \begin{align*}
 x_{n+3} - 1076041x_{n+1}, \\
 10777x_{n+1} - y_{n+2}
 \end{align*}
\] |
| 9 | \(Y_n = \frac{233640}{842401} X_n \) | \[
 \begin{align*}
 x_{n+3} - 1076041x_{n+1}, \\
 13988533x_{n+1} - y_{n+3}
 \end{align*}
\] |
| 10 | \(Y_n = 1298X_n \) | \[
 \begin{align*}
 x_{n+3} - 1076041x_{n+1}, \\
 387972x_{n+2} - 2989x_{n+3}
 \end{align*}
\] |
| 11 | \(Y_n = 360X_n \) | \[
 \begin{align*}
 x_{n+3} - 1076041x_{n+1}, \\
 13x_{n+2} - 2989y_{n+1}
 \end{align*}
\] |
| 12 | \(Y_n = \frac{1298}{13} X_n \) | \[
 \begin{align*}
 x_{n+3} - 1076041x_{n+1}, \\
 13y_{n+2} - 10777y_{n+1}
 \end{align*}
\] |
| 13 | \(Y_n = -\frac{1}{649} X_n \) | \[
 \begin{align*}
 13x_{n+1} - y_{n+1}, \\
 10777x_{n+1} - y_{n+2}
 \end{align*}
\] |
| 14 | \(Y_n = \frac{1}{842401} X_n \) | \[
 \begin{align*}
 13x_{n+1} - y_{n+1}, \\
 13988533x_{n+1} - y_{n+3}
 \end{align*}
\] |
| 15 | \(Y_n = \frac{1}{180} X_n \) | \[
 \begin{align*}
 13x_{n+1} - y_{n+1}, \\
 387972x_{n+2} - 2989x_{n+3}
 \end{align*}
\] |
| 16 | \(Y_n = \frac{1}{2340} X_n \) | \[
 \begin{align*}
 13x_{n+1} - y_{n+1}, \\
 13y_{n+2} - 10777y_{n+1}
 \end{align*}
\] |
| 17 | \(Y_n = \frac{1}{3037320} X_n \) | \[
 \begin{align*}
 13x_{n+1} - y_{n+1}, \\
 13y_{n+3} - 13988533y_{n+1}
 \end{align*}
\] |
| 18 | \(Y_n = \frac{649}{842401} X_n \) | \[
 \begin{align*}
 10777x_{n+1} - y_{n+2}, \\
 13988533x_{n+1} - y_{n+3}
 \end{align*}
\] |
| 19 | \(Y_n = \frac{649}{180} X_n \) | \[
 \begin{align*}
 10777x_{n+1} - y_{n+2}, \\
 387972x_{n+2} - 2989x_{n+3}
 \end{align*}
\] |
<table>
<thead>
<tr>
<th>n</th>
<th>Formula</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>$Y_n = 649X_n$</td>
<td>$(10777x_{n+1} - y_{n+2},$ $10777x_{n+2} - 2989y_{n+2})$</td>
</tr>
<tr>
<td>21</td>
<td>$Y_n = \frac{649}{2340}X_n$</td>
<td>$(10777x_{n+1} - y_{n+2},$ $13y_{n+2} - 10777y_{n+1})$</td>
</tr>
<tr>
<td>22</td>
<td>$Y_n = \frac{649}{3037320}X_n$</td>
<td>$(10777x_{n+1} - y_{n+2},$ $13y_{n+3} - 13988533y_{n+1})$</td>
</tr>
<tr>
<td>23</td>
<td>$Y_n = \frac{561601}{120}X_n$</td>
<td>$(13988533x_{n+1} - y_{n+3},$ $3879721x_{n+2} - 2989x_{n+3})$</td>
</tr>
<tr>
<td>24</td>
<td>$Y_n = \frac{842401}{649}X_n$</td>
<td>$(13988533x_{n+1} - y_{n+3},$ $13x_{n+2} - 2989y_{n+1})$</td>
</tr>
<tr>
<td>25</td>
<td>$Y_n = 842401X_n$</td>
<td>$(13988533x_{n+1} - y_{n+3},$ $10777x_{n+2} - 2989y_{n+2})$</td>
</tr>
<tr>
<td>26</td>
<td>$Y_n = \frac{842401}{2340}X_n$</td>
<td>$(13988533x_{n+1} - y_{n+3},$ $13y_{n+2} - 10777y_{n+1})$</td>
</tr>
<tr>
<td>27</td>
<td>$Y_n = \frac{842401}{3037320}X_n$</td>
<td>$(13988533x_{n+1} - y_{n+3},$ $13y_{n+3} - 13988533y_{n+1})$</td>
</tr>
</tbody>
</table>

4: Consider $p = x_{n+1} + y_{n+1},$ $q = x_{n+1}.$ Note that $p > q > 0.$

Treat p, q as the generators of the Pythagorean triangle $T(X, Y, Z)$

where $X = 2pq, Y = p^2 - q^2, Z = p^2 + q^2.$

Then the following results are obtained:

a) $2X - 13Y + 11Z - 24 = 0.$

b) $\frac{2A}{P} = x_{n+1}y_{n+1}.$

c) $3(Z - Y)$ is a nasty number.

d) $3(X - \frac{4A}{P})$ is a nasty number.

e) $X - \frac{4A}{P} + Y$ is written as the sum of two squares.

IV. CONCLUSION

In this paper, we have presented infinitely many integer solutions for the negative Pell Equations $y^2 = 13x^2 - 12.$ As the binary quadratic Diophantine equations are rich in variety, one may search for the other choices of Pell Equations and determine their integer solutions along with suitable properties.
REFERENCES