A REVIEW: NANOCAPSULE: A INNOVATIVE MEDICINE DELIVERY TECHNIQUE

Karuna Balasaheb Jagtap¹*, Rajiya Afjal Khan², Mayur Anil Jagtap³, Rohit Shamrao Jagdale⁴.

¹- Student, Hon. Shree Babanrao Pachpute Vichardhara Trust’s Group of Institution, College of Pharmacy, Kashti-414701, Ahmednagar, Maharashtra, India.
²- Assistant Professor, Department of Pharmaceutics, Hon. Shree Babanrao Pachpute Vichardhara Trusts Group of Institution, College of Pharmacy, Kashti-414701, Ahmednagar, Maharashtra, India.

Abstract

Nano capsules are vesicular systems in which the medicine is contained in a hollow with an inner liquid core and a polymeric membrane surrounding it. Nano capsules come with a number of benefits and drawbacks. Two types of polymers can be employed in the manufacture of Nano capsules. 1) Polymers found in nature 2) Polymers that have been synthesised.a) Solvent evaporation b) Nano precipitation c) emulsification / Solvent diffusion d) Salting out e) Dialysis f) Super critical fluid technology are some of the methods used to create nano capsules.

Nano capsules are subjected to a variety of characterization and evaluation procedures. To achieve controlled release and efficient drug targeting, dispersed polymer nanocapsules can be employed as nanosized drug carriers.

Drug-loaded polymeric nanocapsules have been shown to have potential applications in drug delivery systems. To develop current nano-particulate drug delivery methods, enormous research efforts have been made.

Newly discovered therapeutic compounds with a modest biopharmaceutical profile, on the other hand (NC), have the potential to provide therapeutic benefits in the field of drug delivery.

Key words: nanocapsules, nanoparticles, drug delivery system

Introduction

Nanocapsules range in size from 10 nm to 1000 nm and are available in a variety of sizes. They have a liquid/solid core in which the medicine is deposited in a cavity surrounding by a polymer membrane consisting of natural or manmade polymers. The protective layer, which is often pyrophoric and rapidly oxidised, has piqued interest because it delays the release of active compounds.
Nanocapsules are a type of nanoparticle that consists of one or more active components (core) and a protective matrix (shell) into which the therapeutic substance can be encased.

Nanocapsules have been created as drug delivery methods for a variety of medications via a variety of routes, including oral and parental administration. Drug toxicity should be reduced.

Nanocapsules are polymeric nanoparticles with a polymeric wall made up of nonionic surfactants, macromolecules, phospholipids and an oil core.

Nanocapsule structure

Advantages:

1. Sustained release, increasing drug selectivity and effectiveness
2. Improved drug bioavailability, and reduced drug toxicity are some of their key advantages.
3. When injected intravenously, nanocapsules, which are submicron in size, reach the target and release the encapsulated medicine.
4. When injected intravenously, nanocapsules, which are submicron in size, reach the target and release the encapsulated medicine.
Nanocapsule Drawbacks:

1. A high-cost formulation with a high yield. Productivity is more harder to achieve.

2. As a result, technology, industrial application. The transition to commercial production is quite difficult.

3. Reduced dose-adjustment ability. Technology that is extremely advanced To produce, you'll need certain skills.

4. The stability of the dose form is a major concern. Because of its micro size, Recycling is highly costly.

Nanocapsule preparation methodologies:

1. Method of nanoprecipitation:

 The method of nanoprecipitation is also known as Interfacial deposition or solvent displacement.

 The Biodegradable polymers are extensively utilised. Polyesters, particularly poly-caprolactone, are a type of polymer (PCL), Polylactide (PLA) and polylactide-co-glicolide (PLGA) are two types of polylactide.
Preparation of nanocapsule by precipitation method

2. Method of emulsion–diffusion:

The water miscible solvent, as well as a little amount of water, are used in this approach. As an oil, an immiscible organic solvent is utilised. The most widely used polymers are PCL, PLA, and other biodegradable polyesters as well as eudragit. Poly (hydroxybutyrate-co-hydroxybutyrate-co-hydroxybutyrate-co-hydroxyvalerate) (PHBV) is another option.

Preparation of nanocapsule by emulsion-diffusion method

3. Method of double emulsification:

Double emulsions are heterodisperse heterogeneous complex emulsions. "Emulsions of emulsions" systems.

It can be divided into two categories:

- w/o/w oil-water emulsion and oil-water-oil emulsion
- (o/w/o) emulsion
Preparation of nanocapsule by double emulsification method

4. Method of emulsion-coacervation:

A combination of two methods is used in this strategy. One of the aqueous phases is the polymer, chitosan, an ethylene oxide di-block co-polymer, or one is a propylene oxide (PEO-PPO) and the other is a propylene oxide (PEO-PPO) sodium tri polyphosphate polyanion. In this case, positively charged amino group, technique negatively charged tripeptides interact with chitosan. coacervates with a size of in polyphosphate Nanometers are the smallest units of measurement.

Preparation of nanocapsule by the emulsion–coacervation method
5. Application of a polymer coating:

They use poly (methyl methacrylate) as a layer-formed polymer (PMMA) Nanocapsules are made of poly(methacrylate) (PMA) and poly(carbonate) (PCL). The mechanism of formation is based on In three-phase system engulfment occurs.

6. The layer-by-layer approach :

The layer-by-layer approach utilises Polycations such as polylysine, chitosan, and gelatin are examples of polycations. B, poly (allylamine) (PAA) poly(allylamine) poly(allylamine) poly(allylamine) poly(ally (ethyleneimine) (PEI), aminidextran, and protamine sulphate are all examples of protamine sulphate.

The Polyanions like this are used:

(styrene) polymer sodium alginate, poly (acrylic) sulfonate) (PSS), sodium alginate carboxymethyl cellulose, dextran sulphate,

gelatin A, chondroitin, and hyaluronic acid, heparin.
Preparation of nanocapsule by layer by layer method

NANOCAPSULES: CHARACTERIZATION

1. THE SIZE OF THE PARTICLE

Because smaller particles have more surface area, most therapeutic chemicals attached to or near the surface of the particle cause immediate drug release, whereas bigger particles with vast core surfaces diffuse out gradually.

2. PH OF NANOCAPSULE DETERMINATION

Formulation of Nanocapsules At room temperature, pH was determined using a digital pH meter. The pH of nano capsule dispersion is 3.0-7.5.

3. DRUG CONTENT DETERMINATION:

Drug content was determined by dissolving 1 mL of prepared nanocapsules in 20 mL acetonitrile. The UV Spectrophotometer at 232nm was then used to examine a suitable amount of sample. Each sample's absorbance was measured and compared to a reference point.

4. CHARACTERIZATION OF THE STRUCTURE:

To determine various features such as shape, size, and surface morphology, structural characterisation can be done using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM).

The nano capsules were micrographed with a Phillips Cm 200 operating at 20-200 kv, and the Fe-SEM was performed with a Hitachi S-4800 FE-SEM equipped with an energy dispersion spectrometer (EDS)
5. DRUG RELEASE IN VITRO:

The USP type 11 dissolving apparatus was used to conduct in vitro dissolution tests.

The experiment was conducted in 100 mL of buffer (PH 3.0).

The suspension of nano capsules was placed in a dialysis membrane and dipped in a dissolving media that was kept inert at 370.50C.

The stirring speed was kept constant at 100 rpm.

5ml of sample was taken at specified intervals and spectrophotometrically evaluated for drug release. 5 mL of fresh dissolving medium was added to the dissolution jar after each withdrawal.

Application of nanocapsule

<table>
<thead>
<tr>
<th>Application</th>
<th>Drug</th>
<th>Mode of preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrochemical</td>
<td>Abomectin nanocapsule</td>
<td>Emulsion polymerization</td>
</tr>
<tr>
<td></td>
<td>cypermethrin capsules</td>
<td>Microemulsion polymerization</td>
</tr>
<tr>
<td></td>
<td>pyrethrum nanocapsule</td>
<td>Microemulsion polymerization</td>
</tr>
<tr>
<td>Anti-inflammatory drugs</td>
<td>Diclofenac sodium</td>
<td>Sol-gel method</td>
</tr>
<tr>
<td>Antiseptics</td>
<td>Indomethacin nanocapsule</td>
<td>Interfacial polymerization</td>
</tr>
<tr>
<td>Cosmetics</td>
<td>Epsilon caprolactone nanocapsule</td>
<td>Emulsion-Diffusion method</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Insulin-loaded Biodegradable (isobutylcyanoacrylate)</td>
<td>Interfacial polymerization</td>
</tr>
</tbody>
</table>
Conclusion:

The better distribution of bioactive compounds via targeted delivery via nanocapsules presents various problems and potential for future study and development of novel improved therapeutics.

They can be used in the delivery of active pharmaceutical ingredients (APIs). They provide the novel effective drug delivery systems in the upcoming future.

Reference:

22. Sneha Anand P.S, Rajinikanth, in Biopolymer-Based Nanomaterials in drug delivery and Biomedical application 2021.