ηg-closed Sets and η-Normal Spaces in Topological Spaces

Hamant Kumar
Department of Mathematics
Veerangana Avantibai Government Degree College, Atrauli-Aligarh, U. P. (India)

Abstract. The aim of this paper is to introduce and study a new class of sets called ηg-closed sets and a new class of spaces called η-normal spaces. The relationships among βg-normal, α-normal, s-normal and η-normal spaces are investigated. Moreover, we introduce the concept of η-generalized closed functions. We also obtain some characterizations and preservation theorems of η-normal spaces, in the forms of generalized η-closed and η-generalized closed functions.

Key Words: η-open, gn-closed, and ηg-closed sets; η-normal spaces; η-closed and η-ηg-closed functions.

2020 Mathematics Subject Classification: 54A05, 54C08, 54C10, 54D15.

1. Introduction

2. Preliminaries

In what follows, spaces always mean topological spaces on which no separation axioms are assumed unless explicitly stated and f : (X, τ) → (Y, σ) (or simply f : X → Y) denotes a function f of a space (X, τ) into a space (Y, σ). Let A be a subset of a space X. The closure and the interior of A are denoted by cl(A) and int(A), respectively.

2.1 Definition. A subset A of a space X is said to be:

1. (1) regular open [15] if A = int(cl(A)).
 (2) regular closed [15] if A = cl(int(A)).
 (3) s-open [9] if A ⊆ cl(int(A)).
 (4) α-open [13] if A ⊆ int(cl(int(A))).
 (5) η-open [16] if A ⊆ int(cl(int(A))) ∪ cl(int(A)).
The complement of a s-open (resp. α-open, η-open) set is called s-closed (resp. α-closed, η-closed).

The intersection of all s-closed (resp. α-closed, η-closed) sets containing A is called the s-closure (resp. α-closure, η-closure) of A and is denoted by s-cl(A) (resp. α-cl(A), η-cl(A)). The η-interior of A, denoted by η-int(A) is defined to be the union of all η-open sets contained in A.

The family of all η-open (resp. η-closed, regular open, regular closed, s-open, s-closed, α-open, α-closed) sets of a space X is denoted by η-O(X) (resp. η-C(X), R-O(X), R-C(X), S-O(X), S-C(X), α-O(X), α-C(X)).

2.2 Definition. A subset A of a space (X, τ) is said to be
1. g-closed [10] if cl(A) ⊆ U whenever A ⊆ U and U ∈ τ.
3. sg-closed [4] if s-cl(A) ⊆ U whenever A ⊆ U and U ∈ S(O(X)).
5. ga-closed [12] if α-cl(A) ⊆ U whenever A ⊆ U and U ∈ α-O(X).
7. ηg-closed if η-cl(A) ⊆ U whenever A ⊆ U and U ∈ η-O(X).

The complement of g-closed (resp. gs-closed, sg-closed, ag-closed, ga-closed, gn-closed, ηg-closed) set is said to be g-open (resp. gs-open, sg-open, ag-open, ga-open, gn-open, ηg-open).

2.3 Remark. We have the following implications for the properties of subsets:

Where none of the implications is reversible as can be seen from the following examples:

2.4 Example. Let X = {a, b, c, d} and τ = {∅, {b, d}, {a, b, d}, {b, c, d}, X}. Then
1. closed sets in (X, τ) are φ, X, {a}, {c}, {a, c}.
2. g-closed sets in (X, τ) are φ, X, {a}, {c}, {a, c}, {a, b, c}, {a, c, d}.
3. s-closed sets in (X, τ) are φ, X, {a}, {c}, {a, c}.
4. gs-closed sets in (X, τ) are φ, X, {a}, {c}, {a, c}, {a, b, c}, {a, c, d}.
5. sg-closed sets in (X, τ) are φ, X, {a}, {c}, {a, b, c}, {a, c, d}.
6. α-closed sets in (X, τ) are φ, X, {a}, {c}, {a, c}.
7. ag-closed sets in (X, τ) are φ, X, {a}, {c}, {a, c}, {a, b, c}, {a, c, d}.
8. ga-closed sets in (X, τ) are φ, X, {a}, {c}, {a, d}, {a, b, d}, {a, c, d}.
9. η-closed sets in (X, τ) are φ, X, {a}, {c}, {a, c}.
10. gn-closed sets in (X, τ) are φ, X, {a}, {c}, {a, c}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.
11. ηg-closed sets in (X, τ) are φ, X, {a}, {c}, {a, c}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

2.5 Example. Let X = {a, b, c, d} and τ = {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, X}. Then
1. closed sets in (X, τ) are φ, X, {d}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.
2. g-closed sets in (X, τ) are φ, X, {d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
3. s-closed sets in (X, τ) are φ, X, {d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
4. gs-closed sets in (X, τ) are φ, X, {d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
5. sg-closed sets in (X, τ) are φ, X, {d}, {b, d}, {a, b, d}, {a, c, d}, {b, c, d}.
6. α-closed sets in (X, τ) are φ, X, {d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
7. ag-closed sets in (X, τ) are φ, X, {d}, {a, b, d}, {a, c, d}, {b, c, d}.
8. ga-closed sets in (X, τ) are φ, X, {d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
(9) η-closed sets in (X, S) are φ, X, {a}, {c}, {d}, {a, c}, {b, d}, {b, d, c, e}, {a, c, d}, {b, d, e}.
(10) gn-closed sets in (X, S) are φ, X, {b}, {c}, {d}, {a, c}, {b, d}, {b, d, c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
(11) ng-closed sets in (X, S) are φ, X, {b}, {c}, {d}, {a, c}, {b, d}, {b, d, c, d}, {a, c, d}, {b, c, d}.

3. η-normal Spaces

3.1 Definition. A space X is said to be η-normal if for any pair of disjoint closed sets A and B, there exist disjoint η-open sets U and V such that A ⊂ U and B ⊂ V.

3.2 Definition. A space X is said to be α-normal [3] (resp. s-normal [11], β*-normal [11]) if for any pair of disjoint closed sets A and B, there exist disjoint α-open (resp. s-open, β*-open) sets U and V such that A ⊂ U and B ⊂ V.

3.3 Remark. The following diagram holds for a topological space (X, S):

normal → β*-normal → α-normal → s-normal → η-normal

None of these implications is reversible as shown by the following examples.

3.4 Example. Let X = {a, b, c} and S = {φ, {a}, {b, c}, X}. Then the space (X, S) is normal as well as η-normal.

3.5 Example. Let X = {a, b, c, d} and S = {φ, {a}, {b}, {a, b}, {b, c}, {b, d}, {a, b, d}, {b, c, d}, {a, b, d, c}, {b, c, d}, X}. Let A = {c} and B = {d} be disjoint closed sets, there exist disjoint s-open sets U = {a, c} and V = {b, d} such that A ⊂ U and B ⊂ V. Then the space (X, S) is s-normal as well as η-normal, since every s-open set is η-open. But it is neither normal nor α-normal, because U and V are neither open nor α-open sets.

3.6 Example. Let X = {a, b, c, d} and S = {φ, {a}, {c}, {a, b}, {a, c}, {b, d}, {c, d}, {a, b, d}, {b, c, d}, X}. Let A = {a} and B = {c} be disjoint closed sets, there exist disjoint open sets U = {a} and V = {c} such that A ⊂ U and B ⊂ V. Then the space (X, S) is normal as well as α-normal, s-normal, η-normal, since every open set is α-open, s-open and η-open.

3.7 Example. Let X = {a, b, c, d} and S = {φ, {a}, {c}, {a, b}, {a, c}, {b, d}, X}. Then the space (X, S) is normal as well as α-normal, s-normal, η-normal, since every open set is α-open, s-open and η-open.

3.8 Theorem. For a space X the following are equivalent:
(1) X is η-normal,
(2) For every pair of open sets U and V whose union is X, there exist η-closed sets A and B such that A ⊂ U, B ⊂ V and A ∪ B = X,
(3) For every closed set H and every open set K containing H, there exists an η-open set U such that H ⊂ U ⊂ η-cl(U) ⊂ K.

Proof. (1) ⇒ (2) : Let U and V be a pair of open sets in an η-normal space X such that X = U ∪ V. Then X \ U, X \ V are disjoint closed sets. Since X is η-normal, there exist disjoint η-open sets U1 and V1 such that X \ U ⊂ U1 and X \ V ⊂ V1. Let A = X \ U1, B = X \ V1. Then A and B are η-closed sets such that A ⊂ U, B ⊂ V and A ∪ B = X.

(2) ⇒ (3) : Let H be a closed set and K be an open set containing H. Then X \ H and K are open sets whose union is X. Then by (2), there exist η-closed sets M1 and M2 such that M1 ⊂ X \ H and M2 ⊂ K and M1 ∪ M2 = X. Then H ⊂ X \ M1, X \ K ⊂ X \ M2 and (X \ M1) ∩ (X \ M2) = φ. Let U = X \ M1 and V = X \ M2. Then U and V are disjoint η-open sets such that H ⊂ U ⊂ X \ V ⊂ K. As X \ V is η-closed set, we have η-cl(U) ⊂ X \ V and H ⊂ η-cl(U) ⊂ K.

(3) ⇒ (1) : Let H1 and H2 be any two disjoint closed sets of X. Put K = X \ H2, then H2 ∩ K = φ, H1 ⊂ K, where K is an open set. Then by (3), there exists an η-open set U of X such that H1 ⊂ U ⊂ η-cl(U) ⊂ K. It follows that H2 ⊂ X \ η-cl(U) = V , say, then V is η-open and U ∩ V = φ. Hence H1 and H2 are separated by η-open sets U and V. Therefore X is η-normal.

4. η-normal Spaces with Some Related Functions

4.1 Definition. A function f : X → Y is called
(1) R-map [5] if f \−1(V) is regular open in X for every regular open set V of Y,
(2) completely continuous [1] if f \−1(V) is regular open in X for every open set V of Y,
(3) rc-continuous [6] if for each regular closed set F in Y, f \−1(F) is regular closed in X.
4.2 Definition. A function \(f : X \rightarrow Y \) is called
(1) strongly \(\eta \)-open if \(f(U) \in \eta \)-O(Y) for each \(U \in \eta \)-O(X),
(2) strongly \(\eta \)-closed if \(f(U) \in \eta \)-C(Y) for each \(U \in \eta \)-C(X),
(3) almost \(\eta \)-irresolute if for each \(x \in X \) and each \(\eta \)-neighbourhood \(V \) of \(f(x) \), \(\eta \)-cl(f(\(-1 \)(V))) is a \(\eta \)-neighbourhood of \(x \).

4.3 Theorem. A function \(f : X \rightarrow Y \) is strongly \(\eta \)-closed if and only if for each subset \(A \) in \(Y \) and for each \(\eta \)-open set \(U \) in \(X \) containing \(f^{-1}(A) \), there exists an \(\eta \)-open set \(V \) containing \(A \) such that \(f^{-1}(U) \subset V \).

Proof. \((\Rightarrow)\) : Suppose that \(f \) is strongly \(\eta \)-closed. Let \(A \) be a subset of \(Y \) and \(U \in \eta \)-O(X) containing \(f^{-1}(A) \). Put \(V = Y - f(X - U) \), then \(V \) is an \(\eta \)-open set of \(Y \) such that \(A \subset V \) and \(f^{-1}(V) \subset U \).

\((\Leftarrow)\) : Let \(K \) be any \(\eta \)-closed set of \(X \). Then \(f^{-1}(Y - f(K)) \subset X - K \) and \(X - K \in \eta \)-O(X). There exists an \(\eta \)-open set \(V \) of \(Y \) such that \(Y - f(K) \subset V \) and \(f^{-1}(V) \subset X - K \). Therefore, we have \(f(K) \supset Y - V \) and \(K \subset f^{-1}(Y - V) \). Hence, we obtain \(f(K) = Y - V \) and \(f(K) \) is \(\eta \)-closed in \(Y \). This shows that \(f \) is strongly \(\eta \)-closed.

4.4 Lemma. For a function \(f : X \rightarrow Y \), the following are equivalent:
(1) \(f \) is almost \(\eta \)-irresolute,
(2) \(f^{-1}(V) \subset \eta \)-int(\(\eta \)-cl(f(\(-1 \)(V)))) for every \(V \in \eta \)-O(Y).

4.5 Theorem. A function \(f : X \rightarrow Y \) is almost \(\eta \)-irresolute if and only if \(f(\eta \)-cl(U)) \(\subset \eta \)-cl(f(U)) for every \(U \in \eta \)-O(X).

Proof. \((\Rightarrow)\) : Let \(U \in \eta \)-O(X). Suppose \(y \in \eta \)-cl(f(U)). Then there exists \(V \in \eta \)-O(Y) such that \(V \cap f(U) = \phi \). Hence, \(f^{-1}(V) \cap U = \phi \). Since \(U \in \eta \)-O(X), we have \(\eta \)-int(\(\eta \)-cl(f(\(-1 \)(V)))) \(\cap \eta \)-cl(U) = \(\phi \). Then by Lemma 4.4, \(f^{-1}(V) \cap \eta \)-cl(U) = \(\phi \) and hence \(V \cap f(\eta \)-cl(U)) = \(\phi \). This implies that \(y \not\in f(\eta \)-cl(U)).

\((\Leftarrow)\) : If \(V \in \eta \)-O(Y), then \(M = X - \eta \)-cl(f(\(-1 \)(V))) \(\in \eta \)-O(X). By hypothesis, \(f(\eta \)-cl(M)) \(\subset \eta \)-cl(f(M)) and hence \(X - \eta \)-int(\(\eta \)-cl(f(\(-1 \)(V)))) = \(\eta \)-cl(M) \(\subset f^{-1}(\eta \)-cl(f(M))) \(\subset f^{-1}(\eta \)-cl(f(f(\(-1 \)(V)))) \(\subset f^{-1}(\eta \)-cl(Y - V)) = f^{-1}(Y - V) = X - f^{-1}(V) \). Therefore, \(f^{-1}(V) \subset \eta \)-int(\(\eta \)-cl(f(\(-1 \)(V)))) by Lemma 4.4, \(f \) is almost \(\eta \)-irresolute.

4.6 Theorem. If \(f : X \rightarrow Y \) is a strongly \(\eta \)-open continuous almost \(\eta \)-irresolute function from a \(\eta \)-normal space \(X \) onto a space \(Y \), then \(Y \) is \(\eta \)-normal.

Proof. Let \(A \) be a closed subset of \(Y \) and \(B \) be an open set containing \(A \). Then by continuity of \(f \), \(f^{-1}(A) \) is closed and \(f^{-1}(B) \) is an open set of \(X \) such that \(f^{-1}(A) \subset f^{-1}(B) \). As \(X \) is \(\eta \)-normal, there exists an \(\eta \)-open set \(U \) in \(X \) such that \(f^{-1}(A) \subset U \subset \eta \)-cl(U) \(\subset f^{-1}(B) \) by Theorem 3.8. Then, \(f(f^{-1}(A)) \subset f(U) \subset f(\eta \)-cl(U)) \(\subset f(f^{-1}(B)) \). Since \(f \) is strongly \(\eta \)-open almost \(\eta \)-irresolute surjection, we obtain \(A \subset f(U) \subset \eta \)-cl(f(U)) \(\subset B \) and then by Theorem 3.8, the space \(Y \) is \(\eta \)-normal.

4.7 Theorem. If \(f : X \rightarrow Y \) is an \(\eta \)-closed continuous function from an \(\eta \)-normal space \(X \) onto a space \(Y \), then \(Y \) is \(\eta \)-normal.

Proof. Let \(M_1 \) and \(M_2 \) be disjoint closed sets. Then \(f^{-1}(M_1) \) and \(f^{-1}(M_2) \) are closed sets. Since \(X \) is \(\eta \)-normal, then there exist disjoint \(\eta \)-open sets \(U \) and \(V \) such that \(f^{-1}(M_1) \subset U \) and \(f^{-1}(M_2) \subset V \). By Theorem 4.3, there exist \(\eta \)-open sets \(A \) and \(B \) such that \(M_1 \subset A \), \(M_2 \subset B \), \(f^{-1}(A) \subset U \) and \(f^{-1}(B) \subset V \). Also, \(A \) and \(B \) are disjoint. Thus, \(Y \) is \(\eta \)-normal.

5. \(\eta \)-generalized Closed Functions

5.1 Definition. A function \(f : X \rightarrow Y \) is said to be
(1) \(\eta \)-closed [8] if \(f(A) \) is \(\eta \)-closed in \(Y \) for each closed set \(A \) of \(X \),
(2) \(\eta \)-ng-closed if \(f(A) \) is \(\eta \)-ng-closed in \(Y \) for each closed set \(A \) of \(X \),
(3) \(\eta \)-g\(\eta \)-closed [18] if \(f(A) \) is \(\eta \)-g\(\eta \)-closed in \(Y \) for each closed set \(A \) of \(X \).

5.2 Definition. A function \(f : X \rightarrow Y \) is said to be
(1) quasi \(\eta \)-closed if \(f(A) \) is closed in \(Y \) for each \(A \in \eta \)-C(X),
(2) \(\eta \)-ng-closed if \(f(A) \) is \(\eta \)-ng-closed in \(Y \) for each \(A \in \eta \)-C(X),
(3) \(\eta \)-ng\(\eta \)-closed if \(f(A) \) is \(\eta \)-ng\(\eta \)-closed in \(Y \) for each \(A \in \eta \)-C(X),
(4) almost \(\eta \)-g\(\eta \)-closed if \(f(A) \) is \(\eta \)-g\(\eta \)-closed in \(Y \) for each \(A \in R-C(X) \).

5.3 Definition. A function \(f : X \rightarrow Y \) is said to be \(\eta \)-g\(\eta \)-continuous if \(f^{-1}(K) \) is \(\eta \)-g\(\eta \)-closed in \(X \) for every \(K \in \eta \)-C(Y).

5.4 Definition. A function \(f : X \rightarrow Y \) is said to be \(\eta \)-irresolute [8] if \(f^{-1}(V) \in \eta \)-O(X) for every \(V \in \eta \)-O(Y).

5.5 Theorem. Let \(f : X \rightarrow Y \) and \(g : Y \rightarrow Z \) be functions. Then
(1) the composition $gof : X \rightarrow Z$ is η-$g\eta$-closed if f is η-$g\eta$-closed and g is continuous η-$g\eta$-closed.
(2) the composition $gof : X \rightarrow Z$ is η-$g\eta$-closed if f is strongly η-closed and g is η-$g\eta$-closed.
(3) the composition $gof : X \rightarrow Z$ is η-$g\eta$-closed if f is quasi η-closed and g is $g\eta$-closed.

5.6 Theorem. Let $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ be functions and let the composition $gof : X \rightarrow Z$ be η-$g\eta$-closed. If f is a η-irresolute surjection, then g is η-$g\eta$-closed.

Proof. Let $K \in \eta$-$C(Y)$. Since f is η-irresolute and surjective, $f^{-1}(K) \in \eta$-$C(X)$ and $(gof)(f^{-1}(K)) = g(K)$. Hence, $g(K)$ is $g\eta$-closed in Z and hence g is η-$g\eta$-closed.

5.7 Lemma. A function $f : X \rightarrow Y$ is η-$g\eta$-closed if and only if for each subset B of Y and each $U \in \eta$-$O(X)$ containing $f^{-1}(B)$, there exists a $g\eta$-open set V of Y such that $B \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof. (\Rightarrow): Suppose that f is η-$g\eta$-closed. Let B be a subset of Y and $U \in \eta$-$O(X)$ containing $f^{-1}(B)$. Put $V = Y - f(X - U)$, then V is a $g\eta$-open set of Y such that $B \subseteq V$ and $f^{-1}(V) \subseteq U$.

(\Leftarrow): Let K be any η-closed set of X. Then $f^{-1}(Y - f(K)) \subseteq X - K$ and $X - K \in \eta$-$O(X)$. There exists a $g\eta$-open set V of Y such that $Y - f(K) \subseteq V$ and $f^{-1}(V) \subseteq X - K$. Therefore, we have $f(K) \supseteq Y - V$ and $K \subseteq f^{-1}(Y - V)$. Hence, we obtain $f(K) = Y - V$ and $f(K)$ is $g\eta$-closed in Y. This shows that f is η-$g\eta$-closed.

5.8 Theorem. If $f : X \rightarrow Y$ is continuous η-$g\eta$-closed, then $f(H)$ is $g\eta$-closed in Y for each $g\eta$-closed set H of X.

Proof. Let H be any $g\eta$-closed set of X and V an open set of Y containing $f(H)$. Since $f^{-1}(V)$ is an open set of X containing H, η-$cl(H) \subseteq f^{-1}(V)$ and hence $f(\eta$-$cl(H)) \subseteq V$. Since f is η-$g\eta$-closed and η-$cl(H) \in \eta$-$C(X)$, we have η-$cl(f(H)) \subseteq \eta$-$cl(f(\eta$-$cl(H))) \subseteq V$. Therefore, $f(H)$ is $g\eta$-closed in Y.

5.9 Remark. Every η-irresolute function is η-$g\eta$-continuous but not conversely.

5.10 Theorem. A function $f : X \rightarrow Y$ is η-$g\eta$-continuous if and only if $f^{-1}(V)$ is $g\eta$-open in X for every $V \in \eta$-$O(Y)$.

5.11 Theorem. If $f : X \rightarrow Y$ is closed η-$g\eta$-continuous, then $f^{-1}(K)$ is $g\eta$-closed in X for each $g\eta$-closed set K of Y.

Proof. Let K be a $g\eta$-closed set of Y and U an open set of X containing $f^{-1}(K)$. Put $V = Y - f(X - U)$, then V is open in Y, $K \subseteq V$, and $f^{-1}(V) \subseteq U$. Therefore, we have η-$cl(K) \subseteq V$ and hence $f^{-1}(\eta$-$cl(K)) \subseteq f^{-1}(V) \subseteq U$. Since f is η-$g\eta$-continuous, $f^{-1}(\eta$-$cl(K))$ is $g\eta$-closed in X and hence η-$cl(f^{-1}(K)) \subseteq \eta$-$cl(f^{-1}(\eta$-$cl(K))) \subseteq U$. This shows that $f^{-1}(K)$ is $g\eta$-closed in X.

5.12 Corollary. If $f : X \rightarrow Y$ is closed η-irresolute, then $f^{-1}(K)$ is $g\eta$-closed in X for each $g\eta$-closed set K of Y.

5.13 Theorem. If $f : X \rightarrow Y$ is an open η-$g\eta$-continuous bijection, then $f^{-1}(K)$ is $g\eta$-closed in X for every $g\eta$-closed set K of Y.

Proof. Let K be a $g\eta$-closed set of Y and U an open set of X containing $f^{-1}(K)$. Since f is an open surjective, $K = f(f^{-1}(K)) \subseteq f(U)$ and $f(U)$ is open. Therefore, η-$cl(K) \subseteq f(U)$. Since f is injective, $f^{-1}(K) = f^{-1}(\eta$-$cl(K)) \subseteq f^{-1}(f(U)) = U$. Since f is η-$g\eta$-continuous, $f^{-1}(\eta$-$cl(K))$ is $g\eta$-closed in X and hence η-$cl(f^{-1}(K)) \subseteq \eta$-$cl(f^{-1}(\eta$-$cl(K))) \subseteq U$. This shows that $f^{-1}(K)$ is $g\eta$-closed in X.

5.14 Theorem. Let $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ be functions and let the composition $gof : X \rightarrow Z$ be η-$g\eta$-closed. If g is an open η-$g\eta$-continuous bijection, then f is η-$g\eta$-closed.

Proof. Let $H \in \eta$-$C(X)$. Then $(gof)(H) = g\eta$-closed in Z and $g^{-1}((gof)(H)) = f(H)$. By Theorem 5.13, $f(H)$ is $g\eta$-closed in Y and hence f is η-$g\eta$-closed.

5.15 Theorem. Let $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ be functions and let the composition $gof : X \rightarrow Z$ be η-$g\eta$-closed. If g is a closed η-$g\eta$-continuous injection, then f is η-$g\eta$-closed.

Proof. Let $H \in \eta$-$C(X)$. Then $(gof)(H) = g\eta$-closed in Z and $g^{-1}((gof)(H)) = f(H)$. By Theorem 5.11, $f(H)$ is $g\eta$-closed in Y and hence f is η-$g\eta$-closed.
6. Characterizations of η-normal Spaces and Some Preservation Theorems

6.1 Theorem
For a topological space X, the following are equivalent:

(a) X is η-normal,
(b) for any pair of disjoint closed sets A and B of X, there exist disjoint η-open sets U and V of X such that $A \subset U$ and $B \subset V$,
(c) for each closed set A and each open set B containing A, there exists a η-open set U such that $cl(A) \subset U \subset \eta-cl(U) \subset B$,
(d) for each closed A and each η-open set B containing A, there exists an η-open set U such that $A \subset U \subset \eta-cl(U) \subset int(B)$,
(e) for each closed A and each η-open set B containing A, there exists a η-open set G such that $A \subset G \subset \eta-cl(G) \subset int(B)$,
(f) for each closed set A and each open set B containing A, there exists an η-open set U such that $cl(A) \subset U \subset \eta-cl(U) \subset B$,
(g) for each closed set A and each open set B containing A, there exists a η-open set G such that $cl(A) \subset G \subset \eta-cl(G) \subset B$.

Proof.
(a) \iff (b) \iff (c): Since every η-open set is η-open, it is obvious.

(d) \implies (e) \implies (f): Since every closed (resp. open) set is g-closed (resp. g-open), it is obvious.

(c) \implies (g): Let A be a closed subset of X and B be an open set such that $A \subset B$. Since B is g-open and A is closed, $A \subset int(A)$. Then, there exists an η-open set U such that $A \subset U \subset \eta-cl(U) \subset int(B)$.

(e) \implies (d): Let A be any closed subset of X and B be a g-open set containing A. Then there exists a η-open set G such that $A \subset G \subset \eta-cl(G) \subset int(B)$. Since G is η-open, $A \subset \eta-int(G)$. Put $U = \eta-int(G)$, then U is η-open and $A \subset U \subset \eta-cl(U) \subset int(B)$.

(c) \implies (g): Let A be any g-closed subset of X and B be an open set such that $A \subset B$. Then $cl(A) \subset B$. Therefore, there exists an η-open set U such that $cl(A) \subset U \subset \eta-cl(U) \subset B$.

(g) \implies (f): Let A be any g-closed subset of X and B be an open set containing A. Then there exists a η-open set G such that $cl(A) \subset G \subset \eta-cl(G) \subset B$. Since G is η-open and $cl(A) \subset G$, we have $cl(A) \subset \eta-int(G)$, put $U = \eta-int(G)$, then U is η-open and $cl(A) \subset U \subset \eta-cl(U) \subset B$.

6.2 Theorem
If $f : X \to Y$ is a continuous quasi-η-closed surjection and X is η-normal, then Y is normal.

Proof. Let M_1 and M_2 be any disjoint closed sets of Y. Since f is continuous, $f^{-1}(M_1)$ and $f^{-1}(M_2)$ are disjoint closed sets of X. Since X is η-normal, there exist disjoint $U_1, U_2 \in \eta-O(X)$ such that $f^{-1}(M_i) \subset U_i$ for $i = 1, 2$. Let $V_i = Y - f(X - U_i)$, then V_i is open in Y, $M_i \subset V_i$, and $f^{-1}(V_i) \subset U_i$ for $i = 1, 2$. Since $U_1 \cap U_2 = \emptyset$ and f is surjective, we have $V_1 \cap V_2 = \emptyset$. This shows that Y is normal.

6.3 Lemma [17]
A subset A of a space X is $g\eta$-open if and only if $F \cap \eta-int(A)$ whenever F is closed and $F \subset A$.

6.4 Theorem
Let $f : X \to Y$ be a closed η-$g\eta$-continuous injection. If Y is η-normal, then X is η-normal.

Proof. Let N_1 and N_2 be disjoint closed sets of X. Since f is a closed injection, $f(N_1)$ and $f(N_2)$ are disjoint closed sets of Y. By the η-normality of Y, there exist disjoint $V_1, V_2 \in \eta-O(Y)$ such that $f^{-1}(N_i) \subset V_i$ for $i = 1, 2$. Since f is η-$g\eta$-continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint η-open sets of X and $N_i \subset f^{-1}(V_i)$ for $i = 1, 2$. Now, put $U_i = \eta-int(f^{-1}(V_i))$ for $i = 1, 2$. Then, $U_i \in \eta-O(X)$, $N_i \subset U_i$ and $U_1 \cap U_2 = \emptyset$. This shows that X is η-normal.

6.5 Corollary
If $f : X \to Y$ is a closed η-irresolute injection and Y is η-normal, then X is η-normal.

Proof. This is an immediate consequence since every η-irresolute function is $-g\eta$-continuous.

6.6 Lemma
A function $f : X \to Y$ is almost $g\eta$-closed if and only if for each subset B of Y and each $U \in \text{R-O}(X)$ containing $f^{-1}(B)$, there exists a $g\eta$-open set V of Y such that $B \subset V$ and $f^{-1}(V) \subset U$.

6.7 Lemma
If $f : X \to Y$ is almost $g\eta$-closed, then for each closed set M of Y and each $U \in \text{R-O}(X)$ containing $f^{-1}(M)$, there exists $V \in \eta-O(Y)$ such that $M \subset V$ and $f^{-1}(V) \subset U$.

6.8 Theorem
Let $f : X \to Y$ be a continuous almost $g\eta$-closed surjection. If X is normal, then Y is η-normal.

Proof. Let M_1 and M_2 be any disjoint, closed sets of Y. Since f is continuous, $f^{-1}(M_1)$ and $f^{-1}(M_2)$ are disjoint closed sets of X. By the normality of X, there exist disjoint open sets U_1 and U_2 such that $f^{-1}(M_i) \subset U_i$, where $i = 1, 2$. Now, put $G_i = int(cl(U_i))$ for $i = 1, 2$, then $G_i \in \text{R-O}(X)$, $f^{-1}(M_i) \subset U_i \subset G_i$ and $G_1 \cap G_2 = \emptyset$. By Lemma 6.7, there exists $V_i \in \eta-O(Y)$ such that $M_i \subset V_i$ and $f^{-1}(V_i) \subset G_i$, where $i = 1, 2$. Since $G_1 \cap G_2 = \emptyset$ and f is surjective, we have $V_1 \cap V_2 = \emptyset$. This shows that Y is η-normal.

6.9 Corollary
If $f : X \to Y$ is a continuous η-closed surjection and X is normal, then Y is η-normal.