SENSITIVITY AND SPECIFICITY COMPARISON OF PRESUMPTIVE TESTS FOR BLOOD

Hemant Kumar
Assistant Professor (Forensic Science) Dyal Singh College Karnal

Abstract:

Blood is the key evidence in most of the crime scenes which help in establishing the link between the offender and crime scene. For the accurate analysis of suspected blood sample received from the crime scene require a proper collection, packaging and preservation. For the examination of blood, a multistage process is follows in forensic science laboratories. But before going for these steps, presumptive tests are used for preliminary identification of blood. Conventionally Kastle-Meyer and LMG (Leucomalachite Green) tests are used for forensic identification of blood. The aim of this study is to compare the sensitivity and specificity of both Kastle-Meyer and LMG (Leucomalachite Green) tests with accordance to the time of development of color reaction. For this purpose, both fresh and dried blood-stained samples were used to compare the rate of sensitivity of the tests. From this study it is concluded that the sensitivity and specificity of Kastle-Meyer test is more than the LMG (Leucomalachite Green) test for both fresh and dried blood samples. Kastle-Meyer test gives instant results for the blood within 5-20 sec as compare to LMG (Leucomalachite Green) test. Absence of any significant difference between the fresh and dried blood samples for the development of color reaction.

Index Terms: Blood, Presumptive test, Sensitivity, Specificity, Kastle-Meyer and LMG (Leucomalachite Green)
Introduction:

Blood is the main constituent of the human body, which supply nutrients and oxygen to the respective organs of the body. In most of the criminal activities where the physical struggle found between the victim and offender, the possibilities of founding blood on that type of crime scene is maximum [1]. For forensic crime scene expert and serologist, the most important question is to find out that every red color stain is blood or not? [1-3]

To find the answer of this question every forensic expert and serologist goes for the presumptive tests for blood like commonly used tests such as Kastle- Meyer and LMG (Leucomalachite Green) test. Both Kastle- Meyer and LMG (Leucomalachite Green) test works on the enzymatic activity and shows the desired color reaction for the blood pink color in Kastle- Meyer test and green blue color in LMG (Leucomalachite Green) test [1-3].

From many years forensic analysts performing benzidine test for the presumptive analysis. But due to heavy carcinogenic nature of benzidine now most of the forensic lab replaced the benzidine test with Kastle- Meyer test. Which gives better results as the benzidine without any carcinogenic effect in very highly diluted blood samples also [3,4].

The purpose of this study is to compare the time taken by the different samples to develop the color reaction. Which indicate the sensitivity and specificity of the commonly used presumptive tests for identification of blood samples in forensic examination [5-7].

Abbreviations:

KM: Kastle- Meyer test
LMG: Leucomalachite Green test

Research Methodology:

This study focuses on the comparison of the sensitivity and specificity of the Kastle- Meyer test and LMG (Leucomalachite Green) test with accordance to time to develop the color reaction with the blood samples.
For this study below listed samples are analyzed:

Table-1: List of type of samples analyzed

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Age of Sample</th>
<th>Type of Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fresh</td>
<td>Wet Blood</td>
</tr>
<tr>
<td>2.</td>
<td>Fresh</td>
<td>Dried Blood</td>
</tr>
<tr>
<td>3.</td>
<td>1 Week</td>
<td>Dried Blood</td>
</tr>
<tr>
<td>4.</td>
<td>2 Week</td>
<td>Dried Blood</td>
</tr>
<tr>
<td>5.</td>
<td>3 Week</td>
<td>Dried Blood</td>
</tr>
<tr>
<td>6.</td>
<td>1 Month</td>
<td>Dried Blood</td>
</tr>
</tbody>
</table>

Reagent Preparations:

Kastle- Meyer Test:

- **Stock Solution:**
 - Phenolphthalein: 2 gm.
 - Potassium Hydroxide: 20 gm.
 - Distilled Water: 100 ml.
 - Zinc Dust: 20 gm.

 Mix, add a few boiling chips and boil under reflux 2-3 hours or until the solution has lost all its pink color. Cool and decant into a bottle containing some zinc to keep it in the reduced form.

- **Working Solutions:**
 - Solution - 1: Ethanol 10 ml.
 - Solution - 2: Phenolphthalin Stock Solution 2 ml.
 Distilled Water 10 ml.
 Ethanol 2 ml.
 - Solution - 3: 3% Hydrogen Peroxide 10 ml.

(Dilute 30% Hydrogen peroxide to 3% using distilled water)
Procedure:

✓ Take the suspected blood sample on the filter paper.
✓ Add 2-3 drops of ethanol on sample placed on filter paper.
✓ Apply 2-3 drops of working solution.
✓ After that note any color change. A pinkish color change at this step indicates a chemical oxidant and the test should be considered inconclusive. If there is no color change, proceed to the next step.
✓ Add 2-3 drops of 3% H₂O₂.
✓ An immediate pink color change indicates the presence of blood in suspected sample [3,4].

LMG (Leucomalachite Green) Test:

- **LMG Reagents:**
 - Leucomalachite Green: 0.25 g
 - Glacial Acetic Acid: 100 ml
 - Distilled Water: 150 ml
 - Zinc Dust: 5 g

Mix, add a few boiling chips and boil under reflux 2-3 hours or until the solution has lost all its color. Cool and decant into a bottle containing some zinc to keep it in the reduced form.

✓ Hydrogen Peroxide: 3%

Procedure:

✓ Take the suspected blood sample on the filter paper.
✓ Apply 2-3 drops of LMG reagent.
✓ After that note any color change. A blue-green color change at this step indicates a chemical oxidant and the test should be considered inconclusive. If there is no color change, proceed to the next step.
✓ Add 2-3 drops of 3% H₂O₂.
✓ An immediate green blue color change indicates the presence of blood in suspected sample.

All the samples are proceeded with the both tests and the time of color change reaction is noted with the help of a stop watch and then analyzed and compare the observation of every sample [3,4].
Results and Discussion:

After analyzing and comparing the samples the following results are observed:

Kastle- Meyer Test:

Kastle Meyer test gives positive result for all type of blood samples with intense pink color reaction. But the intensity of color and the time taken by the color reaction development is different for every sample. [See Table-2]

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Type of Sample</th>
<th>Age of Sample</th>
<th>Color Developed</th>
<th>Time taken to Develop Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Wet Blood</td>
<td>Fresh</td>
<td>Intense Pink</td>
<td>5 Sec.</td>
</tr>
<tr>
<td>2.</td>
<td>Dried Blood</td>
<td>Fresh</td>
<td>Intense Pink</td>
<td>5 Sec.</td>
</tr>
<tr>
<td>3.</td>
<td>Dried Blood</td>
<td>1 Week</td>
<td>Intense Pink</td>
<td>5 Sec.</td>
</tr>
<tr>
<td>4.</td>
<td>Dried Blood</td>
<td>2 Week</td>
<td>Pink</td>
<td>10 Sec.</td>
</tr>
<tr>
<td>5.</td>
<td>Dried Blood</td>
<td>3 Week</td>
<td>Pink</td>
<td>10 Sec.</td>
</tr>
<tr>
<td>6.</td>
<td>Dried Blood</td>
<td>1 Month</td>
<td>Pink</td>
<td>15 Sec</td>
</tr>
</tbody>
</table>

LMG (Leucomalachite Green) Test:

LMG (Leucomalachite Green) Test also gives positive color reaction for every blood sample but the intensity of development of color reaction is lower than the comparison of Kastle Meyer test [5-10]. The time of development of color reaction is also different of every sample. [See Table-3]

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Type of Sample</th>
<th>Age of Sample</th>
<th>Color Developed</th>
<th>Time taken to Develop Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>Wet Blood</td>
<td>Fresh</td>
<td>Green Blue</td>
<td>50 Sec.</td>
</tr>
<tr>
<td>8.</td>
<td>Dried Blood</td>
<td>Fresh</td>
<td>Green Blue</td>
<td>50 Sec.</td>
</tr>
<tr>
<td>9.</td>
<td>Dried Blood</td>
<td>1 Week</td>
<td>Green Blue</td>
<td>53 Sec.</td>
</tr>
<tr>
<td>10.</td>
<td>Dried Blood</td>
<td>2 Week</td>
<td>Light Green Blue</td>
<td>55 Sec.</td>
</tr>
<tr>
<td>11.</td>
<td>Dried Blood</td>
<td>3 Week</td>
<td>Very Light Green Blue</td>
<td>80 Sec.</td>
</tr>
<tr>
<td>12.</td>
<td>Dried Blood</td>
<td>1 Month</td>
<td>Very Light Green Blue</td>
<td>120 Sec</td>
</tr>
</tbody>
</table>
Fig: 1- KM test showing Color reaction with Fresh Blood Sample

Fig: 2- KM test showing Color reaction with Fresh Dry Blood Sample
Fig: 3- KM test showing Color reaction with 1-Week-old Dry Blood Sample

Fig: 4- KM test showing Color reaction with 2-Week-old Dry Blood Sample
Fig: 5- KM test showing Color reaction with 3-Week-old Dry Blood Sample

Fig: 6- KM test showing Color reaction with 1-Month-old Dry Blood Sample
LMG (Leucomalachite Green) Test:

Fig: 7- LMG test showing Color reaction with Fresh Blood Sample

Fig: 8- LMG test showing Color reaction with Fresh Dry Blood Sample
Fig: 9- LMG test showing Color reaction with 1-Week-old Dry Blood Sample

Fig: 10- LMG test showing Color reaction with 2-Week-old Dry Blood Sample
After analyzing fresh and dried blood samples with KM and LMG reagents it seems that Kastle Meyer test shows more sensitive and specific than the LMG test [5-10]. In Kastle Meyer test there is no significant variations are shown in results with fresh and dried blood stains but the intensity of color reaction changes
from intense pink to pinkish for 3 weeks and 1 month old dried blood stains [7-9]. Fresh dried and wet blood samples take the same time 5sec. to show the positive results for KM test [5-7].

In case of LMG test dry and fresh blood stain takes same time 50 sec to develop positive color reaction. But for other samples 1-week, 2-week, 3-week and 1-month old the color of positive reaction gradually changes from green blue to light green blue as the sample getting old with the time [5-7].

For all the blood samples KM test takes 5 to 15 sec but in LMG test it takes 50 to 120 sec to develop color reaction. But the intensity of color changes dark to light.

Table-4: Sensitivity Comparison between Kastle Meyer and LMG (Leucomalachite Green) Test

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Type of Sample</th>
<th>Age of Sample</th>
<th>Time taken to Develop Color</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>KM Test</td>
</tr>
<tr>
<td>1.</td>
<td>Wet Blood</td>
<td>Fresh</td>
<td>5 Sec.</td>
</tr>
<tr>
<td>2.</td>
<td>Dried Blood</td>
<td>Fresh</td>
<td>5 Sec.</td>
</tr>
<tr>
<td>3.</td>
<td>Dried Blood</td>
<td>1 Week</td>
<td>5 Sec.</td>
</tr>
<tr>
<td>4.</td>
<td>Dried Blood</td>
<td>2 Week</td>
<td>10 Sec.</td>
</tr>
<tr>
<td>5.</td>
<td>Dried Blood</td>
<td>3 Week</td>
<td>10 Sec.</td>
</tr>
<tr>
<td>6.</td>
<td>Dried Blood</td>
<td>1 Month</td>
<td>15 Sec</td>
</tr>
</tbody>
</table>

Conclusion:

From this study of presumptive tests for blood we can conclude that the Kastle Meyer test is more specific and sensitive than the LMG (Leucomalachite Green) Test. Kastle Meyer test takes less time to develop positive color reaction than the LMG (Leucomalachite Green) Test. It is also concluded that the there is no significant difference found between fresh and dry blood samples to develop positive color test. So, the Kastle Meyer test is the real replacement of benzidine tests for the identification of blood in forensic science labs.