Systematic paleontology of some rare deep-sea benthic foraminifera from the Bay of Bengal

Anbalagan, S*1, Rajeshwara Rao2, N., and Srinivasalu, S.1

1Institute for Ocean Management, Anna University, Guindy, Chennai 600025, India 2Department of Applied Geology, Paleo Environment Research Group (PERG), University of Madras, Guindy Campus, Chennai 600025, India. *Corresponding Author: paleoanbu1986@gmail.com

Abstract

Studies on the taxonomy of deep-sea foraminifera from the Bay of Bengal are relatively limited compared to other environments such as the littoral zone and continental shelf. The present study reports the systematic paleontology of some rarely recorded benthic foraminiferal species identified from a 6.18 m long deep-sea retrieved from the Bay of Bengal at a water depth of 2,591 m. Most of the taxa reported here are illustrated by SEM photographs and their ecology, distribution and bathymetry were discussed based on previous literature. To our knowledge, Martinottielia omnia Saidova 1975 is recorded for the first time from Indian waters.

Keywords: Bathymetry, Bay of Bengal, Benthic foraminifera, Deep-sea Taxonomy.

Introduction

Deep sea foraminifers have always evoked considerable interest among micropaleontologists for their diverse applications, particularly in inferring paleoclimatic, paleoceanographic and paleoenvironmental changes in the recent to geological past. A variety of environmental and sedimentological factors have been proposed to explain the distribution of deep-sea benthic foraminifera, ranging from bottom water mass properties such as temperature, salinity, dissolved oxygen content, carbonate ion concentration, availability of food, and organic matter influx to the sea floor.

Modern deep sea foraminiferal assemblages include many fragile monothalamous (single-chambered) forms and komokiaceans (a superfamily of protist currently placed within the foraminifera) with soft test walls. These groups are poorly known and most of the hundreds of morphospecies recognized in deep-sea samples are undescribed. The relative abundance of robust and fragile taxa varies with water depth and food supply. Calcareous and other hard-shelled species tend to predominate in relatively eutrophic areas, particularly on continental margins, but decrease as a proportion of the 'entire' live fauna (i.e. including soft-shelled species) with increasing water depth, even above the carbonate compensation depth. Most of the species on which the foraminiferal proxies used in palaeoceanography are based live in these bathyal regions (Gooday et al. 2008).
Deep sea foraminiferal studies in India

Studies on recent foraminifers in the Indian region were initiated by Chapman (1895) who reported 274 species from the Investigator collections made off the Laccadives, in the Arabian Sea. Later, a monograph of foraminifers from the Arabian Sea was published by Hofker (1930). According to Rai and Srinivasan (1994), who made an attempt to understand the Pleistocene bottom water history in response to paleoclimatic changes in the northern Indian Ocean using quantitative analyses of deep-sea benthic foraminifera at two DSDP sites, Uvigerina proboscidea was the most dominant species during the Pleistocene at both sites. The study stated that the lower depth range for the occurrence of Bulimina aculeata in the Indian Ocean is 2,300 m, similar to that of many other areas.

Naidu and Malmgren (1995) discussed the possibility of whether benthic foraminiferal records represent a productivity index in OMZ areas. The study reported that benthic foraminifer accumulation rates (BFAR) and benthic to planktic foraminifer ratios (B/P) did not record surface-water productivity signal in the intense upwelling and OMZ along the Oman Margin. Also, speculated that dissolved oxygen concentrations might instead be controlling the benthic foraminifer abundance.

Benthic foraminifera were quantified by den Dulk et al. (2000) in two sediment cores from a topographic high (Murray Ridge) in the northern Arabian Sea. One core was from a station within the present-day OMZ, while the other was from a station below the OMZ. The study suggested that percentages of miliolids could be used for rapid reconstruction of periods of increased ventilation in the northern Arabian Sea and is a promising proxy for tracing changes in bottom and pore water oxygenation. However, they opined that the benthic foraminiferal accumulation rates cannot be used as a proxy for surface water productivity under the prevalence of severe dysoxia.

Chowdhury et al. (2003) studied the composition, content and distribution of planktic foraminifera from 65 samples taken by piston and gravity cores from the continental shelf and slope areas of the northern Bay of Bengal and the middle Bengal Fan. Nearly 26 taxa were identified and observed that Globorotalia conglomerata and Globorotaloides hexagona, known to have disappeared from the Atlantic Ocean 50,000 to 100,000 years ago, were present in the sediments from the outer shelf and slope areas. Downcore distribution indicated that only 4 to 5 species, namely, Globigerinoides quadrilobatus, Gs. ruber, Gs. sacculifer, Globigerinella aequilaterialis and Neogloboquadrina dutertrei, constituted 65 to 90% of the total planktic foraminiferal composition. Moreover, the specific prevalence of Globigerina bulloides in the inner shelf, Orbculina universa in the slope and in the fan, and Globorotalia (Menardella) menardii in the outer shelf and beyond was noted.

A total of 128 surface sediment samples (76 grab and 52 core top samples) were analyzed for benthic foraminiferal contents from the region off Goa in the eastern Arabian Sea up to a water depth of 3,300 m and identified 195 species from the samples (Mazumder et al., 2003). Species belonging to Bolivina, Cassidulina, Lernella, Uvigerina and Eponides were found to be the most abundant within the depth zone of 150 to 1,500 m, a zone considered to be the OMZ for the Arabian Sea. A comparison of benthic foraminiferous species abundance in the OMZ of Arabian Sea with other parts of the world oceans revealed that Bulimina marginata, reported to be present in considerable numbers within the OMZ in other regions of the world oceans, accounted for only about 2% of the total benthic foraminiferal population in this region. On the contrary, Bulimina costata constituted >15% of the total populations, confirming the characteristic nature of the OMZ in the eastern Arabian Sea.

Ammolagena clavata (Jones and Parker 1860), an agglutinated benthic foraminiferal species, was reported for the first time from sediments of the Arabian Sea (Nigam et al. 2004). The occurrence of this species in the depth range of 1,650-2,050 m, is comparable with the depth range of 684-2,503 m in the Pacific Ocean and 553-4,500 m in the Atlantic regions. Although earlier reports had indicated its presence as attached specimens, either on large quartz grains or on some other larger benthic foraminiferal species, they found this taxon to be attached to tests of the planktic foraminifer, G. menardii.

Heinz and Hemleben (2006) investigated the response of deep-sea benthic foraminifera to the north-east monsoon in the western and southern regions of the Arabian Sea, and obtained contrasting results. The study attributed steady, increased foraminiferal numbers between March and the beginning of May, deepening of the
foraminiferal living horizon, variable diversity and rapid variations between dominant foraminiferal communities to enhanced organic carbon fluxes during and after the monsoon in the western Arabian Sea. In the southern Arabian Sea, however, they did not find any significant influence of the monsoon on benthic foraminifera.

Bharti and Singh (2013) studied a 30,000-year record of benthic foraminiferal assemblages in a sediment core retrieved from the base of the OMZ off Goa (eastern Arabian Sea) at a water depth of 1,230 m. During the course of this study, they discovered a new species, Bulimina arabiensis, which dominated the benthic foraminiferal assemblage in the fine size fraction (63-125µm). The study opined that the morphological characteristics of this species suggested its preference for infaunal microhabitat and low-oxygen concentrations of bottom water.

A detailed investigation of downcore Holocene foraminifera and their assemblages was undertaken by Rao et al. (2013) to comprehend the ecology of the Bay of Bengal and compare it with that of the South China and Sulu Seas, at the same depth (2,004 m) for all the three water bodies. Based on temperature and dissolved oxygen profiles, benthic foraminiferal abundance, and species diversity values, the study inferred that the Bay of Bengal is much better ventilated than either the South China or the Sulu Sea. The study also reported that the planktic/benthic (P/B) ratios were extremely low when compared with those reported elsewhere in the world. The absolute dominance of benthic foraminiferal species over their planktic counterparts was attributed to the effect of fragmentation and dissolution of the latter, as they are relatively more susceptible to this process. The study added that the very low P/B values were also indicative of water depth below the lysocline in this part of the Bay of Bengal.

Rao and Kamatchi (2014) reported Globigerina helicina (d'Orbigny), a planktic foraminifer, for the first time from deep-sea sediments from the Bay of Bengal. The study used two short cores retrieved from water depths of 2,004 m and 3,042 m, respectively, and observed the presence of this rare species only in the latter, suggesting its comparatively deeper abyssal habitat.

Manasa et al. (2016) documented recent benthic foraminiferal distribution from the continental shelf region of the north-western Bay of Bengal. Based on the external morphology, they categorized benthic foraminifera into rounded symmetrical (RSBF) and angular asymmetrical benthic forms (AABF), and compared the relative abundance of each group with the ambient physico-chemical conditions, including dissolved oxygen, organic matter, salinity and temperature, and reported that the RSBF were abundant in comparatively warm and well oxygenated waters of low salinity, suggesting a preference for high energy environment. However, the AABF dominated relatively cold, hypersaline deeper waters with low dissolved oxygen, indicating a low energy environment. The study concluded that the factors associated with freshwater influx affect the distribution of benthic foraminiferal morpho-groups in the north-western part of the Bay of Bengal.

Materials and Methods

A 6.18 m long core was retrieved and provided by the National Institute of Oceanography (NIOT) at a water depth of 2,591 m (11° 56' 23'' N latitude; and 80° 30' 44'' E.) The location of the drilling site in the Bay of Bengal, off Pondicherry, is shown in (Fig. 1). Although the core was sub-sampled at 5-cm intervals, the number of sub-samples totaled only 115 as few segments of the core were missing. Only a part of each sub-sample was utilized for foraminiferal studies; in all, 166 foraminiferal species (153 benthic and 13 planktic) belonging to 97 genera, 46 families, 23 superfamilies, and 6 suborders were identified and recorded. The present study reports the systematic paleontology of eight benthic foraminiferal species that have been rarely recorded across the world from different oceans, with remarks regarding their taxonomy, ecology and bathymetry. Most of them are illustrated by scanning electron microscope photographs.
Systematic Paleontology

Order FORAMINIFERIDA Eichwald, 1830
Suborder TEXTULARIINA Delage and Herouard, 1896
Superfamily TEXTULARIACEA Ehrenberg, 1838
Family EGGERELLIDAE Cushman, 1937
Subfamily EGGERELLINAE Cushman, 1937
Genus MARTINOTTIELLA Cushman, 1933
 Martinottiella omnia Saidova, 1975 Pl. 1;
 Fig. A

Original citation: Martinottiella omnia SAIDOVA, 1975, p. 114, pl. 33, figs. 3, 4.
Martinottiella omnia SAIDOVA - Hayward et al., 2010, p. 145, pl. 6, figs. 4, 5.
Martinottiella omnia SAIDOVA - Lorz et al., 2012, p. 34.

Remarks: Limited studies reported the presence of Martinottiella omnia. The only record other than Saidova's (1975) is from off New Zealand (Hayward et al. 2010) who found it to be sporadic in occurrence with a geographic distribution ranging between 34° and 51° S. Its bathymetric range was reported as outer shelf to mid abyssal (150-4,000 m). Lorz et al. (2012) presented a review of deep-sea benthic biodiversity associated with trench, canyon and abyssal habitats below 1,500 m depth in New Zealand, and reported a bathymetric range for M. omnia as 2,390 to 3,452 m. From the descriptions and illustrations given by Hayward et al. (2010), M. omnia can be distinguished from M. communis by its relatively coarser agglutination and longer neck. To our knowledge, this is the first record of M. omnia from Indian waters. Bathymetry: Middle neritic to abyssal.

Suborder MILIOLINA Delage and Herouard, 1896
Superfamily MILIOLACEA Ehrenberg, 1839
Family SPIROLOCULINIDAE Wiesner, 1920
Genus SPIROLOCULINA d'Orbigny, 1826
 Spiroloculina elegantissima Said, 1949 Pl. 1; Fig. B

Original citation: Spiroloculina elegantissima SAID, 1949, p. 15, pl. 1, fig. 41.
Spirophthalmidium cf. S. elegantissima (SAID) - Hottinger et al., 1993, p. 44, pl. 24, figs. 5-10.
Spiroloculina elegantissima SAID - Panchang and Nigam, 2014, p. 128, pl. 6, figs. 14a, b.

Remarks: Populations of foraminifera were investigated by Coulbourn and Resig (1975) in regard to the suitability of the various species as indicators of sand transport in Kahana Bay, Oahu, Hawaii. Of the 53 species recorded by the authors, Spiroloculina elegantissima was found to be rare (<1%) in very fine channel sands, beach and fine nearshore sands and reef flat sands. Hottinger et al. (1993) reported the same species as Spirophthalmidium cf. elegantissimum (Said) and remarked, "Neither Said (1949) nor Graham and Militante (1959) described in detail the initial stages of Spiroloculina elegantissima which is believed to be actually a Spirophthalmidium. No specimens with rounded periphery have been found in our material. However, Badawi et al. (2005) reported S. elegantissima species as Spirophthalmidium cf. elegantissimum (p. 19, table 1). Debenay (2012) described and illustrated this taxon as Spiroloculina elegantissima from a shallow water depth of 10 m off New Caledonia in the south-west Pacific Ocean. S. elegantissima species was observed to be quite rare (1%) among the benthic foraminifers identified by Rositasari (2011, p. 105, tab. 1) from the Jakarta Bay. Panchang and Nigam (2014) carried out benthic ecological mapping of the Ayeyarwady delta shelf off Myanmar using foraminiferal assemblages and recorded this species as Spiroloculina elegantissima (p. 128; pl. 6; figs. 14a, b). S. elegantissima species seems to have been very rarely recorded from the Bay of Bengal. Bathymetry: Inner shelf to abyssal.
Suborder LAGENINA Delage and Herouard d, 1896
Superfamily NODOSARIACEA Ehrenberg, 1838
Family LAGENIDAE Reuss, 1862
Genus LAGENA Walker and Jacob, 1798, In: Kanmacher, 1798

Lagena gibbera Buchner, 1940 Pl. 1;

Fig. C

Original citation: *Lagena gibbera* BUCHNER, 1940, p. 423, pl. 3, figs. 48-50.

Remarks: There seem to be few records for *Lagena gibbera* species. *L. gibbera* was designated as the type of species for the genus *Geminiella* (Popescu, 1998). Lanzafame et al. (1999) reported it from the lower Pleistocene in Sicily and observed it to constitute <3% of the foraminiferal fauna. The biodiversity and biogeography of recent benthic foraminiferal assemblages on the Sunda Shelf in the south-western South China Sea were studied by Szarek (2001) and reported a bathymetry of middle bathyal for *L. gibbera*. Popescu and Crihan (2004) remarked *L. gibbera* is based on the description of the species *L. aspera* Reuss described by Brady (1884, p. 457, pl. 57, figs. 8, 9) and of the species *Lagena* sp. aff. *laevis* Montagu (Brady, 1884, p. 455, pl. 56, fig. 14)”. Bathymetry: Middle bathyal.

Family ELLIPSOLAGENIDAE A. Silvestri, 1923
Subfamily ELLIPSOLAGENINAE A. Silvestri, 1923
Genus FISSURINA Reuss, 1850

Fissurina staphyllearia Schwager, 1866

Plate 1; Fig. D

Parafissurina staphyllearia (SCHWAGER) - Sgarrella and Moncharmont-Zei, 1993, p. 205, pl. 13, fig. 12.

Parafissurina staphyllearia (SCHWAGER) - Merci et al., 2009, p. 3, fig. 2.

Fissurina staphyllearia SCHWAGER - Enge et al., 2012, p. 91, pl. 3, fig. 7.

Remarks: The types for Lagena staphyllearia species came from the Upper Pliocene of car Nicobar (Schwager, 1866). Brady (1884) remarked, "The compressed Lagena with symmetrically arranged basal spines may be assigned to L. staphyllearia. The pointed processes of recent specimens are usually placed at regular intervals on the median line, as shown in Figs. 8-10. Occasionally a deviation from the typical condition is encountered in the form of double spines, of which Fig. 11 is an example. In the North and South Atlantic L. staphyllearia has only been observed at great depths, namely at four Stations, ranging from 2200 to 2750 fathoms; but in the Southern Ocean and the South Pacific it occurs also from time to time in shallow water near the coast-line". It was found to be "very rare" in the samples from the Arabian Sea (Chapman, 1895); later the author(1910) recorded L. staphyllearia from four stations at water depths ranging from 1,200 to 2,300 fathoms (2,195 to 4,206 m). Cushman (1913) observed that both "three- and five-spined specimens" occurred in his material from the North Pacific, but they did not show the range of variation described by Sidebottom (1912). Cushman and Stainforth (1945) remarked, "Various spinose forms have been referred to Schwager's species. The above references are all apparently to the same form. The base may have, in the median plane, two to five short spines which are broad and flattened at the base and rapidly tapering to a point". According to Parr (1950), Fissurina staphyllearia (Schwager) differs from F. kerguelenensis (Parr) in having a thicker, more inflated test, lacking a keeled periphery, and in possessing a narrower and more produced apertural end. , Lorz et al. (2012) reviewed the deep sea benthic biodiversity associated with trench, canyon and abyssal habitats below 1,500 m depth in New Zealand waters gave a rather wide bathymetric range of 100 to 2,250 m for Fissurina staphyllearia. Bathymetry: Middle neritic to abyssal.

Genus PALLIOLATELLA Patterson and Richardson, 1987

Palliolatella bradyiformis McCulloch, 1977

Pl. 1; Figs. E, F

Original citation: _Lagenosolenia bradyiformis_ McCulloch, 1977, p. 54, pl. 61, fig. 14.

Palliolatella bradyiformis (McCulloch) - Hayward et al., 2010, p. 165, pl. 11, figs. 20, 21. _Palliolatella bradyiformis_ (McCulloch) - Panchang and Nigam, 2014, pl. 21, figs. 14a-c.

Remarks: The types for this species, initially named as _Lagenosolenia bradyiformis_ came from the Pacific Ocean (McCulloch 1977). Hayward et al. (2010) recorded it as _Palliolatella bradyiformis_ from off the Great Barrier Island, New Zealand, at a water depth of 68 m. Though they did not give its bathymetric range, they opined it to be a Recent taxon. According to McCulloch, 1977 and Hayward, 2010, one of the distinguishing features of _L. bradyiformis_ species is the presence of three sharp peripheral keels surrounding the whole test, with the strongest on the periphery; the longest keel extends up to enclose a short apertural neck. _L. bradyiformis_ species was found to occur off the northern shelf of New Caledonia at a water depth of 600 m (Debenay 2012). Bathymetry: Inner neritic to abyssal.

Suborder ROTALIINA Delage and and Herouard, 1896

Superfamily BULIMINACEA Jones, 1875, In: Griffith and Henfrey, 1875
Family SIPHOGENERINOIDEA Saidova, 1981
SIPHOGENERINOIDEA Saidova, 1981

Genus SIPHOGENERINA Schlumberger, 1882, In: Milne-Edwards, 1882

Siphogenerina dimorpha (Parker and Jones, 1865) Pl. 1; Fig. G

Original citation: *Uvigerina (Sagrina) dimorpha* PARKER and JONES, 1865, p. 420, pl. 18, fig. 18.

Sagrina dimorpha (PARKER and JONES) - Brady, 1884, p. 582, pl. 76, figs. 1-3; 1887, p. 915.

Sagrina dimorpha (PARKER and JONES) - Brady, Parker and Jones, 1888, p. 225, pl. 45, fig. 6.

Siphogenerina dimorpha (PARKER and JONES) - Egger, 1893, p. 317, pl. 9, fig. 30.

Sagrina dimorpha (PARKER and JONES) - Goes, 1894, p. 52, pl. 9, figs. 510, 511.

Sagraina dimorpha (PARKER and JONES) - Bagg, 1908, v. 34, p. 152.

Siphogenerina dimorpha (PARKER and JONES) - Cushman, 1913, p. 106, pl. 45, figs. 3, 4.

Sagrina dimorpha (PARKER and JONES) - Heron-Allen and Earland, 1916, p. 266, pl. 42, figs. 17, 18; 1922, p.186.

Siphogenerina dimorpha (PARKER and JONES) - Cushman, 1921, p. 279, pl. 56, fig. 8; 1923, p. 175, pl. 42, figs. 16-18; 1926, p. 13, pl. 3, fig. 5.

Siphogenerina dimorpha (PARKER and JONES) - Heron-Allen and Earland, 1932, p. 398, pl. 12, fig. 44.

Rectobolivina dimorpha (PARKER and JONES) - Leroy, 1964, p. F34, pl. 3, figs. 3, 4.

Siphogenerina dimorpha (PARKER and JONES) - Jones, 1994, pl. 76, figs. 1-3.

Siphogenerina dimorpha (PARKER and JONES) - Hayward and Grenfell, 1999, p. 86, appendix 1; p. 88, appendix2.

Siphogenerina dimorpha (PARKER and JONES) - Hayward *et al.*, 2010, p. 202, pl. 20, figs. 31, 32.

Siphogenerina dimorpha (PARKER and JONES) - Spezzaferri *et al.*, 2014, p. 43, tab. 3.4.

Remarks: The types for *Siphogenerina dimorpha* species came from the Abrohlos Bank, off Brazil (Parker and Jones 1865); later, Brady *et al.* (1888) also illustrated this species as *Sagrina dimorpha* (from the type area) and stated that they obtained "A couple of good specimens from 260 fathoms". Cushman (1913) recorded this species from the North Pacific Ocean and stated, "*S. dimorpha* species is more widely distributed than others of the genus, both in depth and area. It is characteristic in its appearance and can easily be distinguished". While describing and illustrating this species from the Falkland Islands and adjacent seas, Heron-Allen and Earland (1932) remarked that it, "shewed extraordinary variation in length, ranging from the short type of Parker and Jones with only three final chambers, to a very long individual with no less than nine chambers in the linear series, which was 0-95 mm. long, and 0-20 mm. at the maximum breadth". Chapman and Parr (1937) recorded this species from a sounding off the east coast of Tasmania at 1,300 fathoms (~2,377 m) and stated that their specimen did not have the sutural crenellations figured by Brady, but still retained it as *S. dimorpha* as Brady himself had stated that this feature was not always present. According to them, this species "ranges from Norwegian seas to the Southern Ocean". Hofker (1978) recorded this species as *Rectobolivina dimorpha* (Parker and Jones) at water depths ranging between 513 m and 857 m in the eastern part of the Indonesian Archipelago. Later, the same author (1980) reported its occurrence on the Saba Bank at two stations where the water depths were 850 and 890 m, respectively. In both the Auckland and Campbell Island groups, off New Zealand, Hayward *et al.* (2007) recorded this species at depths shallower than 80 m. According to Sen Gupta *et al.* (2009), *S. dimorpha* is a cosmopolitan species that occurs in a wide water depth range of 14 to 3,292 m in the north-eastern, north-western and south-western parts of the Gulf of Mexico. There are scattered records off the east coast of the main islands of New Zealand (35°-49° S) at mid- to lower bathyal depths of 500-1,200 m

(Hayward *et al.* 2001; Hayward *et al.* 2010).

Bathymetry: Inner shelf to abyssal.

Siphogenerina striata (Schwager, 1866)
Original citation: Dimorphina striata SCHWAGER, 1866, v. 2, p. 251, pl. 7, fig. 99.
Sagrina striata SCHWAGER, 1877, v. 8, p. 25, fig. 35.
Siphogenerina (Sagrina) striata (SCHWAGER) - Egger?, 1893, p. 316, pl. 9, figs. 32, 34, 35, 64, 65. Sagrina striata SCHWAGER - Brady, 1884, p. 584, pl. 75, figs. 25, 26. Sagrina striata SCHWAGER - Millet, 1903, p. 272.
Siphogenerina (Sagrina) striata (SCHWAGER) - Cushman, 1913, p. 107, pl. 47, figs. 4, 5.
Remarks: Cushman (1921) examined foraminifera from the Philippine and adjacent seas and, while observing S. raphanus species to be common at some stations, remarked "The species seems to be different from either form of S. raphanus, the costae being less independent of the chambers than in S. raphanus and the sutures marking well defined limits even in the costae. The neck is invariably short or wanting, no lip being present". According to Hayward et al. (1997), "One of the more common subtidal species in the near-normal salinity parts of the upper Waitemata Harbour is S. striata. No specimens of this distinctive species have been discovered in previous studies of approximately 400 faunal samples from shallow water environments around New Zealand. Reconnaissance studies show it to be widespread, with a relative abundance of 3-10% for at least another 10 km down the Waitemata Harbour, including samples around Auckland's commercial wharf area. S. striata is a common species in shallow water in a number of other countries. Its presence in New Zealand's busiest shipping harbour may be as a result of accidental introduction". Hengstum and Scott (2011) observed an increase in the relative abundance of some coastal and shelf taxa, such as S. striata (maximum of 9%) in an anchialine cave assemblage living in saline ground water of the Green Bay Cave System, Bermuda.
Bathymetry: Inner shelf to abyssal.

Superfamily STILOSTOMELLACEA Finlay, 1947
Family STILOSTOMELLIDAE Finlay, 1947
Genus SIPHONODOSARIA A. Silvestri, 1924
Siphonodosaria insecta (Schwager, 1866) Pl. 1; Figs. H, I

Original citation: Nodosaria insecta SCHWAGER, 1866, v. 2, p. 224, text-figs. 53, 54.
Remarks: LeRoy (1964), who recorded this species as Nodosaria insecta, found it to be very rare in the Shinzato (Miocene or Pliocene) and Yonabaru (Pliocene) assemblages of southern Okinawa. In the eastern Pacific Ocean, this species is found in the lower middle bathyal zone (Ingle 1980). Boersma (1986) studied the biostratigraphy and biogeography of Tertiary bathyal benthic foraminifers from the Tasman Sea, Coral Sea and on the Chatham Rise and remarked, "This is a common species in the Tasman Sea. It occurs along with Stilostomella lepidula, with transitional forms. The species is identical with Paleogene, smooth siphonodosarids, one of which is called S. nuttalli (Cushman and Jarvis). Although S. nuttalli is more curvilinear than typical S. insecta, the species are essentially identical, and Schwager's name takes precedence". According to Bornmalm (1997), who opined that S. insecta is one among the several intraspecific variants of S. lepidula, "The intraspecific variation of S. lepidula is great with regard to the amount of alignment of the spines and the degree of spinosity. As a result of this S. lepidula has been referred to by many different names, specific
as well as generic. I agree with Hermelin (1989) that several of the variants of this species should probably be regarded as junior synonyms of *S. lepidula*. According to Hermelin (1989), these variants include *Siphonodosaria recta* (Palmer and Bermudez 1936), *Siphonodosaria paucistriata* (Galloway and Morrey 1929), *Siphonodosaria ketienziensis* (Ishizaki 1943), and *Siphonodosaria helenae* (Samoilova 1947). Hayward and Kawagata (2005) listed *Siphonodosaria insecta* as one of the 18 species illustrated by Brady (1884) that became extinct ~600,000 years ago during the mid-Pleistocene Climatic Transition (e.g., Weinholz and Lutze 1989; Schonfeld 1996; Hayward 2001, 2002; Kawagata *et al.* 2005). According to Hayward *et al.* (2012), *S. insecta* "differs from *S. pomuligera* by the larger test with an initial globular chamber the same size as later chambers or bigger, and by the lack of a well developed collar on the middle of the apertural neck". Moreover, they stated that the genus "*Siphonodosaria* is distinguished from *Stilostomella* (Finlay 1947, declared *Siphonodosaria* to be a junior synonym of *Stilostomella*) by the very different apertural features - the long neck with a collar and phialine lip with a long bifid or T-shaped tooth in the former but not the latter". Its bathymetric range is from 2,000 to 4,000 m. **Bathymetry:** Upper to middle abyssal.

Conclusions

Deep-sea benthic foraminifera are extremely useful in understanding various aspects of paleoceanography and paleoclimate, their taxonomy and ecology are equally important, just as understanding of basic sciences is so vital in the development of engineering and technology. The results reported here is an attempt to throw light principally on the systematic paleontology of some rare taxa from the deeper regions of the Bay of Bengal, with a note on their bathymetric ranges.

Acknowledgement

The authors thank University Grants Commission (UGC), New Delhi, India, for providing financial support through the D.S. Kothari Postdoctoral Fellowship Scheme (Dr. Anbalagan. S., R. No. F.4-2/2006 (BSR)/ES/17-18/0022).

References

Bagg RM, Jr. (1908) Foraminifera collected near the Hawaiian Islands by the Steamer Albatross in 1902. Proceedings of the United States National Museum 34:113-172

Boersma A (1990) Late Oligocene to late Pliocene benthic foraminifers from depth traverses in the central Indian Ocean. In: RA Duncan, J Backman *et al.*, Proceedings of the Ocean Drilling Program, Scientific Results, College Station, Texas, 115:315-380
Bornmalm L (1997) Taxonomy and paleoecology of late Neogene benthic foraminifera from the Caribbean Sea and eastern equatorial Pacific Ocean. Fossils and Strata 41:1-96

Brady HB (1887) A Synopsis of the British Recent Foraminifera. Journal of the Royal Microscopical Society, Pt. 2:872-927

Cushman JA (1929) A late Tertiary fauna of Venezuela and other related regions. Contributions from the Cushman Laboratory for Foraminiferal Research 5:77-101

Cushman JA (1933) Some new foraminiferal genera. Contributions from the Cushman Laboratory for Foraminiferal Research 9:32-38

Cushman JA (1939) Notes on some foraminifera described by Schwager from the Pliocene of Kar Nicobar. The Journal of the Geological Society of Japan 46(546):149-154

Cushman JA, Stainforth RM (1945) The foraminifera of the Cipero Marl Formation of Trinidad, British West Indies. Special Publications, Cushman Laboratory for Foraminiferal Research 14:1-74

Goes A (1894) A synopsis of the Arctic and Scandinavian Recent marine Foraminifera hitherto discovered. Kungliga Svenska Vetenskapsakademiens Handlingar 25(9):1-127

Heron-Allen E, Earland A (1932) Foraminifera. Part I. The ice-free area of the Falkland Islands and adjacent seas. Discovery Reports 4:291-460

Ishizaki K (1943) On the species of *Ellipsonodosaria* from Japan. Transactions of the Natural History Society of Taiwan 33:678-689

Leroy, LW (1941) Small Foraminifera from the late Tertiary of the Nederlands East Indies. Part 2. Small Foraminifera from the late Tertiary of Siberoet Island, off the west coast of Sumatra, Nederlands East Indies. Colorado School of Mines Quarterly 36(1):63-105

Leroy LW (1964) Smaller foraminifera from the late Tertiary of southern Okinawa. U.S.G.S. Professional Paper 454F:F1-F58

McCulloch I (1977) Qualitative observations on Recent foraminiferal tests with emphasis on the Eastern Pacific. University of Southern California, 3 vols

Orbigny A d' (1826) Tableau methodique de la classe des Cephalopodes. Annales des Sciences Naturelles 7:245314

Palmer DK, Bermudez RJ (1936) An Oligocene foraminiferal fauna from Cuba. Memorias de la Sociedad Cubana de Historia Natural "Felipe Poey" 10:227-271

Parker WK, Jones TR (1865) On some foraminifera from the North Atlantic and Arctic Oceans, including Davis Straits and Baffin's Bay. Philosophical Transactions of the Royal Society 155:325-441

Pearcey FG (1914) Foraminifera of the Scottish National Antarctic Expedition. Transactions of the Royal Society of Edinburgh 49:991-1044

Pearcey FG (1920) Foraminifera of the Scottish National Antarctic Expedition. Report on the Scientific Results of the Voyage of S.Y. "Scotia" during the years 1902, 1903 and 1904, Zoology 7:113-170

Saidova Kh M (1975) Benthonic Foraminifera of the Pacific Ocean. Shirshov Institute of Oceanology, Academy of Sciences of the USSR, Moscow: parts.

Schreiber OS (1980) Benthonische Foraminiferen der Pemberger-Folge (Oberkreide) von Klein-Sankt Paul am
Krappfeld (Karnten). Beiträge zur Palaontologie Österreich-Ungarns und des Orient. 7:119-237

Schwager C (1877) Quadro del proposito sistema di classificazione dei foraminiferi con guscio. Bolletino R. Comitato Geologico d'Italia 8:18-27

Fig. 1 - A: *Martinottiella omnia*, side view, x90; B: *Spiroloculina elegantissima*, side view, x260; C: *Lagena gibbera*, side view, x170; D: *Fissurina staphylearia*, side view, x300; E: *Palliolatella bradyiformis*, side view, x230; F: *P. bradyiformis*, apertural view, x340; G: *Siphogenerina dimorpha*, side view, x210; H: *Siphonodosaria insecta*, side view, x170; I: *S. insecta*, apertural view, x400.