

POPULATION STRUCTURE AND GENETIC DIVERSITY OF TROPICAL MAIZE GERMPLASM REVEALS USING SSR MARKERS

NITIN KUMAR^{1,2}, RAJENDRA KUMAR KHANNA¹, CHANDERMOHAN MEENA³, JITENDRA KUMAR MEENA⁴, , BRAJ MOHAN MEENA⁵, SHASH NATH MISHRA², BHUPENDER KUMAR^{*2}

Affiliation:

¹Department of Basic and Applied Sciences, Vivekananda Global University, Sector 36, Sisyawas, NRI Road, Jagatpura, Jaipur, Rajasthan-303012, India.

²ICAR- Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab-141004, India.

³Department of Plant Biotechnology, University of agricultural Science, Bengaluru-560065, Karnataka, India.

⁴Devision of Genetic, Indian Agriculture Research Institute, New Delhi-110012, India.

⁵Department of Zoology, Rajgarh P.G. College, Alwar, Rajasthan-301408, India.

Abstract:

Aim:

Tropical maize (*Zea mays L.*, 2n=20) is an important cereal crop of worldwide and India. In this study, we aimed to identify population structure and genetic diversity of 288 selected tropical inbred lines using 55 single sequence repeat molecular markers.

Methodology:

Initially, 288 maize genotypes used for population structure and genetic diversity using SSR molecular markers. The experiment was carried out at IIMR field during 2014 to 2016. The DNA was isolated by CTAB method. Purified and quantified for further use. 55 SSR markers were tested PCR amplification and each band was scored. These data were statistical analysis by STRUCTURE and NTSYS software.

Results:

SSR markers were amplified and shown high polymorphism. Out of 55 SSRs, five showed maximum amplification with expected size of ampli-con. All these SSR markers were select to detect high polymorphism. Five markers ware showed in various bands showing different types of alleles.


Discussion and conclusion:

Population structure were investigated using three complementary analysis methods the NTSYS and STRUCTURE, statistical analysis based on SSR molecular markers data. Selected 288 maize inbred lines were assigned into six sub-populations, which was in agreement with the assignments obtained by structure software clustering. It helped in maize breeding in India.

Key words: **Genetic Diversity, tropical Maize, Inbred, Cluster Analysis, SSR marker,**

Introduction:

Maize was domesticated about 9000 years ago first time in Mexico from tropical, *Zea mays* ssp., in India. Genetic diversity and between population structure tropical inbred lines and breeding element has extreme importance for maize breeding. With the application and popularization of maize inbred over the ago years, the frequent use of a few elite germplasm lines as maternal stock has led to a reduction in genetic diversity among maize breeding element in India. The establishment of exotic germplasm, using its sufficient genetic variation and good agronomic traits, is consequently imperative to solve the narrow genetic base for maize enhancement in India (Wen *et al.*, 2012; Yong *et al.*, 2013). However, it is necessary to make a extensive appraisal on the genetic diversity and population structure of tropical germplasm (Tarter *et al.*, 2004; Sarcevic *et al.*, 2008; Zivanovic *et al.*, 2012; Hoisington *et al.*, 1994). SSR markers can be used to consider levels of genetic diversity and population structure among maize inbred lines and breeding materials. Simple sequence repeats (SSRs), due to its abundant, highly polymorphic, genome individual, co-dominant in nature, have found application in analyses of population structure, genetic diversity gene mapping and assisted selection for maize improvement (Phumichai *et al.*, 2012; Wende *et al.*, 2013; Semagn *et al.*, 2014; Yang *et al.*, 2013; Abakemal *et al.*, 2015; Senior *et al.*, 1996). Based on that, we aimed that 288 public sectors -selected lines were investigated using 55 SSR loci appropriated over the maize genome. Identify measurement the levels of population structure and genetic diversity (Garcia *et al.*, 2004; Kostova *et al.*, 2006).

Studies of population and genetic diversity across individuals have been stimulated by the amplification of DNA sequences using polymerase chain reaction (PCR) (Saiki *et al.*, 1988). Various methods have been related in this regard: simple sequence repeat (SSR) (Tautz, 1989, Yao *et al.*, 2011), random amplified polymorphic DNA (RAPD) (Williams *et al.*, 1990), and amplified fragment length polymorphism (AFLP) (Zabeau and Vos, 1993). SSR is widely used in studies of tropical maize diversity attributable to its down cost and rapid detection of polymorphisms (Carvalho *et al.*, 2004; Bruel *et al.*, 2007). SSR features high intensity, discrimination and accuracy. Owed to their specificity and ease of detection, SSRs are five of the main markers used to genotype characterized the genetic resources of plants via the genotyping of germplasm selection and analysis of genetic diversity (Adeyemo *et al.*, 2011; Terra *et al.*, 2011; Lobonda *et al.*, 2003). AFLP is a approximately optimal system because it allows the computation of genetic diversity crosswise individuals, species and populations (Laborda *et al.*, 2005; Hartings *et al.*, 2008, Eschholz *et al.*, 2008). Of this technique reveals a large portion of the gene of any structure and permission for high-compress and high-quality genotypes. Described to Gerber *et al.* (2000), the deficiency of information attributable to the expression of the dominant marker is counter balance by the high number of polymorphic loci revealed by this method. The aims of the present study were to estimate the genetic diversity across 288 inbred maize line

from Indian by means of molecular genotyping using SSR, RAPD, and AFLP markers, cluster these tropical maize based on their index of establish possible correlations and genetic approximation with the collection locus (Moeller *et al.*, 1999).

Material and method:

Plant material/ population and SSR markers

A total of 288 tropical maize genotype including indigenous, exotic accessions breeding lines and inbred lines from the public sectors were used for genetic diversity. These genotypes were taken from the germplasm collection maintained at IIMR, New Delhi, CIMMYT, AICRP and NBPGR. 55 SSRs markers were taken for polymorphism in genotypes.

SSR Markers and Genotyping

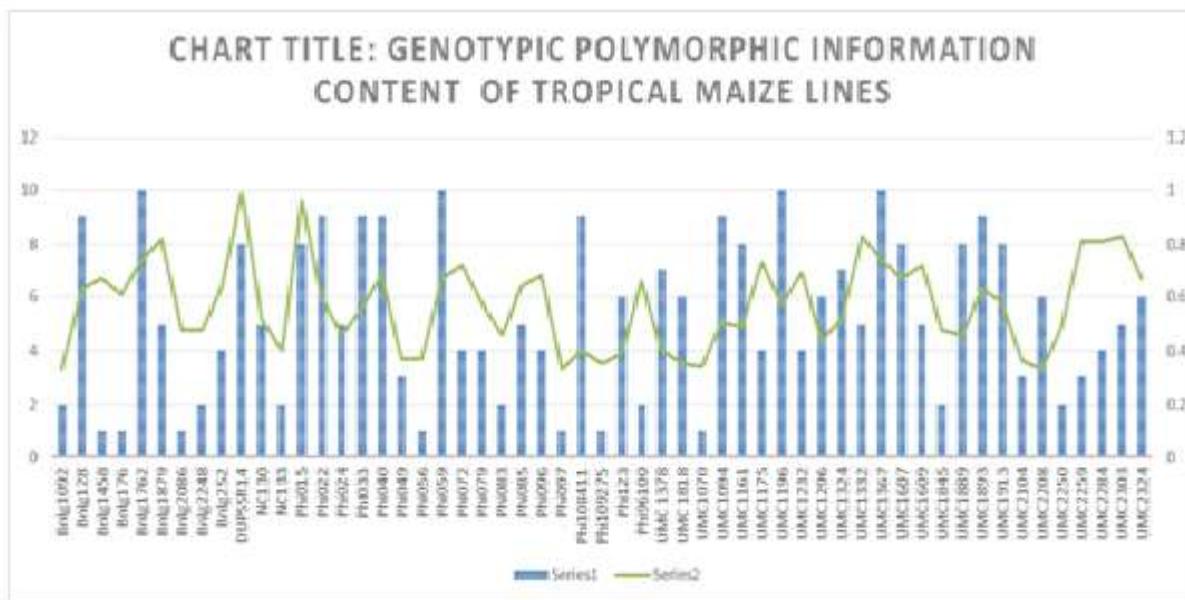
Genomic DNA was extracted from approximately 200 mg fresh leaf tissue using the cetyl tri-methyl ammonium bromide (CTAB) method (Saghai-Marof *et al.*, 1984). 55 SSR primers, which were distributed evenly over the six maize chromosomes, were selected based on the information available in the Maize-GDB database (<http://archive.maizegdb.org>). PCR amplifications were carried out in 15 μ l reaction volumes containing 20-30ng of 2 μ l template DNA, 1 μ M each of 2.0 μ l primer, 5x 2.25 Taq-buffer, 0.05 μ l of 5 units μ l-1 Taq DNA polymerase, 2.5 μ l dNTPs of 0.80 μ l, 25mM MgCl₂ of 0.60 μ l and dH₂O 7.30 μ l. PCR protocols consisted of 32 cycles of 94 for 45s, an annealing temperature at either 45, 50, 55 or 60°C depending on the individual SSR primers for 45 s, and 72°C for 60s, and a final extension step of 72°C for 10 min. PCR products were analyzed by 3.5% Metaphor gel electrophoresis and visualized by blue dye staining with gel-doc.

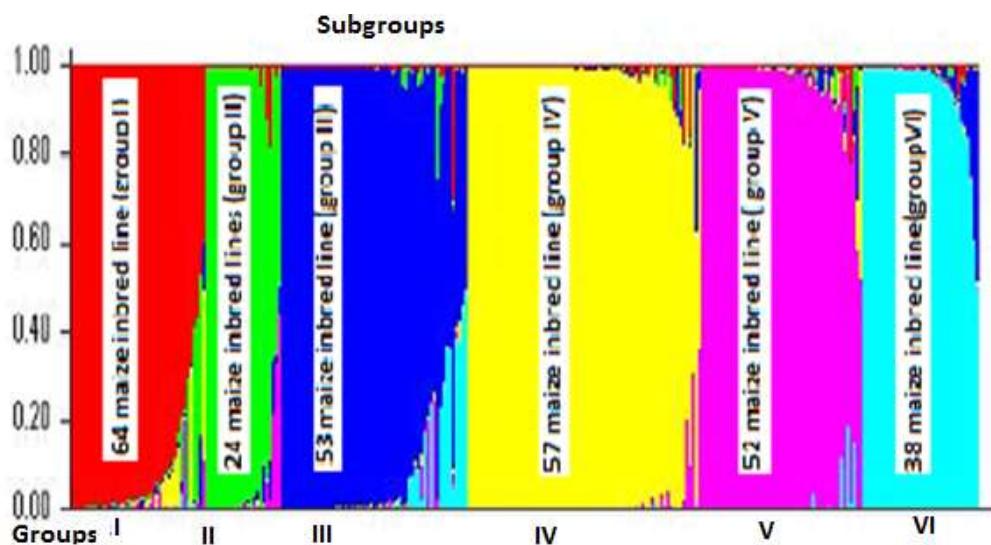
Genetic Diversity Analysis

For each SSR locus, polymorphic bands were scored as one or in respect to presence or absence of the bands at the same mobility, respectively. Gene diversity (PIC) were calculated for each marker using the formula: PIC=1 – $\sum f_i^2$, where f_i is the allele frequency for the i -th locus summed across all alleles for that locus.

(Liu et al., 2005) used the program Power-Marker v3.25 to calculate allele number, allele frequency, and genetic diversity of each locus as mentioned.

Population Structure Analysis


The STRUCTURE v2.3.3 was used to assess the population structure of 288 maize inbred lines using the Bayesian model-based approach as described by (Pritchard et al., 2000). The number of subgroups (K), with each K repeated five times, was ranged from one to 12, with burn-in of 100,000 and run length of 100,000. The ad hoc criterion ΔK related to the second order rate of change in the log probability of data ($\text{LnP}(D)$) to determine the most probable K value was used (Evanno et al., 2005). Genetic diversity among the 288 maize inbred lines was examined; the data matrices of the genetic similarity were used to create the dendrogram using UPGMA with the computer structure software and NTSYS-pc v2.2 (Rohlf, F.J., 2009). Principal coordinate analysis (PCoA) was also used to identify relationships among 288 maize inbred lines.


Results and Data Analysis:

A subset of 55 randomly selected polymorphic SSRs marker was amplified in 288 genotypes of maize, which include tropical inbred line collection (which were collected from different states of India). From 0.33 to 0.99 the PIC value for these 55 polymorphic SSRs markers with respect to 288 genotypes. The average of polymorphism information content for the SSR markers was 0.57 ± 0.19 . Maximum PIC value was noticed for dupssr14 (0.99) followed by Phi 015 (0.96) and umc1232 (0.83), while the lowest PIC value (0.01) was found in Bnlg1092 (0.33), umc2208, and Phi 92. Majority of the SSRs (60%) showed >0.50 PIC value. There were only four SSRs which showed PIC value in ranges 0.83 to 0.99 (Table.1) The highest PIC value was observed in individual markers dupssr14 (0.99) indicated that this marker had shown high allelic variation among all. However, Lowest PIC value indicated the low allelic variation. The groups wise highest PIC value were observed 0.57 in Bnlg252, while; lowest PIC value was found in-group Phi033 markers with value of 0.54 figure-2. Highly polymorphism of band in the present study were reported in primer dupssr14, bnlg252, umc1232, umc1332, umc2303 (Fig. 2).

Table: 1. SSR Markers identified which have shown polymorphism (PIC>0.50) among all tropical maize lines

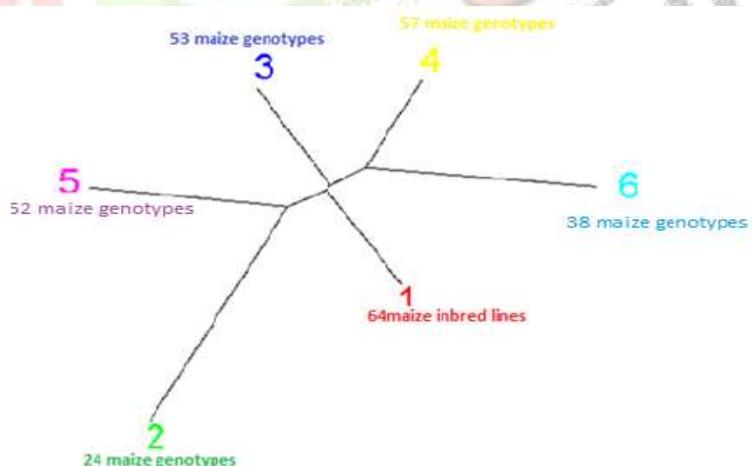
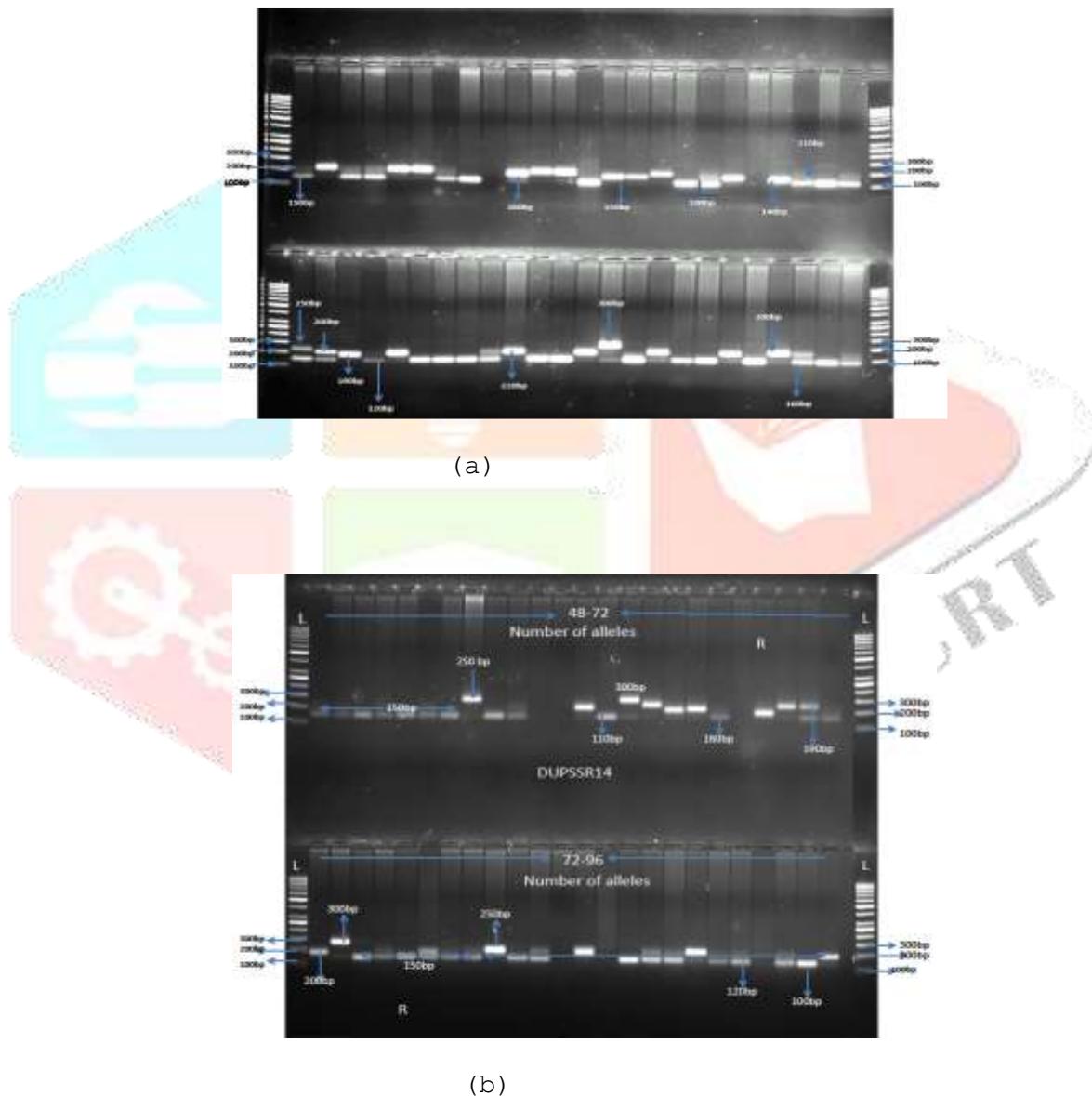

S.No	Markers	Forward Sequence	Reserves Sequence	Chromosome No	PIC Values
1	dupssr14	AGCAGGTACCACAATGGAG	GTGTACATCAAGGTCCAGATT	8	0.99
2	umc1232	GGAATTACCACAACAAACTA AACTTGG	AGGCTCTAGCTACCTGGCTACGT T	4	0.69
3	umc1332	CCTCTGCTTCCTCGTCATG TACT	AAGGAGCTGGAACATAAACACC A	5	0.83
4	umc2303	AGAAGAAGGTGGAGGTCCA AGACT	CTGGTATCTGATCAGGGTGCG	5	0.83
5	bnlg252	CGTTCTCCGTACAGCACAGA CCAACGT	CTCAGATGAACTCCTCAGCAGCT GTAGCCT	4	0.63

Figure: 2. Population structure of the 288 tropical maize inbred lines (K=6). Note: the vertical coordinate of represents the 288 inbred line. The vertical coordinate of each subgroup indicates the coefficients for each individual along with colors.

The similarity coefficient among 288 maize inbred lines ranged from 0.33 to 0.99 with average showing 0.60. While the similarity coefficient was 0.67, cluster analysis of 288 inbred lines clearly grouped into six subpopulations also clustering were consistent with their assignments using STRUCTURE software (Fig.3). and showed six subpopulations.



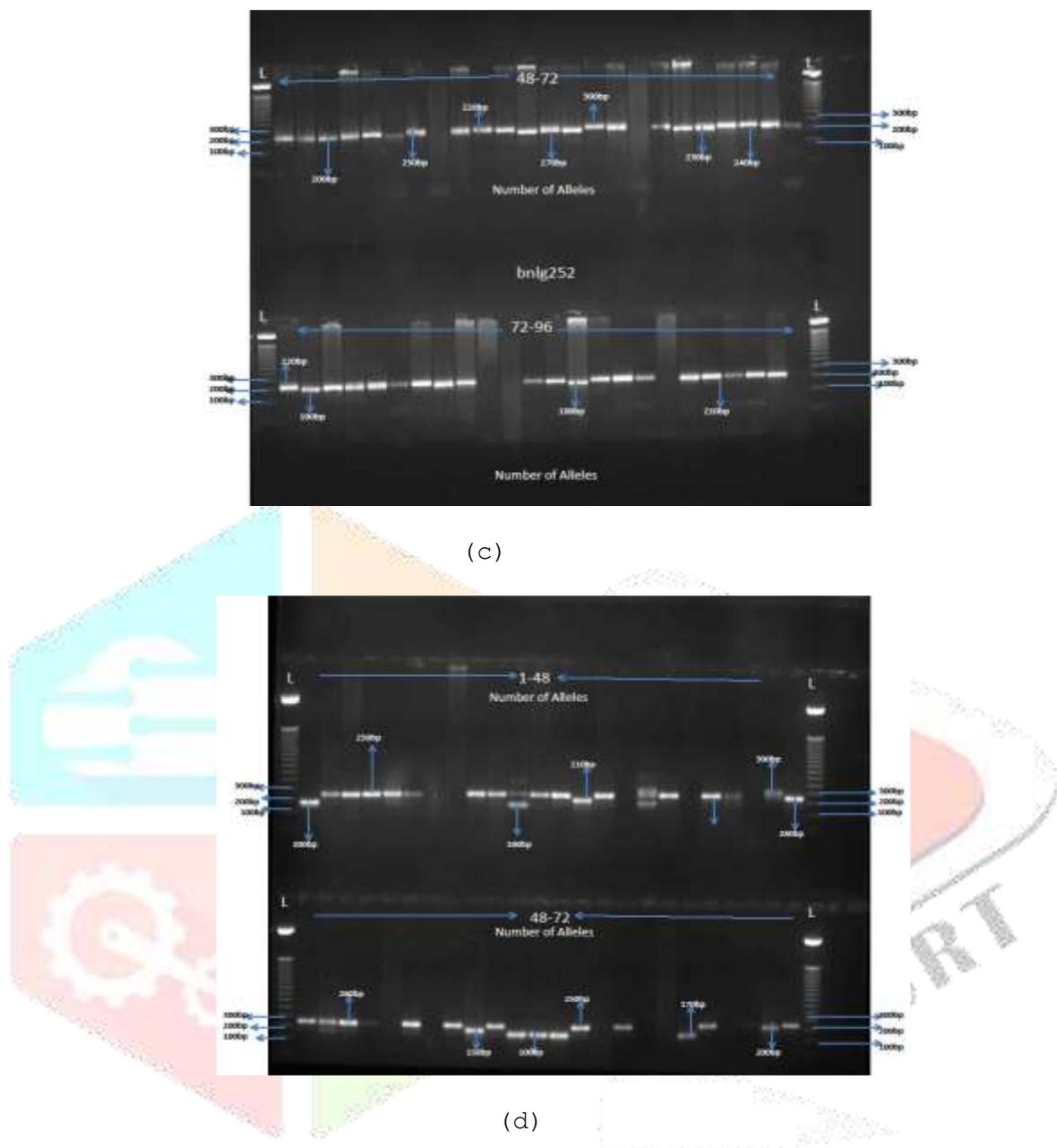

Figure: - 3. Dendrogram of 288 maize inbred lines using structure cluster analysis

Table: 2. Cluster analysis of 288 maize genotypes along with grouped

Cluster Group	Maize Genotypes
I	CM 213, CML 141, CML 171, CML 37, CML 384, CML 111, CML 189BBB, IML12-55, CM202XE57, CM 210, CM 145, CM 212, CML 406, CM 138, DMRQPM 121, HKI 1105, CML 446BBB, CM 140, CML 493BBB, CML 548 W, CML 112BBB, CML 162, CML 248, IML12-52, IML12-116, CM 207, CML 542 W, CML 279, HKI 4C4B, IML12-161, CML 121, CML 12, CML 117-3-4, CM 149, CML 172, CM 400, CM 135, IML12-133, CML 336, CML 269, WX 484, IML12-74, CML 484BBB, CML 195, CML 24, CML 319, CML 278, CML 322, CML 271BBB, CML 218BBB, CML208BBB, CML180, CM 133, MAI-197, CML 22, CM 125, IML12-22, CML 170, ESM 113, IML12-135, CML 175, IML12-143, CML 207
II	IML12-220, IML 12-213, IML12-215, IML12-218, IML12-221, IML13-15, IML13-17, IML13-22, IML13-23, IML13-62, IML13-46, IML15-10, IML12-180, IML12-193, IML 13-84, IML12-195, IML12-170, IML12-212, IML 12-166, IML15-56, IML15-243, IML 15-65, IML15-48, IML15-60
III	CML 29, CML 327, CML 312, CML 556 W, LM 19, CML 295BBB, CML 420, CML 549 W, CML 557 W, LM 11, CML 550 W, CML 176, LM 5, LM 14, LM 16, HKI 193-1, CML 304, CML 321, CML 142 X 150, LM 18, CML 282, CML 395, CML 559 W, CML 317, CML 409, HKI 488-1RG, CML 163, CML 554 W, HKI 1344, CML 422, CML 40BBB, LM 17, Bajim-08-27, CML 186, CML 551 Y, CML 494, HKI 193-2, CML 435, CML 227, CML 334, HKI 323, CML 27, CML 44, CML 451XE62, CML 23, CML 408, CML 452, CML 220, CML 55BB, CML 51, CML 202, HKI 1348-6-2, CM 108
IV	DML-26-2, DML-269, UMI 1201, DMRPE-6-4-B, DQL 1005, DQL-1001, DQL-779-1, DQL-609(WG)-1-4, DQL-593-4, DQL-784(O)-4-1, DML-49-1, UMI 1230, HKI 42050, DQL-610-12-4, DML-310, DQL-574-2, UMI 1200, DQL-653-2-4, DQL-609-5, DQL-785(seg)-1-8, DQL-1017-2, DQL-720-10-5, DQL-593-3, DQL-602-2, DML-346, DQL-653-5-1, DML-37-1, DML-242, DML-27-1, DQL-769(YELLOW)-6-3, DQL-716(Y)-1-3, DML-416, DMRQPM-103, DQL-676-16-3, DQL-785(seg)-1-1, V-373, DQL-790(PG)-2-4, DQL-594 (Spiral)-3, DQL-614-6, DQL-641-4-2, DQL-611-4-2, CM 120, DQL-653-3-1, DMRQPM-58, DML-241-1, DQL-609(dark purple)-1-3, DQL-74-1-4B, DMRQPM-03-102, DQL-659(YELLOW)-1-2, DQL-614-5-4, BML-45, DQL-685(Orange)-13-1, DQL-669-13-3, DML-221, DQL-780-2, BML 7, DQL-614-2-3
V	IML15-112, IML15-131, IML15-186, IML16-220, IML15-244, IML15-299, IML16-134, IML16-237, IML16-238, IML16-14, IML16-17, IML16-231, IML16-254, IML15-113, IML15-202, IML16-25, IML16-27, IML 16-208, IML16-210, IML15-280, IML16-157, IML15-268, IML16-28, IML16-143, IML15-288, IML16-269, IML16-108, IML16-205, IML15-269, IML16-193, IML15-97, IML 16-98, IML16-230, IML16-194, IML16-146, DML-165, DML-187-2, IML16-162, IML16-279, DML-106-1, IML16-185, IML16-188, IML16-282, IML16-183, IML15-69, DML-313, DML-187-1, DML-106, HKI 1352, MAI-105, HKI 1378, DQL-633-1-1
VI	DML-128, DML-104, DML-112, DML-16-2, DML-163-1, DML-170, DML-18-1, DML-181, DML-19, DQL-506-1, DQL-291-4, DML-127, DML-16, DML-193, DML-134B, DML-1, DML-119, DQL-297-1-3, DQL-565 (V)-6-2 (Orange), DQL-621 (Seg)-4-10, CLQRCYQ-107, DQL-506-12-2, DQL-626 (ORANGE)-2-3, DQL-295-1-1, DQL-565 (V)-5-2 (Orange), DQL-621(SEG)-1-7, DQL-299-1-1, CML 292, DQL-621 (Seg)-16-5, DQL-621-1-1A, DML-194, DQL-621 (Seg)-9-1, DQL-630-(ORANGE)-3-6, DQL-781-2, DQL-620-2-1, DML-196, DML-212A, BRASIL-117

55 SSR markers were analysed in the 228 maize inbred lines into six major groups. As inferred analysis by STRUCTURE software. Inbred lines in Red were mainly distributed in between 2 to 6 cluster group, green distributed in between 1 to 5 group, blue distributed in between 4 to 5 group, yellow distributed in between 3 to 6 group, purple distributed in between 2 to 3 group, sky blue distributed in between 1 to 4 group. Most individuals within Red and sky blue subpopulations were grouped more closely. The green color II group indicates higher genetic diversity subpopulations.

Figure: 4. SSR markers profiling for dupssr14 (a,b), (c) bnlg252 and (d) umc2303 have been depicted in gels with (marker 100 ladder L).

Discussion and Conclusion:

SSR markers, due to their abundance, co-dominance, and locus specificity, have been extensively used to assess diversity in tropical maize genotypes (Sarcevic *et al.*, 2008). In the present study, all the 288 tested maize inbred lines were derived from public sector inbred selected lines. The average polymorphic information content (PIC) value was 0.33, which was lower than that in highest inbred lines with PIC over 0.97 (Wang *et al.*, 2008; Xie *et al.*, 2008). The number of alleles found in this study is also in agreement with other studies

(Wang *et al.*, 2008; Park *et al.*, 2015). (Wang *et al.* 2008) reported a total of 1,365 alleles with an average of 9.4 alleles per locus by screening 95 inbred lines using SSR markers. (Park *et al.* 2015) genotyped 174 maize inbred lines by 150 SSR markers and detected a total of 1082 alleles with an average of 7.21 alleles per locus. In our study, alleles were obtained at the genome level Chromosome 1 showed the lowest allele number (24 alleles) and chromosome 8 the highest (64 alleles). Therefore, we have thus determined that there is a higher-level genetic diversity in the 288 tropical maize-selected lines, which has the potential to enhance the genetic diversity of Indian and foreign maize breeding materials.

Population structure in the present study was also investigated using three complementary analysis methods NTSYS and STRUCTURE, statistical analysis based on SSR data. We selected maximum membership probability as the group criterion, 288 maize inbred lines were assigned into six sub-populations, which was in agreement with the assignments obtained by structure software clustering. Nevertheless, for the 288 tested maize inbred -selected lines, the pedigree information was not in accordance with their clustering. This finding can be partially explained by complex genetic background in tropical maize inbred line. Therefore, it is of significant importance to understand population structure and genetic diversity among inbred lines is for maize improvement. The allele frequencies, gene diversity and population structure obtained in the present study lead us to conclude that the 288 inbred lines derived from genetically diverse inbred maize lines contain extensive genetic variation and are a valuable resource for Indian maize breeding. It means that highest frequencies of polymorphism shown the susceptibility and survival in adverse condition.

Acknowledgements:

Authors are indebted to the Indian Council of Agricultural Research and ICAR-Indian Institute of Maize Research, New Delhi and Vivekananda Global University, Jaipur for financial support under in fellowship. Authors are also thankful to Director, IIMR and Project Director, Department of Genetic Plant Breeding and for grant of permission to conduct the present study.

Reference:

- Saghai-Marof, M. A., Soliman, K. M., Jorgensen, R. A., Allard, R. W.: Ribosomal DNA spacer length polymorphisms in barley mendelian inheritance, chromosomal location, and population dynamics. *Proc. Natl. Acad. Sci.*, 81, 8014-8018 (1984).
- Wen, W., Guo, T., Victor, H., Tovar, C., Li, H., Yan, J., Taba, S.: The strategy and potential utilization of temperate germplasm for tropical germplasm improvement: a case study of maize (*Zea mays* L.). *Mol Breeding.*, 29, 951-962 (2012).
- Yong, H., Zhang, X., Zhang, D., Wang, J., Zhang, H., Li, M., Liu, W., Weng, J., Hao, Z., Ci, X., Ba, L., Li, X., Zhang, S.: Breeding potential of U.S. maize germplasm for utilization in Chinese temperate conditions. *Euphytica.*, 192, 435-451 (2013).
- Liu, K., Muse, S. V.: Power-Marker: An integrated analysis environment for genetic marker analysis. *Bioinformatics* 21, 2128-2129 (2005).
- Pritchard, J. K., Stephens, M., Donnelly, P.: Inference of population structure using multi-locus genotype data. *Genetics.*, 155, 945-959 (2000).
- Rohlf, F.J.: NTSYSpc: numerical taxonomy and multi-variate analysis system. Exeter Software, New York (2009).
- Xie, C., Warburton, M., Li, M., Li, X., Xiao, M., Hao, Z., Zhao, Q., Zhang, S.: An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. *Mol Breeding.*, 21, 407-418 (2008).
- Wang, R., Yu, Y., Zhao, J., Shi, Y., Song, Y., Wang, T., Li, Y.: Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. *Theor Appl Genet.*, 117, 1141-1153 (2008).

Park, J. Y., Ramekar, R. V., Sa, K. J., Lee, J. K.: Genetic diversity, population structure, and association mapping of biomass traits in maize with simple sequence repeat markers. *Genes Genom.*, 37, 725-735 (2015).

Xu, L., Wang, T. Y., Luo, W., Ni, K., Liu, S. J., Wang, L.: Factors influencing the contents of metals and As in soils around the watershed of Guanting Reservoir China. *J. Environ Sci.*, 25, 561-568 (2013).

Phumichai, C., Chunwongse, J., Jampatong, S., Grudloyma, P., Pulam, T., Doungchan, W., Wongkaew, A., Kongsiri, N.: Detection and integration of gene mapping of downy mildew resistance in maize inbred lines through linkage and association. *Euphytica.*, 187, 369-379 (2012).

Semagn, K., Magorokosho, C., Ogugo, V., Makumbi, D., Marilyn, Warburton, L.: Genetic relationships and structure among open-pollinated maize varieties adapted to eastern and southern Africa using microsatellite markers. *Mol Breeding.*, 34, 1423-1435 (2014).

Yang, L., Wang, W., Yang, W., Wang, M.: Marker-assisted selection for pyramiding the waxy and opaque-16 genes in maize using cross and backcross schemes. *Mol Breeding.*, 31, 767-775 (2013).

Abakemal, D., Hussein, S., Derera, J., Semagn, K.: Genetic purity and patterns of relationships among tropical highland adapted quality protein and normal maize inbred lines using microsatellite markers. *Euphytica.*, 204, 49-61 (2015).

Sarcevic, H., Pejic, I., Baric, M., Kozumplik, V.: Originality of M3S maize population and changes in allele frequencies revealed by SSR markers after two cycles of selfed progeny recurrent selection. *Euphytica.*, 161, 97-105 (2008).

Tarter, J. A., Goodman, M. M., Holland, J. B.: Recovery of exotic alleles in semiexotic maize inbreds derived from crosses between Latin American accessions and a temperate line. *Theor Appl Genet.*, 109, 609-617 (2004).

Zivanovic, T., Brankovic, G., Zoric, M., Momirovic, G. S., Jankovic, S., Vasiljevic, S., Pavlov, J.: Effect of recombination in the maize breeding population with exotic germplasm on the yield stability. *Euphytica.*, 185, 407-417 (2012).

Wende, A., Shimelis, H., Derera, J., Mosisa, W., Danson, J., Laing, M. D.: Genetic interrelationships among medium to late maturing tropical maize inbred lines using selected SSR markers. *Euphytica.*, 191, 269-277 (2013).

Adeyemo O, Menkir A, Melaku G and Omidiji O.: Genetic diversity assessment and relationship among tropical yellow endosperm maize inbred lines using SSR markers. *Maydica.*, 56, 1703-1709 (2011).

Bruel DC, Carpentieri-Pipolo V, Ruas CF, Gerage AC.: Assessment of genetic diversity in maize inbred lines using RAPD markers. *Crop Breed. Appl. Biotechnol.*, 7, 173-178 (2007).

Carvalho VP, Ruas CF, Ferreira JM, Moreira RMP.: Genetic diversity among maize (*Zea mays* L.) landraces assessed by RAPD markers. *Genet. Mol. Biol.*, 27, 228-236 (2004).

Gerber S, Mariette S, Streiff R, Bodenes C.: Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. *Mol. Ecol.*, 9, 1037-1048 (2000).

Hartings H, Berardo N, Mazzinelli GF, Valoti P.: Assessment of genetic diversity and relationships among maize (*Zea mays* L.) Italian landraces by morphological traits and AFLP profiling. *Theor. Appl. Genet.*, 117, 831-842 (2008).

Laborda PR, Oliveira KM, Garcia AA, Paterniani ME.: Tropical maize germplasm: what can we say about its genetic diversity in the light of molecular markers. *Theor. Appl. Genet.*, 111, 1288-1299 (2005).

Saiki RK, Gelfand DH, Stoffel S, Scharf SJ.: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science.*, 239, 487-491 (1988).

Tautz D.: Hypervariability of simple sequences as a general source for polymorphic DNA markers. *Nucleic Acids Res.* 17, 6463-6471 (1989).

Terra TF, Wiethölter P, Almeida CC, Silva SDA.: Genetic variability in maize and teosinte populations estimated by microsatellites markers. *Ciencia Rural.*, 41, 205-211 (2011).

Williams JG, Kubelik AR, Livak KJ, Rafalski JA.: DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. *Nucleic Acids Res.*, 18, 6531-6535 (1990).

Zabeau M and Vos P. Selective Restriction Fragment Amplification: A General Method for DNA Fingerprinting. European Patent Office, Publication #0534858-A1, Bulletin 93/13 (1993).

Yao Q, Yang K, Pan G and Rong T.: Genetic diversity of maize (*Zea mays* L.) landraces from southwest China based on SSR data. *J. Genet. Genomics.*, 34, 851-859 (2007).

Eschholz TW, Peter R, Stamp P and Hund A.: Genetic diversity of Swiss maize (*Zea mays* L. ssp. *mays*) assessed with individuals and bulks on agarose gels. *Genet. Resour. Crop Evol.* 55, 971-983 (2008).

Garcia AAF, Benchimol LL, Barbosa AMM, Geraldí IO.: Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. *Genet. Mol. Biol.*, 27, 579-588 (2004).

Hoisington D, Khairallah M and González de León D (1994). Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory. 2nd edn. CIMMYT, Mexico.

Kostova A, Todorovska E, Christov N, Sesov V.: Molecular characterization of Bulgarian maize germoplasm collection via SSR markers. *Biotechnol. Biotec.*, Eq. 20, 29-36 (2006).

Laborda PR (2003). Diversidade Genética entre Linhagens de Milho Tropical: Estudo com Base em Marcadores Moleculares. Master's thesis, Universidade Estadual de Campinas, Campinas.

Moeller DA and Schaal BA.: Genetic relationships among Native American maize accessions of the Great Plains assessed by RAPDs. *Theor. Appl. Genet.*, 99, 1061-1067 (1999).

Senior ML, Chin ECL, Lee M, Smith JSC.: Simple sequence repeat markers developed from maize sequences found in the GENBANK database: map construction. *Crop Sci.*, 36, 1676-1683 (1996).