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Abstract: In the present research work a combined cryptanalysis technique namely Related Key–Rectangle and Boomerang Combined Attack 
has been discussed and implemented on some message digest algorithms for their evaluation. The evaluated results of various rounds of the 
implemented algorithms are presented. The experimentally tested results show that the encryption modes of all the message digest 
algorithms are vulnerable to the related-key rectangle and boomerang combined attack. Thus the present work proposes an improved 
combined cryptanalytic attack. 
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I. INTRODUCTION 

 

The cryptanalytic tools play significant role in inferring the vulnerabilities and assessment of strength of cryptographic systems. The 

evaluation of cryptographic systems using cryptanalytic attack mechanisms prove the security of the cryptosystems against possible attacks in 

a more accurate and reliable way. Differential cryptanalysis, linear cryptanalysis and related key cryptanalysis are the widely used cryptanalytic 

tools to evaluate the security of the cryptographic algorithms.  Differential cryptanalysis introduced by Biham and Shamir is one of the most 

powerful chosen plaintext attacks in symmetric key cryptography. Linear cryptanalysis is an efficient cryptographic tool for block ciphers and 

stream ciphers. Related key cryptanalysis is applicable to ciphers with different but related unknown keys. This attack is based on the key 

scheduling algorithm and encryption/decryption algorithm. Various variations of these attacks have been proposed to meet the different 

contexts of the emerging cryptosystems. The variations of differential cryptanalysis are truncated differential cryptanalysis, higher order 

differential cryptanalysis, square cryptanalysis, impossible differential cryptanalysis, boomerang cryptanalysis and rectangle cryptanalysis.  

Multiple linear cryptanalysis, nonlinear cryptanalysis and bilinear cryptanalysis are the variations of linear cryptanalysis. For effective and 

efficient cryptanalysis combined attacks are designed from the above cryptanalytic tools and their variations and applied for various security 

systems to study the possibility their vulnerability to the attacks. Continuous research is being done in the direction of designing and developing 

combined attacks and their implementation and the present research also makes an attempt to implement a new combined attack on some 

crypto systems like Message Authentication Code algorithm.  Message digest (MD) algorithms are important type of cryptographic algorithms 

and are extensively used in applications such as digital signature, data authentication, e-cash etc. The important MD algorithms are MD4, 

MD5, HAVAL, SHA-0 and SHA-1. Earlier several attempts have been made for cryptanalysis of MD algorithms using techniques such as 

efficient collision attacks, neutral-bit, message modification etc.  Differential cryptanalysis and their variations were also implemented to 

investigate the non-randomness of the MD functions. In order to have an improved attack over the earlier ones, in our present research work, 

we propose an improved attack by introducing related-key rectangle and boomerang combined cryptanalytic attack  for evaluation of  the 

security of  various message digest algorithms like MD4, MD5, HAVAL, SHA-0 and SHA-1. Based upon the previously existing techniques 

four types of related-key rectangle and boomerang distinguishers are designed and implemented for the above mentioned message digest 

algorithms. The evaluated results of various rounds of the implemented algorithms are presented. 

  

II. THE RELATED-KEY RECTANGLE AND BOOMERANG ATTACKS 

 

In this section, based upon the earlier work proposed by J. Kim etal (2005) we introduce the related-key rectangle and boomerang attacks. 

In these attacks, there exist three types of related-key rectangle and boomerang distinguishers according to the usage of related-key deferential 

and the number of related keys. The first type of distinguisher is applicable when related-key deferential are used in the first sub-cipher, and 

regular deferential (or related-key deferential with the same key deference as those used in the first sub-cipher) in the second sub-cipher. The 

second type uses related-key deferential in the second sub-cipher and regular deferential for the first sub-cipher. The third type uses related-

key deferential in both sub-ciphers. The first and second types of distinguishers use two related keys, but they use deferent methods for selecting 

plaintexts to work with. On the other hand, the third type of distinguisher uses four related keys. We call these three types of distinguisher 

related-key rectangle and boomerang distinguishers of TYPE 1, TYPE 2 and TYPE 3, respectively. 

We first introduce the three types of related-key rectangle distinguishers and then of related-key boomerang distinguishers. The related-key 

rectangle distinguishers of TYPE 1, TYPE 2 and TYPE 3 work as follows: 

1. Choose two random n-bit plaintexts P and P’ and compute two other plaintexts P* = P⊕ α and P’* = P’⊕ α for a constant α. 

2.With a chosen plaintext attack scenario, obtain the corresponding cipher-texts C = EK (P ), C* = EK* (P*), C’ = EK’ (P’) and C’* = EK’* (P’*), 

where K* = K⊕ ΔK, K’ = K⊕ ΔK’, K’* = K⊕ ΔK⊕ ΔK’ (i.e., K ⊕ K*= K’ ⊕ K’*= ΔK and K ⊕ K’= K* ⊕ K’*= ΔK’) and ΔK,ΔK’ are key 

deference chosen by the cryptanalyst. 

3. Check if C⊕C’ = C*⊕C’* = δ or C⊕C’* = C*⊕C’ = δ. 
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As stated, the related-key rectangle distinguisher checks if the two pairs chosen from the ciphertext quartet have the same difference δ. If this 

difference δ holds with a higher probability than for a random cipher, then the related-key rectangle distinguisher can be applied electively to 

the underlying cipher. In the above process the deference among the three types of distinguishers is on the condition of the key difference ΔK 

and ΔK’. Namely, in TYPE 1 ΔK ≠ 0 and ΔK’ = 0 (or ΔK = ΔK’ ≠ 0), in TYPE 2 ΔK = 0 and ΔK’ ≠ 0 and in TYPE 3 ΔK ≠ 0, ΔK’ ≠ 0 and ΔK 

≠ ΔK’. If the plaintext quartet (P; P*; P’; P’*) satisfies the last δ test, we call such a quartet a right quartet. 

The related-key rectangle distinguishers can be formed by building quartets of plaintexts (P; P*; P’; P’*) that satisfy the following four 

differential conditions. 

Differential Condition 1: P⊕P*= P’⊕P’* = α 

Differential Condition 2: I⊕I*= I’⊕I’* = β (for some β) 

Differential Condition 3: I⊕I’ = γ (or I⊕I’* = °) (for some γ) 

Differential Condition 4: C⊕C’ = C*⊕C’* = δ (or C⊕C’* = C*⊕C’ = δ) 

where I = E0
k(P) , I* = E0

k*(P*), I’ = E0
k’(P’) and I’* = E0

k’*(P’*). In these four differential conditions, α and δ represent specific differences, 

and β and γ represent arbitrary differences. Note that the differential conditions 2 and 3 imply I*⊕I’*= γ (or I*⊕I ‘= γ) with probability 1. If 

these four differential conditions are satisfied, such a quartet (P; P*; P’; P’*) is a right quartet.  

 

2.1 Related-Key Rectangle Distinguisher of TYPE 1 

Assume that we have m plaintext pairs with difference α, where one plaintext of each pair is encrypted with the key K and the other plaintext 

with the key K*, then we have about mp* pairs satisfying the related-key differential α  β for E0 under the key difference ΔK. The mp* pairs 

generate about (mp*)2 /2 quartets satisfying conditions 1 and 2. Assuming that the intermediate encryption values are uniformly distributed 

over all possible values, we get I⊕I’ = γ with a probability of 2-n and I⊕I’* = γ  δ with a probability of 2-n. If we take into account the 

difference of the I, I’ pair, the regular differential γ  δ with probability q for E1 is used twice in this distinguisher. On the other hand, if we 

take into account the difference of the I, I’* pair, the related-key differential γ  δ with probability q* for E1is used twice in this distinguisher. 

On the other hand, the expected number of right quartets for a random cipher is about m2.2-2n, since there are (<m/2>).2 possible quartets and 

each of the pairs (C; C’) and (C*; C’*) (or the pairs (C; C’*) and (C*; C’)) satisfies the δ difference with probability 2-n. Therefore, if p*.(   12. (q2 

+ q*2))1/2> 2-n/2 and m is sufficiently large, we can distinguish between E and a random cipher. In this distinguisher, we can use either regular 

differentials γ  δ (related to the probability q) or related-key differentials γ  δ (related to the probability q*). By using both of them, we 

increase the probability for a random cipher to succeed. However, if we take only the maximum of q and q*, then the ratio of the expected 

number of right quartets between E and a random cipher is optimal. In this case, the expected number of right quartets for the E cipher is about 

m
2
.2

-1
.2

-n
.(p*.q)2 or m2

.2-1
.2-n .(p*.q*)2. On the other hand, the expected number of right quartets for a random cipher is about m2. 2-1. 2-2n. Thus, 

p*.q> 2-n/2 or p*.q*> 2-n/2 must hold for the related-key rectangle distinguisher to work. Note that our estimated expectations are approximate 

values since the actual values of the expectations depend on the values of the chosen plaintexts and the used differential probabilities are 

average ones over the text and key. 

 

2.2 Related-Key Rectangle Distinguisher of TYPE 2 

If we have m1 pairs (P; P*) and m2 pairs (P’; P’*) with difference α, where P and P* are all encrypted under the key K and P’ and P’* are all 

encrypted under the key K’, then we have about m1.p pairs together with m2.p pairs satisfying the regular differential α  β for E0. Similarly, 

we get I⊕I’ = γ with a probability of 2-n and I⊕I’* = γ with a probability of 2-n. Since the probability that both pairs (I; I’) and (I*; I’*) (or both 

pairs (I; I’*) and (I*; I’)) are right pairs with respect to the related key differential γ  δ for E1 is q*2 (here, q* = PrX,K [EK
1 (X)⊕EK

1
⊕ΔK’ (X⊕ γ) 

= δ]), the expected number of right quartets is about ∑( m1.p).( m2.p ). 2-n  . 2. q *2= m1 . m2 .2-n+1.(p.q*)2  . Since the expected number of right 

quartets for a random cipher is about m1. m2 . 2-2n+1, we can distinguish between E and a random cipher if p . q*>2-n/2 and m1,m2 are sufficiently 

large. 

 

2.3 Related-Key Rectangle Distinguisher of TYPE 3 

In order to optimize the ratio of the expected number of right quartets between E and a random cipher, we should only consider the 

maximum of q*and q’* in the related-key rectangle distinguisher of TYPE 3, where, q*=PrX,K[EK
1(X) ⊕ EK

1
⊕ΔK(X ⊕ γ) = δ])2 ) ½ ,and q’*= 

PrX,K[EK
1(X) ⊕ EK

1
⊕ΔK⊕ΔK’ (X ⊕ γ) = δ])2 ) ½ .   In our analysis, we assume q*> q’*.  To begin with, we also assume that we have m1 pairs of 

(P; P*) and m2 pairs of (P’; P’*) with difference α, where P; P*; P’ and P’* are encrypted with the keys K, K*, K’and K’*, respectively. Then about 

m1. p and m2 .p*2 pairs will satisfy the related-key differential α  β for E0 under the key difference ΔK. Thus, we have about m1.m2.p*2 quartets 

satisfying the differential conditions 1 and 2. Moreover, we get I⊕I’ = γ with probability 2-n. These assumptions enable us to obtain about 

m1.m2. 2-n.p*2 quartets satisfying the differential conditions 1, 2 and 3. As stated above, the differential conditions 2 and 3 allow us to get I* 

⊕I’*= γ with probability 1, and each of the pairs (I; I’) and (I*; I’*) satisfies the related-key differential γ  δ for E1 with probability q*. Therefore, 

the expected number of right quartets is about ∑m1.m2.2-n.p*2.q*2= m1.m2.2-n.(p*)2.(q*)2  For a random cipher the expected number of right 

quartets is about   m1.m2.2-2n. Thus, p*.q*> 2-n/2 must hold for the related-key rectangle distinguisher to work. 

 

2.4 Related-Key Boomerang Distinguishers 

In order to get at least one right quartet in the related-key rectangle distinguishers, we need at least 2n/2 plaintext queries. However, under 

an adaptive chosen plaintext and ciphertext attack scenario we can make a related-key boomerang distinguisher which can remove the factor 

2n/2 in the data requirement. As a compensation of a smaller data requirement, this attack works only in a stronger attack model; it requires 

access to both the encryption box and the decryption box. The related-key boomerang distinguishers based on two or four related keys work 

as follows. 

Choose two n-bit plaintexts P and P’ such that P⊕P’ = α and obtain the corresponding ciphertexts C = EK (P) and C’ = EK* (P*), where K ⊕ 

K*= ΔK. 

Compute other two ciphertexts’ = C⊕ δ and C’* = C*⊕ δ, and obtain the corresponding plaintexts P’ = EK
-1

’(C’) and P’* = EK
-1

’* (C’*), where  K’ 

⊕K’*= ΔK and K ⊕ K’= K* ⊕ K’*= ΔK’. 

Check if P’⊕P’* = α. Similarly, we can classify the three types of distinguishers by the condition of the key differences ΔK and ΔK’. Note that 

the difference between the related-key rectangle and boomerang distinguishers of the same TYPE is on the encryption and decryption process 
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for the plaintexts (P’; P’*) and the ciphertexts (C’; C’*).  In a similar way, we can analyze the three types of the related-key boomerang 

distinguishers. Let us consider the related-key boomerang distinguisher of TYPE 3. The probability that I⊕I* = β is p* (in the encryption 

direction) and the probability that I⊕I’ = I*⊕I’* = γ is q*2 (in the decryption direction). Therefore, for any β and γ, I⊕I’ = β and I⊕I’ = I*⊕I’* = 

γ (as in these cases I’ ⊕ I’*= β) hold with probability p*. q*2. Since the probability of the related-key differential βfor α (E0)-1 under the related 

key difference ΔK is p*, the probability that P’⊕P’* = α is ∑ p*2. q*2 = <p*2>. <q*2>. Therefore, if we have m chosen plaintext pairs (P; P*) with 

difference α and we have another m adaptively chosen ciphertext pairs (C’; C’*) such that C’ = C*⊕ δ and C’* = C*⊕ δ, then about m.p*2.q*2 

quartets satisfy the α test. Since, for a random cipher α test holds with probability 2-n, <p* >. <q*> > 2-n/2 boomerang distinguisher works. 

 

III. HASH FUNCTIONS 

 

Hash functions are an important type of cryptographic algorithms; they are widely used in cryptographic applications such as digital signature, 

data authentication and e-cash. Hash functions are at work in the millions of transactions that take place on the internet every day. The purpose 

of the use of hash functions in many cryptographic protocols is to ensure their security as well as improve their efficiency. The most widely used 

hash functions are cryptographic hash functions such as MD5 [112] and SHA-1 [41], which follow the design principle of MD4.Hash functions 

are message digest algorithms which compress any arbitrary bit length message into a hash value with a small and fixed bit-length. The 

cryptographic hash functions such as MD4, MD5, HAVAL, SHA-0 and SHA-1 are performed based on the well-known Davies-Meyer 

construction, which is described as follows. Before the hash function is applied to a message M of arbitrary bit-length, it is padded to a multiple 

of t-bit and divided into n t-bit sub-messages M0||M1||.... ||Mn-1, where t is specified. Then the l-bit hash value In for the message M is computed 

as follows:I0 = IV ; Ii+1 = com(Ii; Mi) = E(Ii; Mi) + Ii  for 0< i < n; Where  IV is a fixed l-bit initial value, com is a compression function and E is 

an iterative step function. In MD4, MD5, HAVAL, SHA-0 and SHA-1, the function E is composed of 3; 4 or 5 passes and in each pass there are 

16, 20 or 32 rounds that use only simple basic operations and Boolean functions on 32-bit words. The l-bit input Ii is loaded into l/32 32-bit 

registers denoted (A0; B0; .... ) and the t-bit message block is divided into t/32 32-bit words denoted (X0; X1; ... ; X t/32). The l/32 registers are 

updated through a number of rounds. In each pass, a fixed Boolean function f and 32-bit constants Cst are used. 

 

IV. IMPLEMENTATION OF RELATED-KEY, RECTANGULAR BOOMERANG ATTACK 
MD5 is a strengthened version of MD4, which increases the number of passes from 3 to 4 (i.e., it extends the number of rounds from 48 to 

64) and uses the round function. In MD5 four types of Boolean functions f are used; two of them are the same as the Boolean functions of 

MD4 used in rounds 1-15 and 32-47. 

 

fr(Br; Cr; Dr) ={ (Br&Cr)| (¬Br&Dr)       if 0<= r <=15 

                           (Br&Dr)|(Cr&¬Dr)        if 16<= r <=31 

                           Br ⊕ Cr ⊕ Dr              if 32<= r <=47 

                           Cr ⊕ (Br|¬Dr)              if 48 <= r <=63  

The rotation amount sr is specified as follows: 

 sr = {  

         7; 12; 17; 22; 7; 12; 17; 22; 7; 12; 17; 22; 7; 12; 17; 22  

         5; 9; 14; 20; 5; 9; 14; 20; 5; 9; 14; 20; 5; 9; 14; 20    

         4; 11; 16; 23; 4; 11; 16; 23; 4; 11; 16; 23: 

         6; 10; 15; 21; 6; 10; 15; 21; 6; 10; 15; 21; 6; 10; 15; 21 

         } 

MD5 uses the following message expansion algorithm for a 512-bit message 

 M = X0||X1||.... || X15.  

Xr  ={  X0; X1; X2; X3; X4; X5; X6; X7; X8; X9; X10; X11; X12; X13; X14; X15 

            X1; X6; X11; X0; X5; X10; X15; X4; X9; X14; X3; X8; X13; X2; X7; X12 

            X5; X8; X11; X14; X1; X4; X7; X10; X13; X0; X3; X6; X9; X12; X15; X2 

            X0; X7; X14; X5; X12; X3; X10; X1; X8; X15; X6; X13; X4; X11; X2; X9  

         }  

 

In the MD5 attacks, we first find consecutive two related-key differentials with high probabilities which are independent of each other, and 

then we estimate the probability   Pr[BOO¡k] on the basis of those differentials by a series of simulations, where k is the number of source 

keys (k is equal to 2 or 4). The related-key boomerang attacks on MD5 and HAVAL are slightly different from those of MD4. The boomerang 

attack works by finding not only a chosen plaintext pair but also an adaptively chosen ciphertext pair that satisfy a boomerang distinguisher. 

For MD5 once we obtain a ciphertext pair by asking for the encryption of a chosen plaintext pair, we know whether or not the adaptively 

chosen ciphertexts can be a boomerang candidate. Assume that the ciphertext pair obtained by asking for the encryption of a chosen plaintext 

pair is (C; C¤) and (a31; c31; d31) of C or (a¤
31; c¤

31; d¤
31) of C¤ is in f(0; 0; 0); (0; 1; 0); (1; 0; 1); (1; 1; 1)g. Then the adaptively chosen ciphertext 

pair (C ⊕ ±; C¤ ⊕ ±) cannot satisfy our boomerang distinguisher, where = (e5; e5; e5; e5). That is, in this case ¢A63 cannot be of the form e5 

since the difference induced by the Boolean function of the last round is 0 for (C⊕±; C¤⊕±). This is the reason why the required number of 

queries for the decryption process is smaller than that for the encryption process. During our simulations, we have observed that the simulation 

results correspond to our estimation of success rate. As an example of our simulations, we give in Tabl-1 a related-key quartet, a chosen 

plaintext pair and an adaptively chosen ciphertext pair of MD5 obtained by the boomerang distinguisher. The differential rounds 0-32 for MD5 

is shown in Table-2. 
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Table 1: Boomerang Distinguishers of MD5 (Four Related Keys) 

Round (i) Ai Bi Ci Di Ki Prob. 

0 0 0 e31 0 0 1 

1 0 0 0 e31 0 2¡1 

2 e31 0 0 0 e31 1 

3 0 0 0 0 0 1 

. . . . . . . 

. . . . . . . 

. . . . . . . 

28 0 0 0 0 0 1 

29 0 0 0 0 e31 2¡1 

30 0 e8 0 0 0 2¡2 

31 0 e8 e8 0  p¤ = 2¡4 

31 e11;31 e31 e31 0 0 2¡1 

32 0 0 e31 e31 0 1 

33 e31 0 0 e31 0 1 

34 e31 0 0 0 e31 1 

35 0 0 0 0 0 1 

. . . . . . . 

. . . . . . . 

60 0 0 0 0 0 1 

61 0 0 0 0 e31 2¡1 

62 0 e9 0 0 0 2¡2 

63 0 e9 e9 0 0 2¡2 

64 0 e9 e9 e9  q¤ = 2¡6 

BOO-4  (0 ! 30), (63 ! 31)2, (30 ! 2)  Pr[BOO-4] ¼ 2¡11:6 

BOOW -4 Fixed K0;1;2;9;11, (2 ! 30), (60 ! 31)2, (30 ! 2) Pr[BOO-4] ¼ 2¡0:6 

 
Table-2 Differential for Rounds 0-32 of MD5 

Round (i) Ai Bi Ci Di ¢mi Prob. 

0 0 0 0 0 0 1 

. . . . . . . 

. . . . . . . 

. . . . . . . 

7 0 0 0 0 0 1 

8 0 0 0 0 e24 2¡1 

9 0 e31 0 0 e19 2¡2 

10 0 0 e31 0 0 2¡1 

11 0 0 0 e31 0 2¡1 

12 e31 0 0 0 e31 1 

13 0 0 0 0 0 1 

. . . . . . . 

. . . . . . . 

. . . . . . . 

23 0 0 0 0 0 1 

24 0 0 0 0 e19 2¡2 

25 0 e24 0 0 0 2¡2 

26 0 e24 e24 0 0 2¡3 

27 0 e6;24 e24 e24 e24 2¡5 

28 e24 e6;24 e6;24 e24 0 2¡6 

29 e24 e6;11;24 e6;24 e6;24 0 2¡7 

30 e6;24 e6;11;24 e6;11;24 e6;24 0 2¡9 

31 e6;24 e6;11;24 e6;11;24 e6;11;24 e31 2¡9 
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32 e6;11;24 

e6;11;19;2

4 e6;11;24 e6;11;24 0 2¡8 

33 e6;11;24 e6;11;23 e6;11;19;24 e6;11;24   

0-32  p = 2¡56, p^ = 2¡47:6    

 

V. CONCLUSION 

 

In the present work we have applied the related-key boomerang attack to MD5. The MD5 used in encryption modes is vulnerable to the 

related-key boomerang attack and are very much close to the earlier simulation by Kim et al.  However, a more detailed study and simulation 

is required not only on MD5 but also other systems like HAVAL and MD4 etc. against the present combined attack. The comparative studies 

can give a better picture of the general vulnerability of the crypto systems for combined attacks. 
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