
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

IJCRTBE02112 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 868

 Smart Coding Partner

An AI-Powered Assistant for Better Code and Productivity

1 Mr. Raghavendrachar S, 2Adithi R, 3Deepthi A B, 4Ashwini
1 Associate Professor, 2Final Year BE student, , 3Final Year BE student, 4Final Year BE student

Department of Computer Science and Engineering,

K S Institute Of Technology (KSIT), Bangalore, Karnataka, India

Abstract: As software development has advanced at a high speed with artificial intelligence (AI), AI-enabled

code assistants are now indispensable assets to enhance the productivity of developers and the quality of code.

But how can AI truly transform the way we write, debug, and optimize code? This paper presents an AI-

facilitated VS Code extension, "AI Powered Pair Programming Assistant," which can function as a virtual

coding companion through intelligent code recommendation, inline descriptions, test case generation, and

feedback. By utilizing Gemini AI, our system combines cutting-edge code analysis and test case automation

to accelerate the development process, minimize manual debugging efforts, and improve collaborative coding

effectiveness. This integration tackles remote teams' challenges of time zone disparities and

miscommunication through instant AI-backed support and suggestions. Through experimentation and

evaluation, we explore the potential of AI-based assistants to maximize method generation, enhance test

coverage, and facilitate smoother software development practices.

1 INTRODUCTION

Revolutionarily, Artificial Intelligence is being integrated into software development, which changes how

developers write and optimize code, as well as debug them. AI coding assistants include GitHub Copilot and

Tabnine, which are great productivity enhancers for giving real-time suggestions, automating activities, and

generating test cases. These tools improve efficiency. There are also, however, some limitations in that they

lack deeper context awareness, structured commenting, and explainability, making it hard for developers to

develop full faith in the suggestions of an AI. Nowadays, software development is becoming more and more

collaborative, and now more than ever, there will be a demand for an intelligent, explainable, and adaptive AI

assistant as much to recommend the code but also to add comprehension and process integration.

With this introduction, we offer the AI-Powered Pair Programming Assistant, a VS Code extension that

provides beyond simple code suggestions. Contextually relevant AI-driven explanations, structured code

comments, automated test case generation, and intelligent recommendations are available. Unlike

conventional AI assistants that primarily focus on auto-completion, this AI Pair Programming Assistant

extension ensures that developers not only receive optimized code suggestions but also gain a deeper

understanding of their code.

Among the strengths of this extension are its interactivity and adjustability. Developers get to choose

whether they see AI suggestions, request automatically generated comments, test case generation, or

explanations for specific code snippets to make AI assistance much freer, educational, and customizable. The

merger of all these features into a seamless workflow should provide an avenue through which developers

can write cleaner code and collaborate more effectively within development teams.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

IJCRTBE02112 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 869

Although the system is already in place, future development will improve AI precision, increase language

support, and improve debugging. Other improvement processes will include automated PR reviews, multi-

language support, and choices related to AI models, which will certainly make it much more user-friendly.

2 LITERATURE REVIEW

Artificial intelligence (AI) has influenced software development in that it automates coding, increases

efficiency, and optimizes code quality. AI-driven assistants such as GitHub Copilot [3] and Tabnine [4]

leverage machine learning models to offer real-time suggestions for code writing that assist developers in

writing cleaner code and more reliable code. Research indicates limitations in long-term context handling and

describing AI-suggested recommendations, resulting developers' trust problems [1][2]. Though strong at code

completion, they have weak integration with collaborative development processes and support for debugging.

AI-based pair programming tools seek to fill this gap by providing real-time code review, debugging

support, and security scanning. Research indicates that AI can identify vulnerabilities in code and impose best

practices, but current solutions lack contextual understanding and business logic knowledge [5] .Although AI

can improve productivity, developers still need to monitor and edit AI-suggested changes to guarantee

accuracy and preserve high-quality code.

Even with the advancements, AI coding assistants require more work on collaborative development

environments. Insufficiency in automated pull request (PR) reviews, restricted debugging explanations, and

poor workflow integration are areas of required research. Closing these research gaps will result in a stronger

AI-driven assistant that can give real-time contextual recommendations, automated PR reviews, and smart

debugging assistance, ultimately making pair programming a more efficient and streamlined process.

3 SYSTEM DESIGN

The AI-Powered Pair Programming Assistant is designed as a VS Code extension with a modular system

design to provide an easy interaction among the frontend, backend, and AI model. The system adheres to the

principle of modularity, with separate components to deal with varying functionalities while promoting

scalability and maintainability. The assistant is aimed at helping developers by offering AI-powered

suggestions, explanations, auto comments, and test case generation. The extension incorporates a WebView

interface which allows users to preview AI-generate suggestions without leaving the normal editing interface.

It also allows users to track interactions and star suggestions for use in the future. These operations are

facilitated by an SQLite database that stores interactions efficiently, allowing retrieval of stored suggestions

for re-use [6]. The backend, implemented with Node.js and Express.js, processes API requests, data storage,

and communication between the frontend WebView and the AI model. The Gemini API is utilized as the

underlying AI engine to produce code-related insights with high-quality suggestions according to best

practices in programming [7].

A.FRONTEND

The frontend of the AI assistant is implemented with TypeScript and utilizes the WebView API of VS

Code to offer an interactive user interface [8]. The WebView serves as the primary interface for previewing

AI-generated suggestions, accessing the history of previous interactions, and managing starred suggestions.

When a developer selects a code block and requests an AI suggestion, the WebView dynamically renders the

AI’s response, allowing users to accept, modify, or reject the suggestion directly from the interface. The

WebView features two other tabs—History and Starred Suggestions—wherein developers are able to go back

to previous interactions and star significant AI-computed recommendations for future use. This allows

developers to reuse successful solutions and monitor the improvements in their coding processes. The frontend

talks to the backend through REST API calls, which enables smooth data querying and updates from the

SQLite database [6].

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

IJCRTBE02112 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 870

B.BACKEND

The backend is built with Node.js and Express.js [9], acting as the middleman between the VS Code

extension and the Gemini API. It controls the AI interactions, user request processing, and database

operations. The backend also provides API endpoints that enable the frontend to retrieve AI-generated

suggestions, write history logs, and retrieve starred recommendations. SQLite database stores and handles the

past AI responses efficiently, supporting quick retrieval upon users revisiting their history or accessing starred

suggestions [6].

C. CORE FEATURES

The four core features used by the AI assistant are Preview AI Suggestion, Auto Comment, Explain Code,

and Generate Test Cases. The Preview AI Suggestion identifies the code used and gives optimized suggestions

as per syntax, refactoring skills, and optimum practices. Auto Comment creates comprehensible inline

comment to make reading and maintenance easier. Explain Code facilitates insight into function behavior and

logic provided by AI and makes complex program structures easy for developers to know. Generate Test

Cases provides auto generation of unit tests based on full code coverage of alternate execution paths.

Moreover, WebView interface also encompasses History and Starred Suggestions in order to enable users to

visit and reuse the AI-created content [8].

4 METHODOLOGY

The AI-Powered Pair Programming Assistant's development followed the Agile Software Development

Lifecycle (SDLC), ensuring iterative progress and continuous improvement based on real-time feedback. The

project was divided into sprints, each focused on implementing specific features, testing, and refining based

on developer input.

The process began with planning, where major goals were defined. These included integrating AI-assisted

code suggestions, building an interactive WebView interface for handling recommendations, and

implementing history persistence to manage suggestions over time. These goals formed the foundation for the

development cycle.

In the requirement analysis phase, key functionalities were identified, and a broad system architecture was

outlined. The aim was to enable scalable interaction between the AI engine and the development environment,

supporting seamless integration and future extensibility.

Design efforts focused on developing a stable frontend-backend architecture, structuring database storage

using SQLite, and outlining AI recommendation flows. Wireframes for the WebView interface were also

created to provide a seamless user experience, allowing developers to preview, accept, or reject suggestions

efficiently.

During implementation, the frontend was built in TypeScript using the VS Code WebView API for real-

time interaction. The backend, developed in Node.js and Express.js, managed logic and requests, while

SQLite preserved historical data and starred suggestions. Gemini API integration enabled code analysis,

intelligent recommendations, explanations, and test generation.

The testing phase ensured stability through unit tests for backend components and UI testing of the

WebView. AI suggestions were continuously evaluated, and feedback from developer and usability testing

helped ensure the assistant met real developer needs and aligned with typical workflows.

.

5 IMPLEMENTATION

The deployment of the AI-Powered Pair Programming Assistant is intended to enable seamless integration

between the VS Code extension, WebView interface, and backend database. The process starts with a

developer choosing a code block in VS Code and calling the AI assistant. The fundamental AI processing

logic, such as calls to the Gemini API, is done directly in the extension.ts class for low-latency operations and

maintains all AI processing within the extension itself, without backend interaction. The assistant offers AI-

based suggestions, explanations, automated comments, and test case generation, which are all locally

processed and rendered in the respective UI component, either the sidebar or an independent WebView.

The WebView is selectively utilized to render AI-created content, depending on the feature that is being

accessed. For user query response and AI-created code suggestions, the sidebar UI shows the content in an

interactive manner so that the developers

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

IJCRTBE02112 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 871

fig.1. workflow diagram

can accept, change, or reject the suggestions in real time. A WebView is utilized exclusively when lengthy

explanations of the code are necessitated. The History tab retains a copy of all prior AI-created suggestions,

allowing users to refer back to and recycle previous interactions. The Starred tab permits developers to reserve

critical AI-created suggestions for easy recall in subsequent sessions, enhancing efficiency and knowledge

accumulation.

The backend, developed with Node.js and Express.js, is purely used for storing and loading history and

starred suggestions. When a developer accesses a history or starred suggestion, the frontend WebView or

sidebar UI requests the backend via an API request. The backend fetches the respective stored data in the

SQLite database and sends it back to the frontend. This provides an organized and efficient means of accessing

prior AI-generated responses with a lightweight AI processing flow in the extension itself.

The SQLite database also stores user interaction efficiently in terms of AI-driven responses together with

metadata like timestamps and accompanying code snippets. The developers are thereby able to track their AI-

based coding history systematically. Whenever the user selects an item in the history or a starred proposal,

the backend loads the data from storage and forwards it to the WebView or sidebar UI to get re-remerged into

the development process effortlessly.

The workflow diagram (Fig(1)) shows the interaction between extension.ts, WebView, and backend

services. Upon a user choosing a code block, extension.ts handles the AI request and sends it to the Gemini

API. After the AI has produced a response, it is shown in the corresponding UI component—either the sidebar

for suggestions or a standalone WebView for full explanations. When a suggestion is starred or saved in

history, the frontend makes a request to the backend, which stores the entry in the SQLite database. When

users subsequently return to a saved suggestion, the backend fetches and returns the data to the WebView or

sidebar UI for rendering.

By following this task-oriented workflow, the AI assistant provides real-time AI-based insight, ongoing

history tracking, and reusable starred suggestion, which together greatly boost the productivity of the

developers and improve the quality of the code. The decoupling of AI requests from extension.ts, presentation

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

IJCRTBE02112 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 872

from WebView, and database from backend guarantees lightweight, efficient, and integrated-AI processing

throughout the VS Code extension itself.

6 RESULTS
 The Code Actions Feature offers interactive options like Preview AI Suggestion, Explain Code, Generate

Tests, and Auto-Commenting. Developers can select a code snippet and choose an action, allowing AI to

provide refactoring suggestions, detailed explanations, automated test case generation, and meaningful

comments to enhance code clarity and maintainability.(fig.2.)

 fig.2. code actions provided
 The Explanation Feature allows developers to highlight a code snippet and ask questions like "What does

this function do?". The AI then analyzes the code and provides a detailed explanation, enhancing readability

and understanding, as illustrated in figure 3.

 fig. 3. explanation of the code

 fig.4. history data getting stored in a database

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

IJCRTBE02112 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 873

 The Code Suggestion Feature analyzes the selected code and provides real-time improvements, such as

refactoring and performance optimizations. Developers can review these AI-generated suggestions and

choose to accept, modify, or reject them, as shown in Figure 5.

 fig.6. auto-commenting of the code
 The Auto-Commenting Feature[fig.6] adds meaningful comments to code, improving readability by

explaining logic, functions, and complex statements automatically.

7 FUTURE ENHANCEMENTS

Looking into the future for this AI-powered pair programming assistant, we foresee the integration of

automated PR reviews into GitHub for better code quality assessment and smoother collaborative workflows.

This tool should also support multiple programming languages in order to better interface with developers

operating in various technology stacks. With the option for users to choose between various AI models, it will

allow them to better weigh their performance, accuracy, and privacy concerns. Each of these enhancements

will need separate research, consideration, and systematic implementation. These enhancements will move

the system toward the goal of an integrated AI-assisted complete software development tool that will require

further refinement, evaluation, and iterative enhancement.

8 CONCLUSION

To incorporate AI in pair programming, one has to utilize its ability to improve software development with

improved accuracy and efficiency. AI's ability to learn continuously helps write cleaner, more stable code

while assisting developers at different skill levels. But achieving the right balance between human ingenuity

and AI support is vital, as it involves both creative problem-solving and analytical thinking. Surely, AI

progress will continue to influence the future of smart programming assistants, creating an evolving and

harmonious relationship between developers and technology.

fig.5. suggestion of a selected code

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

IJCRTBE02112 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 874

REFERENCES

[1] Wang, X., Li, Y., & Chen, Z. (2024). Enhancing AI-assisted coding: Context-aware

recommendations and limitations. ACM DigitalLibrary.

https://dl.acm.org/doi/10.1145/3665348.366533

[2] Zhang, J., Kumar, P., & Brown, L. (2023). Advancements in AI pair programming: A comparative

study of code generation models.arXiv. https://arxiv.org/abs/2306.05153

[3] GitHub. (2023). Working with GitHub Copilot as your AI pair programmer. Dev.to.

https://dev.to/github/working-with-github-copilot-as-your-ai-pair-programmer-4997

[4] Tabnine. (2023). Tabnine documentation: AI-powered coding assistant. Tabnine Docs.

https://docs.tabnine.com/main

[5] IEEE. (2024). AI-driven code analysis: Best practices and security considerations. IEEE Xplore.

https://ieeexplore.ieee.org/abstract/document/10493185

[6] SQLite. (2023). SQLite documentation: Architecture, features, and usage. SQLite.

https://www.sqlite.org/docs.html

[7] Google AI. (n.d.). Google Gemini API documentation. Retrieved from Google AI (if publicly

available).

[8] Microsoft. (2023). VS Code WebView API documentation: Creating web-based UI in extensions.

Visual Studio Code Docs. https://code.visualstudio.com/api/extension-guides/webview

[9] Express.js. (2023). Express.js documentation: Fast, unopinionated, minimalist web framework for

Node.js. Express.js Docs. https://expressjs.com/

http://www.ijcrt.org/
https://dl.acm.org/doi/10.1145/3665348.366533
https://arxiv.org/abs/2306.05153
https://dev.to/github/working-with-github-copilot-as-your-ai-pair-programmer-4997
https://docs.tabnine.com/main
https://ieeexplore.ieee.org/abstract/document/10493185
https://www.sqlite.org/docs.html
https://code.visualstudio.com/api/extension-guides/webview
https://expressjs.com/

