www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

é%ﬁ INTERNATIONAL JOURNAL OF CREATIVE
RESEARCH THOUGHTS (1JCRT)
&ap * An International Open Access, Peer-reviewed, Refereed Journal

Smart Coding Partner

An Al-Powered Assistant for Better Code and Productivity

1 Mr. Raghavendrachar S, 2Adithi R, *Deepthi A B, “Ashwini

1 Associate Professor, 2Final Year BE student, , 3Final Year BE student, “Final Year BE student
Department of Computer Science and Engineering,
K S Institute Of Technology (KSIT), Bangalore, Karnataka, India

Abstract: As software development has advanced at a high speed with artificial intelligence (Al), Al-enabled
code assistants are now indispensable assets to enhance the productivity of developers and the quality of code.
But how can Al truly transform the way we write, debug, and optimize code? This paper presents an Al-
facilitated VS Code extension, "Al Powered Pair Programming Assistant,” which can function as a virtual
coding companion through intelligent code recommendation, inline descriptions, test case generation, and
feedback. By utilizing Gemini Al, our system combines cutting-edge code analysis and test case automation
to accelerate the development process, minimize manual debugging efforts, and improve collaborative coding
effectiveness. This integration tackles remote teams' challenges of time zone disparities and
miscommunication through instant Al-backed support and suggestions. Through experimentation and
evaluation, we explore the potential of Al-based assistants to maximize method generation, enhance test
coverage, and facilitate smoother software development practices.

1 INTRODUCTION

Revolutionarily, Artificial Intelligence is being integrated into software development, which changes how
developers write and optimize code, as well as debug them. Al coding assistants include GitHub Copilot and
Tabnine, which are great productivity enhancers for giving real-time suggestions, automating activities, and
generating test cases. These tools improve efficiency. There are also, however, some limitations in that they
lack deeper context awareness, structured commenting, and explainability, making it hard for developers to
develop full faith in the suggestions of an Al. Nowadays, software development is becoming more and more
collaborative, and now more than ever, there will be a demand for an intelligent, explainable, and adaptive Al
assistant as much to recommend the code but also to add comprehension and process integration.

With this introduction, we offer the Al-Powered Pair Programming Assistant, a VS Code extension that
provides beyond simple code suggestions. Contextually relevant Al-driven explanations, structured code
comments, automated test case generation, and intelligent recommendations are available. Unlike
conventional Al assistants that primarily focus on auto-completion, this Al Pair Programming Assistant
extension ensures that developers not only receive optimized code suggestions but also gain a deeper
understanding of their code.

Among the strengths of this extension are its interactivity and adjustability. Developers get to choose
whether they see Al suggestions, request automatically generated comments, test case generation, or
explanations for specific code snippets to make Al assistance much freer, educational, and customizable. The
merger of all these features into a seamless workflow should provide an avenue through which developers
can write cleaner code and collaborate more effectively within development teams.

IJCRTBE02112 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 868

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882
Although the system is already in place, future development will improve Al precision, increase language

support, and improve debugging. Other improvement processes will include automated PR reviews, multi-

language support, and choices related to Al models, which will certainly make it much more user-friendly.

2 LITERATURE REVIEW

Artificial intelligence (Al) has influenced software development in that it automates coding, increases
efficiency, and optimizes code quality. Al-driven assistants such as GitHub Copilot [3] and Tabnine [4]
leverage machine learning models to offer real-time suggestions for code writing that assist developers in
writing cleaner code and more reliable code. Research indicates limitations in long-term context handling and
describing Al-suggested recommendations, resulting developers' trust problems [1][2]. Though strong at code
completion, they have weak integration with collaborative development processes and support for debugging.

Al-based pair programming tools seek to fill this gap by providing real-time code review, debugging
support, and security scanning. Research indicates that Al can identify vulnerabilities in code and impose best
practices, but current solutions lack contextual understanding and business logic knowledge [5] .Although Al
can improve productivity, developers still need to monitor and edit Al-suggested changes to guarantee
accuracy and preserve high-quality code.

Even with the advancements, Al coding assistants require more work on collaborative development
environments. Insufficiency in automated pull request (PR) reviews, restricted debugging explanations, and
poor workflow integration are areas of required research. Closing these research gaps will result in a stronger
Al-driven assistant that can give real-time contextual recommendations, automated PR reviews, and smart
debugging assistance, ultimately making pair programming a more efficient and streamlined process.

3 SYSTEM DESIGN

The Al-Powered Pair Programming Assistant is designed as a VS Code extension with a modular system
design to provide an easy interaction among the frontend, backend, and Al model. The system adheres to the
principle of modularity, with separate components to deal with varying functionalities while promoting
scalability and maintainability. The assistant is aimed at helping developers by offering Al-powered
suggestions, explanations, auto comments, and test case generation. The extension incorporates a WebView
interface which allows users to preview Al-generate suggestions without leaving the normal editing interface.
It also allows users to track interactions and star suggestions for use in the future. These operations are
facilitated by an SQL.ite database that stores interactions efficiently, allowing retrieval of stored suggestions
for re-use [6]. The backend, implemented with Node.js and Express.js, processes APl requests, data storage,
and communication between the frontend WebView and the Al model. The Gemini API is utilized as the
underlying Al engine to produce code-related insights with high-quality suggestions according to best
practices in programming [7].

A.FRONTEND

The frontend of the Al assistant is implemented with TypeScript and utilizes the WebView API of VS
Code to offer an interactive user interface [8]. The WebView serves as the primary interface for previewing
Al-generated suggestions, accessing the history of previous interactions, and managing starred suggestions.
When a developer selects a code block and requests an Al suggestion, the WebView dynamically renders the
AT’s response, allowing users to accept, modify, or reject the suggestion directly from the interface. The
WebView features two other tabs—History and Starred Suggestions—wherein developers are able to go back
to previous interactions and star significant Al-computed recommendations for future use. This allows
developers to reuse successful solutions and monitor the improvements in their coding processes. The frontend
talks to the backend through REST API calls, which enables smooth data querying and updates from the
SQL.ite database [6].

IJCRTBE02112 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] 869

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882
B.BACKEND

The backend is built with Node.js and Express.js [9], acting as the middleman between the VS Code
extension and the Gemini API. It controls the Al interactions, user request processing, and database
operations. The backend also provides API endpoints that enable the frontend to retrieve Al-generated
suggestions, write history logs, and retrieve starred recommendations. SQL ite database stores and handles the
past Al responses efficiently, supporting quick retrieval upon users revisiting their history or accessing starred
suggestions [6].

C. CORE FEATURES

The four core features used by the Al assistant are Preview Al Suggestion, Auto Comment, Explain Code,
and Generate Test Cases. The Preview Al Suggestion identifies the code used and gives optimized suggestions
as per syntax, refactoring skills, and optimum practices. Auto Comment creates comprehensible inline
comment to make reading and maintenance easier. Explain Code facilitates insight into function behavior and
logic provided by Al and makes complex program structures easy for developers to know. Generate Test
Cases provides auto generation of unit tests based on full code coverage of alternate execution paths.
Moreover, WebView interface also encompasses History and Starred Suggestions in order to enable users to
visit and reuse the Al-created content [8].

4 METHODOLOGY

The Al-Powered Pair Programming Assistant's development followed the Agile Software Development
Lifecycle (SDLC), ensuring iterative progress and continuous improvement based on real-time feedback. The
project was divided into sprints, each focused on implementing specific features, testing, and refining based
on developer input.

The process began with planning, where major goals were defined. These included integrating Al-assisted
code suggestions, building an interactive WebView interface for handling recommendations, and
implementing history persistence to manage suggestions over time. These goals formed the foundation for the
development cycle.

In the requirement analysis phase, key functionalities were identified, and a broad system architecture was
outlined. The aim was to enable scalable interaction between the Al engine and the development environment,
supporting seamless integration and future extensibility.

Design efforts focused on developing a stable frontend-backend architecture, structuring database storage
using SQLite, and outlining Al recommendation flows. Wireframes for-the WebView interface were also
created to provide a seamless user experience, allowing developers to preview, accept, or reject suggestions
efficiently.

During implementation, the frontend was built in TypeScript using the VS Code WebView API for real-
time interaction. The backend, developed in Node.js and Express.js, managed logic and requests, while
SQLite preserved historical data and starred suggestions. Gemini API integration enabled code analysis,
intelligent recommendations, explanations, and test generation.

The testing phase ensured stability through unit tests for backend components and Ul testing of the
WebView. Al suggestions were continuously evaluated, and feedback from developer and usability testing
helped ensure the assistant met real developer needs and aligned with typical workflows.

5 IMPLEMENTATION

The deployment of the Al-Powered Pair Programming Assistant is intended to enable seamless integration
between the VS Code extension, WebView interface, and backend database. The process starts with a
developer choosing a code block in VS Code and calling the Al assistant. The fundamental Al processing
logic, such as calls to the Gemini AP, is done directly in the extension.ts class for low-latency operations and
maintains all Al processing within the extension itself, without backend interaction. The assistant offers Al-
based suggestions, explanations, automated comments, and test case generation, which are all locally
processed and rendered in the respective Ul component, either the sidebar or an independent WebView.

The WebView is selectively utilized to render Al-created content, depending on the feature that is being
accessed. For user query response and Al-created code suggestions, the sidebar Ul shows the content in an
interactive manner so that the developers

IJCRTBE02112 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] 870

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

Al Pair Programming Workflow

fig.1. workflow diagram

can accept, change, or reject the suggestions in real time. A WebView is utilized.exclusively when lengthy
explanations of the code are necessitated. The History tab retains a copy of all prior Al-created suggestions,
allowing users to refer back to and recycle previous interactions. The Starred tab permits developers to reserve
critical Al-created suggestions for easy recall in subsequent sessions, enhancing efficiency and knowledge
accumulation.

The backend, developed with Node.js and Express.js, is purely used for storing and loading history and
starred suggestions. When a developer accesses a history or starred suggestion, the frontend WebView or
sidebar Ul requests the backend via an API request. The backend fetches the respective stored data in the
SQL.ite database and sends it back to the frontend. This provides an organized and efficient means of accessing
prior Al-generated responses with a lightweight Al processing flow in the extension itself.

The SQL.ite database also stores user interaction efficiently in terms of Al-driven responses together with
metadata like timestamps and accompanying code snippets. The developers are thereby able to track their Al-
based coding history systematically. Whenever the user selects an item in the history or a starred proposal,
the backend loads the data from storage and forwards it to the WebView or sidebar Ul to get re-remerged into
the development process effortlessly.

The workflow diagram (Fig(1)) shows the interaction between extension.ts, WebView, and backend
services. Upon a user choosing a code block, extension.ts handles the Al request and sends it to the Gemini
API. After the Al has produced a response, it is shown in the corresponding Ul component—either the sidebar
for suggestions or a standalone WebView for full explanations. When a suggestion is starred or saved in
history, the frontend makes a request to the backend, which stores the entry in the SQLite database. When
users subsequently return to a saved suggestion, the backend fetches and returns the data to the WebView or
sidebar Ul for rendering.

By following this task-oriented workflow, the Al assistant provides real-time Al-based insight, ongoing
history tracking, and reusable starred suggestion, which together greatly boost the productivity of the
developers and improve the quality of the code. The decoupling of Al requests from extension.ts, presentation

IJCRTBE02112 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 871

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

from WebView, and database from backend guarantees lightweight, efficient, and integrated-Al processing
throughout the VS Code extension itself.

6 RESULTS

The Code Actions Feature offers interactive options like Preview Al Suggestion, Explain Code, Generate
Tests, and Auto-Commenting. Developers can select a code snippet and choose an action, allowing Al to
provide refactoring suggestions, detailed explanations, automated test case generation, and meaningful
comments to enhance code clarity and maintainability.(fig.2.)

fig.2. code actions provided
The Explanation Feature allows developers to highlight a code snippet and ask questions like "What does
this function do?". The Al then analyzes the code and provides a detailed explanation, enhancing readability
and understanding, as illustrated in figure 3.

fig. 3. explanation of the code

fig.4. history data getting stored in a database

IJCRTBE02112 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 872

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

. .

Al Suggested Code

W Explanation [Chek 10 Expans)

fig.5. suggestion of a selected code

The Code Suggestion Feature analyzes the selected code and provides real-time improvements, such as
refactoring and performance optimizations. Developers can review these Al-generated suggestions and
choose to accept, modify, or reject them, as shown in Figure 5.

fig.6. auto-commenting of the code
The Auto-Commenting Feature[fig.6] adds meaningful comments to code, improving readability by
explaining logic, functions, and complex statements automatically.

7 FUTURE ENHANCEMENTS

Looking into the future for this Al-powered pair programming assistant, we foresee the integration of
automated PR reviews into GitHub for better code quality assessment and smoother collaborative workflows.
This tool should also support multiple programming languages in order to better interface with developers
operating in various technology stacks. With the option for users to choose between various Al models, it will
allow them to better weigh their performance, accuracy, and privacy concerns. Each of these enhancements
will need separate research, consideration, and systematic implementation. These enhancements will move
the system toward the goal of an integrated Al-assisted complete software development tool that will require
further refinement, evaluation, and iterative enhancement.

8 CONCLUSION

To incorporate Al in pair programming, one has to utilize its ability to improve software development with
improved accuracy and efficiency. Al's ability to learn continuously helps write cleaner, more stable code
while assisting developers at different skill levels. But achieving the right balance between human ingenuity
and Al support is vital, as it involves both creative problem-solving and analytical thinking. Surely, Al
progress will continue to influence the future of smart programming assistants, creating an evolving and
harmonious relationship between developers and technology.

IJCRTBE02112 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 873

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

REFERENCES

[1] Wang, X, Li, Y., & Chen, Z. (2024). Enhancing Al-assisted coding: Context-aware
recommendations and limitations. ACM DigitalLibrary.
https://dl.acm.org/doi/10.1145/3665348.366533

[2] Zhang, J., Kumar, P., & Brown, L. (2023). Advancements in Al pair programming: A comparative
study of code generation models.arXiv. https://arxiv.org/abs/2306.05153

[3] GitHub. (2023). Working with GitHub Copilot as your Al pair programmer. Dev.to.
https://dev.to/github/working-with-github-copilot-as-your-ai-pair-programmer-4997

[4] Tabnine. (2023). Tabnine documentation: Al-powered coding assistant. Tabnine Docs.
https://docs.tabnine.com/main

[5] IEEE. (2024). Al-driven code analysis: Best practices and security considerations. IEEE Xplore.
https://ieeexplore.ieee.org/abstract/document/10493185

[6] SQLite. (2023). SQLite documentation: Architecture, features, and usage. SQL.ite.
https://www.sqlite.org/docs.html

[7] Google Al. (n.d.). Google Gemini API documentation. Retrieved from Google Al (if publicly
available).

[8] Microsoft. (2023). VS Code WebView API documentation: Creating web-based Ul in extensions.
Visual Studio Code Docs. https://code.visualstudio.com/api/extension-quides/webview

[9] Express.js. (2023). Express.js documentation: Fast, unopinionated, minimalist web framework for
Node.js. Express.js Docs. https://expressjs.com/

IJCRTBE02112 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 874

http://www.ijcrt.org/
https://dl.acm.org/doi/10.1145/3665348.366533
https://arxiv.org/abs/2306.05153
https://dev.to/github/working-with-github-copilot-as-your-ai-pair-programmer-4997
https://docs.tabnine.com/main
https://ieeexplore.ieee.org/abstract/document/10493185
https://www.sqlite.org/docs.html
https://code.visualstudio.com/api/extension-guides/webview
https://expressjs.com/

