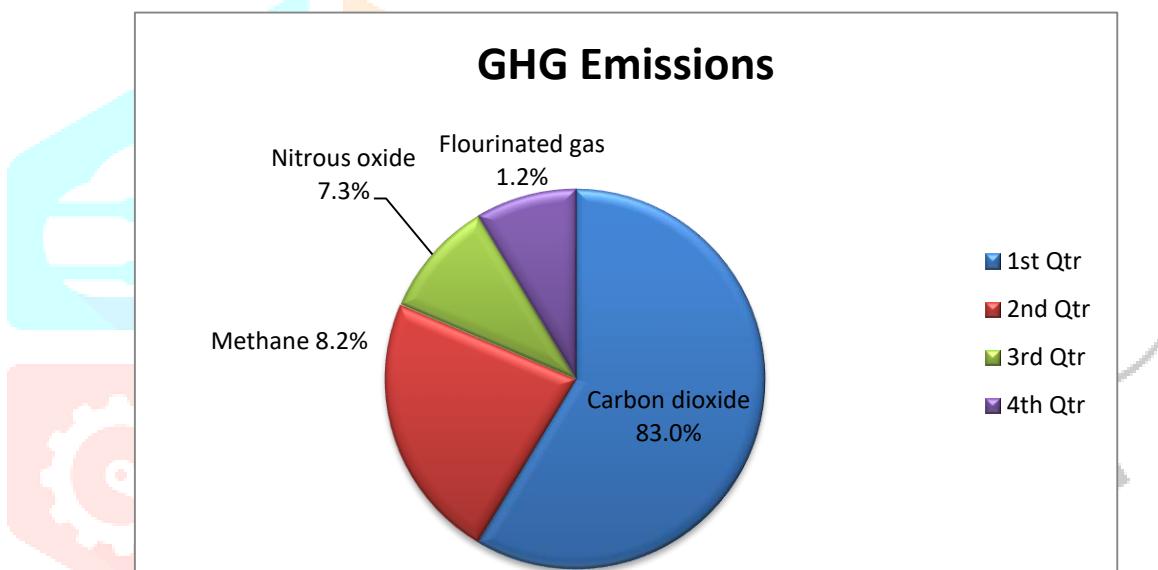


Controlling Of Greenhouse Gases (Ghg) Emissions Caused By Transportation

Dr.Elrafie A.A.Allah¹,Dr.A.Elhameed.M.O.Kasif², Prof.Yasir .A.Allah.M², Azhari A. Ali. Tgi²

^{1,2} Department of Chemical Engineering, Faculty of Engineering, University
of ElImam ELMahdi, Kosti, Sudan

Abstract


The aim of this research to control of GHG emissions from transportation that caused as a resulting of combustion of fossil fuels inside vehicle engine. GHG emissions contain types of gases that produced from burning fossil fuel such as carbon dioxide (CO₂), methane (CH₄), carbon monoxide (CO) , nitrous oxide (N₂O), sulfur hexafluoride (SF₆), which distributed and trap into atmosphere caused high temperature named as (global worming). CO₂ is the most common unwanted gas formed about 83% of total GHG into atmosphere, since 1 Kg of Fuel produces about 3Kg CO₂. The objective of research to reduce GHG pre-combustion and during combustion of fuels, measuring and calculation fuel emissions as smart steps using different methods as emissions factors, carbon footprint, with review materials and operation to reduce emissions using tools with all databases and resources of transport sector to analyzing and estimate approximate over all GHG emissions impact occurs due to growth in developing world therefore arrange mobility management of strategies to address fuel consumption and emissions in the future depending on upon number of factors and use suitable tools to analyzing and measuring any change in environmental impact to avoid consequences of GHG emissions in the future. Finally provide the travelers with all information to use public transportation that will be reduced 86% of all emissions caused by transportation.

Key wards: GREENHOUSE ,GASES (GHG) EMISSIONS , TRANSPORTATION

1. Introduction

Greenhouse gas emissions (GHG) generated from transport(including land , railways, sea-shipping and Air-flight) are among the fastest growing in the world , greenhouse gas emissions is serious real problem facing our world and whole the planet today , it is one of the biggest challenges ever ,something more dangerous threaten human being , pollutant the atmosphere , increasing temperature degrees that are effecting on melting snows , destroying plants, kill animals, witnessing more floods , all these collections events call ('change climate'). Change climate as a result of increased concentrations of greenhouse gases

(GHGs) in the atmosphere. Economic development is required for poverty reduction, at the same time; development could also lead to increased greenhouse gas (GHG) pollution caused by the resulting growth in vehicular traffic, energy use, and other activities. Transport is a key facilitator of economic well-being worldwide and is likely to continue to grow to meet increasing demand for decoupling GHG emissions from the transport sector and economic growth or at least lowering the GHG intensity of future transport growth represents the key challenge and will require departure from the “business as usual” policies in the transport sector. The transportation system is the second-largest contributor to GHG. The report states “While transportation planning can play an important role in contributing to GHG reductions, transportation agencies have limited control over many of the factors that influence GHGs, including changes in vehicles and fuels. Reducing global transport greenhouse gases (GHG) emissions will be more challenging since the continuing growth in financial investments increasing.

Fig (1) types of GHG by type of Gas

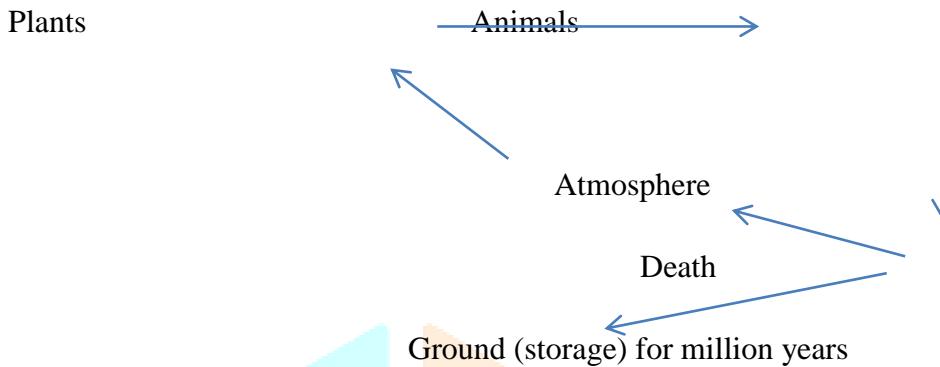

Greenhouse gases contain many dangerous gases as shown in table (2-1) below:

Table (2-1) components of GHG Gases

Greenhouse gas	Chemical formula	Global Warming Potential
Carbon Dioxide	CO ₂	1
Methane	CH ₄	21
Nitrous oxide	N ₂ O	310
Hydro fluorocarbons	HFCs	140 (C ₂ H ₄ F ₂) to 11700 (CHF ₃)
Per fluorocarbons	PFCs	5700 (CF ₄) to 11900 (C ₂ F ₆)
Sulphur hexafluoride	SF ₆	23900

2-1 Carbon Cycles:

Plants absorb CO₂ from the air; Animals eat plants that contain CO₂, so when Animals or Plants die! CO₂ released into the atmosphere or ground, see figure (2-2) below:

Fig (2) review Carbon Cycle

2-3 Plant more trees (Photosynthesis)

In this operation trees use CO₂ to make glucose release oxygen to atmosphere as below

Take place in plant leaves.

Chlorophyll in cells takes in sunlight.

CO₂ in atmosphere enters leaves through stoma in epidermis;

Water enters through roots.

Oxygen also produced – this is how most of our oxygen is produced.

Glucose changed to starch, cellulose, and fats, combined with nitrates to make amino acids, proteins.

Photosynthesis /respiration keep the balance of oxygen (20%) and CO₂ (0.3%).

3. Materials & Methodology

3-1 Methodology

Currently, data resources and tools to analysis and contain GHG impact in the transport sector are available to address, measurable and analysis needs. As a result, this study develops a new set of GHG impact analysis tools, and calculation emissions and reviews existing global research literature on CO₂ estimation methods and emissions factors for various transportation control types and develops a new set of CO₂ impact analysis tools, since CO₂ is not danger comparing with methane but CO₂ is most common with high percentage about 83% of total GHG emissions. These methods and factors are synthesized and applied to data from operations reports, feasibility studies, and other sources for derive indicative CO₂ footprint and savings indicators by operation type, these intensity indicators are applied to a database of transport

projects to estimate the approximate overall GHG impact and update any change in emissions factor based on type of fuel.

3-2 Calculation Emissions of Fuels types

3-2-4 Calculation:

For every kg of gasoline burned in an automobile, calculate the amount of CO₂ produced?

Gasoline is octane (C₈H₁₈) from equation below

1kmole (gas) of C₈H₁₈ gives 8kmol CO₂

$$M \text{ C}_8\text{H}_{18} = 114 \text{ kg/kmol}$$

$$M\text{CO}_2 = 44 \text{ kg/kmol}$$

So 1kg gasoline produces

$$1\text{kmole C}_8\text{H}_{18} \rightarrow 8\text{kmol CO}_2$$

$$114 \text{ kg/kmol C}_8\text{H}_{18} \rightarrow 8(44) \text{ kg/kmol}$$

So 1kg gasoline produces

$$8 \times 44 / 114 = 3.09 \text{ kg CO}_2$$

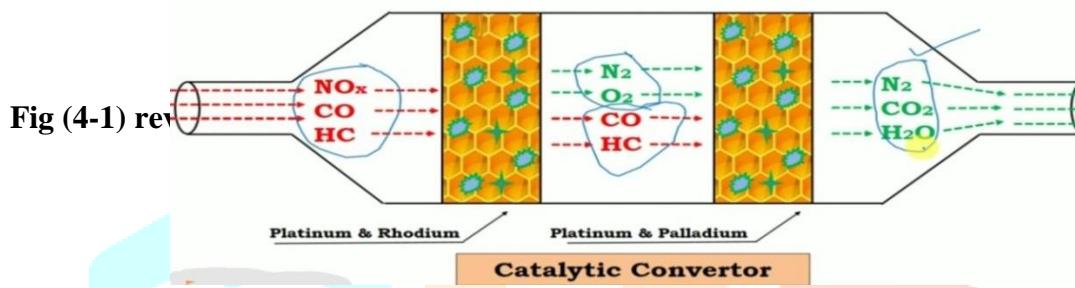
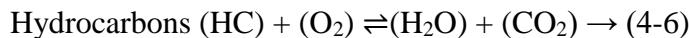
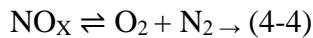
4. Results & Discussion

4-1 Fuel Combustion inside Engine Vehicles;

4-1-1 Complete ('ideal') Fuel Combustion;

Air – 21% O₂, 79% N₂, or (O₂ = 3.76N₂) basis on molar

Fuel: C_aH_b, gasoline (C₈H₁₈): diesels (C₁₂H₂₃)




Under ideal condition stoichiometric combustion fuel reaction products CO₂, H₂O, N₂, represent the equation

4-1-3 reduction emission; using catalytic convertor;

So to fix this harm gases we use catalytic convertor such as (Platinum & Rhodium, palladium & Palladium) to reduce GHG emissions in exhaust pipeline in vehicles.

Respectively in the first chamber as below in the fig (4-1) below

4-2 Mechanical problems inside Vehicles;

4-2-1 Causes of High (HC) – Unburned fuel;

- Rich A/F mixture
- Defective O₂ sensor
- Leaky fuel Injector
- Clogged Air filter

4-2-5 Defective or worn Ignition components;

- Ignition Coil

4-4 discussion results

4-4-1 Standard Emissions control for Passing Vehicle;

Table (4-1) review standard emissions control system

ECS	Result	ECS	Result
PCV ^A	N/A	Thermostatic Air Cleaner ^G	Pass
Catalytic Convertor ^B	Pass	Air Injection ^H	N/A
EGR Visual ^C	Pass	Sensors/Switches ^I	Pass
Fuel Cap functional ^D	Pass	Ignition Timing ^J : 14BTDC	Pass
Fuel Cap Visual ^E	Pass	Wiring to Sensors ^K	Pass
Spark Controls ^F	N/A	Fill pipe Restrictor ^L	Pass

Every part of engine is important to vehicles health in some way neglecting to fix a single worn out could lead to bigger.

4-4-2 PCV^A Valve;

Stands for positive crankcase ventilation, it is one-way valve attached to the crankcase to holds motor oil, it located bottom of engine to protect engine, from gases produces from burn fuel sneak in between engine mixed with motor oil and

Table (4-2) review ASM Emissions Test Result for vehicle

		CO ₂ %	O ₂ %	HC (PPM)			CO%			NO (PPM)			
Test time	RP M	MEA S	MEA S	MA X	AV E	ME AS	MA X	AV E	MEA S	MA X	AV E	ME AS	Result
15mp h	1511	13.7	0.1	105	4	11	1.5	0.0	0.01	406	14	0	PASS
25mp h	1476	13.5	0.5	29	4	4	1.7	0.0	0.01	149	19	0	PASS
MAX= Maximum Allowable Emissions, AVE= Average Emissions for passing, MEAS= Amount Measured													

5. Conclusion & Recommendations

5-1 Conclusion;

GHG emissions from the transportation sector are projected to rise due to ongoing reliance on fossil fuels and increases in vehicle miles traveled.

Also expected due to growth in developing world therefore arrange mobility management of strategies to address fuel consumption and emissions in the future depending on upon number of factors and use suitable tools to measure environmental consequences of transportation that will remain important.

Finally provide the travelers with all information to use public transportation.

5-2 Recommendations;

- Controlling emissions must be done at sources of emissions that will be more efficiently.
- Use public transportation that will be reduced 86% of all emissions caused by transportation.
- Encourage investors and companies to invest in CO₂.
- Plant more trees (Photosynthesis)

References:-

[1] Association of American Railroads (2011), Freight Railroads Help Reduce Greenhouse Gas Emissions. April 2011. Available at <http://www.aar.org/AAR/~/media/aar/Background-Papers/Freight-RR-Help-Reduce-Emissions.ashx>

[2] Asian Development Bank (2009), Technical Note on Transportation and CO₂ Emissions: Folding Them into a Unified View for Forecasts, Options Analysis and Evaluation.

[3] Brigman N, Shah MI, Falk-Pedersen O, Cents T, Smith V, De Cazenove T, et al. Results of amine plant operations from 30 wt% and 40 wt% aqueous MEA testing at the CO₂ Technology Centre Mongstad. Energy Procedia. 2014; 63:6012-6022. DOI: <https://doi.org/10.1016/j.egypro.2014.11.635>.

[4] Enaasen Flø N, Knuutila H, Kvamsdal HM, Hillestad M. Dynamic model <https://doi.org/10.1016/j.ijggc.2015.07.003>

[5] http://eur-lex.europa.eu/LexUriServ/site/en/com/2005/com2005_0459en01.pdf

Information about authors

Elrafie A. A. Allah Dr. Associate Professor, Department of Chemical Engineering, Faculty of Engineering & Technical Studies, University of El Imam El Mahdi, Kosti, P. O. box 209 Sudan, rafieah@gmail.com

Yasir A. Mohamed Dr., Professor, Department of Chemical Engineering, Faculty of Engineering, University of El Imam El Mahdi, Kosti, P. O. box 209 Sudan, yasir13000@yahoo.com

A. Elhameed M.O. Kasif Dr. Associate Professor, Department of Food Processing Engineering, Faculty of Engineering and Technical Studies, University of El Imam El Mahdi, Kosti, P. O. box 209 Sudan, elkashify@hotmail.com

Azhari A. Ali. Tgi Lecturer, Department of Chemical Engineering, Faculty of Engineering & Technical Studies, University of El Imam El Mahdi, Kosti, P.O. box 209 Sudan, Mninhummaida@gmail.com

