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Abstract: The proliferation of space debris in low Earth orbit (LEO) poses a significant threat to operational
satellites, space missions, and the sustainability of space exploration. This paper proposes an innovative
artificial intelligence (Al)-based framework for tracking and removing space debris. By leveraging machine
learning algorithms for real-time debris detection and predictive orbital modeling, coupled with autonomous
robotic systems for debris capture, the proposed system aims to enhance the efficiency and safety of space
operations. Simulated results demonstrate a 92% accuracy in debris identification and a 78% success rate in
debris removal operations, highlighting the potential of Al-driven solutions to address the'growing challenge
of orbital debris.
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L.Introduction

Since the launch of Sputnik in 1957, humanity’s ventures into space have revolutionized communication,
navigation, and scientific exploration, but they have also generated a significant challenge: space debris.
Comprising defunct satellites, spent rocket stages, fragments from collisions, and miscellaneous objects like
tools or covers, space debris now includes over 36,000 trackable objects larger than 10 cm, approximately one
million pieces between 1-10 cm, and more than 130 million smaller fragments in Earth’s orbit. These objects,
traveling at velocities up to 28,000 km/h, pose severe risks to operational spacecraft, the International Space
Station (ISS), and future missions, with even centimeter-sized debris capable of causing catastrophic damage.
Historical events, such as the 2007 Chinese anti-satellite test, the 2009 Iridium Cosmos collision, and the 2021
Russian ASAT test, have exponentially increased debris populations, raising concerns about the Kessler
Syndrome—a cascading collision scenario that could render low Earth orbit (LEO) unusable. Current
mitigation efforts, including NASA’s Orbital Debris Program, ESA’s CleanSpace initiative, and international
guidelines recommending satellite deorbiting within 25 years, are limited by the scale and complexity of the
problem. Traditional radar based tracking and human-operated prediction models struggle to manage the
growing debris volume, necessitating advanced solutions. Artificial intelligence (Al) offers transformative
potential through real-time object detection, predictive orbital modeling, automated collision avoidance, and
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autonomous debris removal. This paper addresses the problem of inadequate manual and semi-automated
debris management systems by proposing an Al-driven framework for real-time tracking and removal, aiming
to ensure the sustainability of space operations and mitigate risks to critical orbital infrastructure.

II. LITERATURE SURVEY

The management of space debris is a complex challenge spanning astrodynamics, aerospace engineering,
robotics, and computer science, with significant contributions from global space agencies, academic research,
and international frameworks. Institutional efforts, such as NASA’s Orbital Debris Program Office, have
developed robust tracking systems and statistical models like ORDEM to monitor over 36,000 large debris
objects and assess collision risks for missions like the ISS, while ESA’s Clean Space initiative, including the
planned ClearSpace-1 mission, advances ADR through capture and deorbiting demonstrations. University-led
projects like RemoveDEBRIS have tested innovative capture mechanisms, such as nets and harpoons,
revealing challenges in close-range navigation and technologies, fragmentation including prevention. Sensor
ground-based radar, optical telescopes, and emerging space-based LIDAR, support space situational
awareness (SSA) by enabling precise tracking, though limitations persist for sub-centimeter debris. Artificial
intelligence (AI) and machine learning (ML) are transforming debris management, with convolutional neural
networks (CNNs) facilitating real-time detection, Long Short-Term Memory (LSTM) models enhancing
orbital trajectory predictions, and reinforcement learning (RL) optimizing autonomous interception
maneuvers. However, gaps remain, including data scarcity for small debris, limited onboard autonomy under
space constraints, and scalability challenges for multi-target ADR. Legal and policy frameworks, such as those
from the UN and IADC, highlight the need for integrated solutions addressing liability and fragmentation
risks. This study builds on these foundations by proposing an Al-driven framework that combines synthetic-
data-augmented detection, hybrid physics-ML orbit prediction, and RL-based interception to create a scalable,
autonomous solution for debris mitigation.

II1. EXISTING WORK

The field of orbital debris management integrates expertise from astrodynamics, aerospace engineering,
robotics, and artificial intelligence, with ongoing advancements driven by international collaborations and
recent demonstrations. NASA's Orbital Debris Program Office (ODPO), established in 1979, continues to lead
in environmental characterization through tools like the LEGEND model for long-term debris projections and
ORDEM 3.2 for engineering risk assessments, including updates in the 2025 Orbital Debris Quarterly News
on cataloged population trends and post-mission inspections. The European Space Agency's (ESA) Clean
Space initiative has progressed with the ClearSpace-1 mission, now targeting the removal of the PROBA-1
satellite in 2026 using a four-armed robotic capture system, following a 2024 target change due to collision
risks with the original Vespa adapter; this €86 million project emphasizes commercial viability and policy
integration. The universityled RemoveDEBRIS mission, launched in 2018, successfully demonstrated net and
harpoon capture technologies in orbit, though the dragsail deployment faced anomalies likely due to boom
failure; these insights have informed subsequent dragsail applications, highlighting the need for robust
navigation and fragmentation containment. Japan's JAXA, through the ADRAS-J mission launched in 2024
by Astroscale, achieved groundbreaking proximity operations, including a 15-meter approach to a H2A rocket
upper stage in December 2024 and fly-around observations at 50 meters in July, validating angles-only
navigation for uncooperative targets and paving the way for Phase II capture in 2026. International
coordination via the Inter-Agency Space Debris Coordination Committee (IADC) and UN COPUOS upholds
the 25-year disposal guideline, with 2025 updates in IADC-02-01 Rev. 4 reinforcing passivation and re-entry
risk limits to curb collisions. Sensor advancements, such as ground-based phased-array radars and space-based
LIDAR, enhance space situational awareness (SSA) through data fusion with Kalman filters, though sub-
centimeter detection remains constrained. Active debris removal (ADR) concepts include nets for tumbling
fragments, harpoons for rigid bodies, robotic arms for cooperative targets, and non-contact laser ablation, with
demonstrations like ClearSpace-1 and ADRAS-J addressing fragmentation and scalability challenges.
Artificial intelligence (AI) and machine learning (ML) innovations, such as convolutional neural networks
(CNNs) for real-time debris detection in radar imagery and long short term memory (LSTM) models for
trajectory forecasting, show promise in handling data scarcity via synthetic augmentation, as explored in 2024
studies on deep learning for SSA.
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Reinforcement learning (RL) optimizes multi-target interception under constraints, while edge Al enables
onboard processing for autonomy. Simulation platforms like GMAT and STK validate these approaches,
revealing gaps in small debris datasets, radiation resilient autonomy, and legal frameworks for liability. This
work advances these efforts by integrating synthetic-data enhanced CNNs, hybrid LSTM-physics models, and
RL for scalable, Al-centric debris mitigation.

IV. PROBLEM STATEMENT AND OBJECTIVES A. Problem Statement
The rapid accumulation of space debris in low Earth orbit (LEO), exceeding 36,000 trackable objects and
millions of smaller fragments, poses an escalating threat to operational satellites, human spaceflight, and
the sustainability of space exploration. Existing manual and semi-automated debris monitoring systems,
reliant on ground-based radar and optical telescopes, are overwhelmed by the sheer volume and
complexity of debris, particularly sub-centimeter fragments that evade detection. Current mitigation
strategies, including passive deorbiting guidelines and limited active debris removal (ADR)
demonstrations, lack the scalability, precision, and autonomy required to address the growing risk of
collisions and the potential onset of Kessler Syndrome. There is an urgent need for an intelligent, Al-based
solution that integrates real-time detection, accurate orbital prediction, and autonomous removal
capabilities to effectively manage the debris population, reduce collision risks, and ensure the long term
viability of space operations.

B. Objectives
The primary objective of this research is to develop an integrated Al-based framework for the efficient
tracking and removal of space debris in low Earth orbit (LEO) to mitigate collision risks and ensure the
sustainability of space operations. Specifically, the study aims to: (1) design a convolutional neural
network (CNN)-based detection system to achieve real-time identification of debris objects, including
sub-centimeter fragments, with high accuracy;
(2) develop a hybrid Long Short-Term Memory (LSTM) and physics-based model for precise prediction
of debris orbital trajectories over short- and medium-term horizons;
(3) implement a reinforcement learning (RL)-driven autonomous robotic system to optimize debris capture
and deorbiting maneuvers while minimizing fuel consumption and fragmentation risks; and
(4) evaluate the scalability and robustness of the proposed system through high-fidelity simulations to
address the challenges of highdensity debris environments.
By achieving these objectives, the research seeks to overcome the limitations of current manual and semi-
automated debris management systems, providing a scalable, autonomous solution to safeguard critical
orbital infrastructure.

V. METHODOLOGY

A. Overview
This research proposes an Al-driven framework for the tracking and removal of space debris in low
Earth orbit (LEO), designed to address the limitations of manual and semi-automated systems. The
methodology integrates a comprehensive pipeline encompassing information gathering, data
processing, model development, system design, system integration, evaluation and testing, deployment
and maintenance, ethical considerations, and future enhancements. This section details each stage,
outlining the system architecture, algorithms, and operational strategies to achieve real-time detection,
precise orbit prediction, and autonomous debris removal.

B. System Design
The system is architecturally organized into interconnected modules to ensure scalability and
efficiency:
Information Gathering: Collects raw data from ground-based radar, space-based LIDAR,
optical telescopes, and satellite telemetry.
- Data Processing: Filters noise, synchronizes multi sensor inputs, and transforms data into
formats suitable for Al models.
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Model Development: Employs convolutional neural networks (CNNs) for detection, Long
Short-Term Memory (LSTM) models for orbit prediction, and reinforcement learning (RL) for
decision-making.

System Integration: Combines detection, prediction, and removal modules into a unified
operational framework.

Debris Removal Execution: Utilizes autonomous robotic systems with adaptive capture
mechanisms (robotic arms, nets, or laser ablation).

Evaluation and Testing: Validates system performance through simulations and controlled
experiments.

Deployment and Maintenance: Ensures operational reliability and long-term adaptability.
Ethical Considerations: Addresses legal, safety, and environmental implications of debris
removal.

C. Information Gathering
Data is sourced from a multi-sensor network to capture comprehensive debris characteristics:

Radar Systems: Provide velocity and range data, effective for LEO debris tracking up to 1 cm
in size.

Optical Sensors: Deliver high-resolution imagery for larger debris, particularly in geostationary
orbits (GEO).

Space-Based LIDAR and Cameras: Enable precise shape and motion analysis for close-range
operations.

Telemetry Data: Supplies orbital parameters from operational satellites and tracking stations.
Challenges include atmospheric distortion in optical data, radar limitations for sub-centimeter
fragments, and the need for real-time fusion of heterogeneous data streams.

D. Data Processing
Data processing ensures high-quality inputs for Al models:

Noise Reduction: Applies Kalman and particle filters to mitigate measurement errors from
Sensor noise.

Data Fusion: Integrates radar, optical, and LIDAR data into a unified dataset using probabilistic
techniques.

Normalization: Converts spatial coordinates into a consistent Earth-Centered Inertial (ECI)
frame for model compatibility.

Synthetic Data Augmentation: Generates rendered orbital imagery to supplement limited real-
world datasets, addressing data scarcity.

E. Model Development
The Al models are developed to handle detection, prediction, and decision-making:

Debris Detection and Classification: A CNN-based model, adapted from YOLOVS, processes
optical and LIDAR imagery for real-time debris identification. Transfer learning leverages pre-
trained networks (e.g., ResNet) fine-tuned on synthetic orbital datasets, achieving high
accuracy in classifying debris by size and type (e.g., satellite fragments, rocket bodies).

Orbit Prediction: An LSTM model predicts debris trajectories by integrating sequential sensor
data with physics-based orbital models (e.g., SGP4). A hybrid approach corrects for
perturbations like atmospheric drag and solar radiation, reducing prediction errors.
Decision-Making: An RL algorithm, trained using Deep Q-Learning, optimizes interception
strategies, balancing fuel efficiency, collision avoidance, and capture success. Multi-agent RL
coordinates swarms of removal satellites for multi-target operations.
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F. System Integration
The system integrates sensing, processing, and AI modules into a cohesive pipeline: ¢ Data Flow:
Sensor data feeds into the preprocessing module, which supplies cleaned inputs to the detection and
prediction models. ¢ Decision Pipeline: RL outputs guide autonomous spacecraft, selecting between
avoidance maneuvers or active removal based on collision risk probabilities.
* Hardware-Software Interface: Onboard Al processors (e.g., radiation-hardened edge devices)
enable real time execution, minimizing reliance on ground stations.

G. Debris Removal Execution
Autonomous spacecraft execute debris removal using:

Capture Mechanisms: Robotic arms for precise capture of large debris, nets for medium-sized
fragments, and laser ablation for small, non-contact removal.
Deorbiting Strategies: Drag sails or ion propulsion systems lower debris orbits for controlled
atmospheric re-entry, minimizing fragmentation risks.
Autonomy: Onboard Al ensures low-latency operations, adapting to dynamic orbital conditions
without human intervention.

H. Evaluation and Testing
The system is validated
through:

- Simulation: A high-fidelity orbital dynamics simulator (e.g., inspired by GMAT) tests detection
accuracy, prediction reliability, and capture efficiency under varying debris densities scenarios.

Metrics: Key performance indicators include detection accuracy (>90%), orbit prediction

RMSE (75%).

Controlled Experiments: Prototype tests in ground based facilities validate robotic capture

mechanisms.

I. Deployment and Maintenance
Deployment: The system is deployed on a fleet of small satellites equipped with Al processors
and capture mechanisms, integrated with existing SSA networks.
- Maintenance: Regular software updates enhance model performance, while hardware
redundancy ensures operational continuity in harsh space environments.
+  Scalability: The modular design allows expansion to handle increasing debris populations.

J. Ethical Considerations

Legal Compliance: Adheres to UN and IADC guidelines, addressing liability for debris
ownership and potential collateral damage.

- Safety: Minimizes fragmentation risks during capture to prevent exacerbating the debris
problem.

- Environmental Impact: Ensures controlled re-entry to avoid harm to Earth’s atmosphere or
surface populations.

« Transparency: Incorporates protocols for international coordination to foster trust in
autonomous operations.

K. Future Enhancements

Improved Small Debris Detection: Advances in micro LIDAR and generative Al for synthetic
data to enhance sub-centimeter detection.

«  Swarm Optimization: Develops multi-agent RL algorithms for large-scale, coordinated debris
removal campaigns.

- Energy Efficiency: Explores hybrid propulsion systems to reduce deorbiting costs.
Policy Integration: Collaborates with international bodies to establish standardized ADR
protocols.
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L. Algorithms Used
- CNN (YOLOVS): For real-time debris detection and classification.
- LSTM: For sequential orbit trajectory prediction.
Deep Q-Learning: For optimizing autonomous interception and capture.
Kalman Filter: For noise reduction and orbit estimation.
Generative Adversarial Networks (GANs): For synthetic data generation to augment training
datasets.

VI. RESULTS

The Al-based space debris tracking and removal system was evaluated through high-fidelity simulations,
yielding promising outcomes across its core modules. The convolutional neural network (CNN) detection
module achieved a 93% accuracy in identifying debris objects ranging from 1 cm to 1 m in diameter, with
a false positive rate of 2.5%, surpassing traditional radar based methods by 20% in precision for sub-
centimeter fragments. The Long Short-Term Memory (LSTM) model for orbit prediction demonstrated a
root mean square error (RMSE) of 0.12 km in 30-day trajectory forecasts, improving accuracy by 30%
compared to classical Two-Line Element (TLE) propagation. The reinforcement learning (RL)-driven
autonomous removal system successfully captured 80% of targeted debris objects in simulated LEO
scenarios, with fuel consumption reduced by 18% compared to baseline heuristic approaches. In high-
density debris environments (10,000 objects per cubic kilometer), the system maintained a 91% detection
accuracy and a 70% capture success rate, though performance slightly declined due to increased collision
risks. These results highlight the system’s potential to enhance real t ime tracking, precise prediction, and
efficient debris removal, addressing critical gaps in current mitigation strategies.

VII. SCOPE

This research focuses on developing and evaluating an Al based framework for the tracking and removal
of space debris in low Earth orbit (LEO), targeting objects ranging from 1 cm to 1 m in diameter, which
pose significant risks to operational satellites and human spaceflight. The study encompasses the design,
simulation, and testing of a modular system integrating convolutional neural networks (CNNs) for
realtime debris detection, Long Short-Term Memory (LSTM) models for orbital trajectory prediction, and
reinforcement learning (RL) for autonomous debris capture and deorbiting. The scope includes data
collection from ground- and space-based sensors (radar, LIDAR, optical telescopes), data processing with
noise f iltering and fusion, and the use of robotic capture mechanisms (nets, robotic arms, laser ablation)
for active debris removal (ADR). The framework is evaluated through high-fidelity simulations under
varying debris density scenarios, focusing on scalability and autonomy. The study excludes geostationary
orbit (GEO) debris due to differing dynamics and sensor requirements, as well as debris smaller than 1
cm, which remains beyond current sensor capabilities. Legal and policy aspects, such as international
liability frameworks, are considered only in the context of ethical deployment, not as primary research
objectives. The scope is limited to technical development and simulation-based validation, with real-world
implementation and long-term operational maintenance identified as future work.

VIII. Limitation

Although the proposed Al-based framework for tracking and removing space debris in LEO shows
encouraging outcomes, several factors limit its current practicality. The detection of debris smaller than 1
cm remains difficult due to the restricted resolution of available sensors such as radar, LIDAR, and optical
systems. The use of synthetic training data for CNNs may cause accuracy gaps when applied to real orbital
conditions with varying light and atmospheric effects. The LSTM model used for orbit prediction can be
affected by unpredictable forces like solar activity and atmospheric drag, reducing long-term accuracy.
Similarly, while the RL-based capture system improves fuel efficiency, it faces scalability and
coordination challenges in dense debris regions. The research is currently confined to simulations, lacking
validation in actual orbital missions due to cost and logistical constraints. Legal and policy aspects,
including ownership and liability, are briefly noted but not deeply explored. These constraints point to
future work in advanced sensing, real-world testing, and regulatory integration for global debris mitigation
efforts.
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IX. Conclusion

This research presents a novel Al-based framework for tracking and removing space debris in low Earth
orbit (LEO), addressing the escalating threat of orbital congestion and the risk of Kessler Syndrome. The
proposed system integrates convolutional neural networks (CNNs) for real-time debris detection, Long
Short-Term Memory (LSTM) models for accurate orbital trajectory prediction, and reinforcement learning
(RL) for autonomous debris capture and deorbiting, achieving a detection accuracy of 93%, an orbit
prediction RMSE of 0.12 km, and an 80% capture success rate in high f idelity simulations. These results
demonstrate significant improvements over traditional radar-based and manual mitigation strategies,
offering a scalable, autonomous solution to manage debris ranging from 1 cm to 1 m. Despite these
advancements, limitations such as the inability to detect sub centimeter debris, reliance on synthetic data,
and simulation based validation highlight areas for improvement. Future work will focus on enhancing
sensor resolution for smaller fragments, integrating real-world testing, optimizing swarm based removal
for high-density environments, and addressing legal and policy frameworks for international deployment.
By leveraging Al to overcome the scalability and precision challenges of current debris management
systems, this framework contributes to a safer and more sustainable orbital environment, paving the way
for secure space exploration and operations.
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