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Abstract:  The synthesis and characterization of nano ferrites have emerged as critical research areas due to 

their vast potential in cutting-edge technologies. Their exceptional electrical and magnetic properties—

strongly shaped by the synthesis technique—enable a broad spectrum of advanced applications. This review 

highlights and compares a variety of synthesis methods, including sol-gel, auto-combustion, self-combustion, 

co-precipitation, reverse micelle, micro-emulsion, glass crystallization, precursor-based, and hydrothermal 

techniques, each contributing uniquely to the structural and functional attributes of nano ferrites. We focus on 

mixed metal ferrites with the general formula MFe₂O₄ (where M = Cu, Fe, Mg, Mn, Ni, etc.), known for their 

superior performance over single-component systems. These nano ferrites exhibit remarkable properties such 

as high coercivity, magnetic anisotropy, Curie temperature, mechanical hardness, enhanced electrical 

resistivity and reduced eddy current losses. Our comprehensive analysis reveals that cation distribution, 

particle size, and morphology influence their behaviour. Mixed nano ferrites are versatile materials for various 

high-impact applications, including electronics, catalysis, sensors, data storage, and biomedicine. This review 

aims to understand better their synthesis strategies, core properties, and transformative potential in real-world 

applications. 
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Highlights:  

 Comprehensive review of synthesis techniques for mixed nano ferrites (MFe₂O₄). 

 Comparison of sol-gel, auto-combustion, co-precipitation, and other methods. 

 Emphasis on the influence of cation distribution, particle size, and morphology. 

 Mixed nano ferrites show superior magnetic, electrical, and mechanical properties. 

 Potential applications span electronics, catalysis, sensors, data storage, and biomedicine. 
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I. INTRODUCTION 

Ferrites are a unique class of ceramic materials composed primarily of iron oxides chemically combined with 

one or more additional metal elements. These materials exhibit remarkable magnetic and electrical properties, 

making them highly valuable across a wide spectrum of electronic and electromagnetic applications [1]. 

Distinguished by their inclusion of transition metals and sometimes lanthanides, ferrites are typically hard, 

brittle, and polycrystalline, often appearing grey or black in color. Despite containing metal oxides, ferrites 

are electrically non-conductive, a property that enhances their utility in high-frequency electronic devices [1]. 

Structurally, ferrites are ferrimagnetic materials wherein oxygen anions and metal cations organize themselves 

within space lattices that assume various geometric configurations [2]. This ordered arrangement underpins 

their distinctive electromagnetic behavior. Due to their favorable combination of magnetic, electrical, and 

mechanical characteristics, ferrites have found widespread use in technologies such as high-density data 

storage systems, magneto-caloric refrigeration, magnetic resonance imaging (MRI), targeted drug delivery, 

radio frequency (RF) coils, transformer cores, and rod antennas [3]. 

A significant transformation in ferrite properties occurs when their particle size is reduced from the bulk scale 

to the nanoscale. At dimensions below the critical threshold for magnetic domain formation, ferrite particles 

enter a single-domain state, leading to pronounced changes in behavior. Nano ferrites in this regime can 

exhibit superparamagnetic properties characterized by moderate magnetic permeability, low coercivity, high 

saturation magnetization, and minimal energy loss across a wide frequency range. These enhancements are 

attributed to improved morphology, reduced particle size, magnetocrystalline anisotropy, higher electrical 

resistivity, and lower dielectric loss at elevated frequencies [4]. 

Based on structural differences, nano ferrites are classified into four major types: spinel ferrites, hexaferrites, 

garnets, and orthoferrites [5]. Among these, spinel ferrites stand out due to their tunable and versatile magnetic 

and dielectric properties, including low coercivity, high resistivity, significant Curie temperature, and 

desirable magnetic permeability. The spinel structure adopts a cubic crystalline form (Figure1) and follows 

the general formula MFe₂O₄, where M represents divalent metal cations such as Cu²⁺, Ni²⁺, Fe²⁺, Mg²⁺, or Al²⁺. 

In this configuration, the divalent cations occupy one-eighth of the tetrahedral sites, while the trivalent Fe³⁺ 

cations are distributed over half of the octahedral lattice positions [1,2]. This cation distribution plays a crucial 

role in defining the functional properties of the spinel ferrite materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: the crystal structure of spinel ferrite. a) tetrahedral A site; b) octahedral B site; c, d) The distribution 

of metal cations and oxygen ions 
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II.  MIXED NANO FERRITES 

 

To improve the structure, magnetic and electromagnetic properties of the ferrites, doping of dopants to nano 

ferrite particles play a major role to meet technological requirements. Mixed ferrites can be prepared which 

contain two different kinds of divalent ions like MnZnFe2O4, NiZnFe2O4 or MnZn, NiZn ferrites in these 

ferrites Mn, Zn and Ni, Zn are the divalent cations [6]. Mixed Nano ferrite materials have several advantages 

over normal ferrite particles such as improved magnetic properties like higher magnetization and coercivity 

due to the combination of different metal ions. Tuneable properties by varying the composition of mixed 

ferrites, their properties can be tailored for specific applications. Reduced toxicity-some mixed Nano ferrites 

have shown reduced toxicity compared to individual metal oxides, making them more suitable for 

biomedical applications [7]. 

 

III. Synthesis Methods for Mixed Nano-Ferrites 

There are two ways to prepare Nano ferrite particles  

i) Bottom-up synthesis 

ii) Top-down synthesis  

3.1 Bottom-Up Approach  

The bottom-up approach to preparing nanostructures involves assembling materials from individual atoms or 

molecules into larger structures through controlled processes. This approach enables the creation of 

nanostructures with specific properties and functions that are often difficult to achieve by other methods. It is 

extensively used in nanotechnology and materials science because it allows precise control at the atomic or 

molecular level. 

Key bottom-up methods include chemical synthesis and self-assembly. Chemical synthesis involves using 

chemical reactions to combine atoms and molecules into nanostructures, allowing for the design of various 

shapes, sizes, and compositions. Self-assembly leverages the natural tendency of atoms and molecules to 

spontaneously organize into structured forms due to chemical or physical forces, mimicking biological 

systems that naturally create intricate nanostructures. These processes can be conducted in various phases, 

such as gas-phase or liquid-phase synthesis, utilizing methods including sol-gel, chemical vapor deposition, 

wet synthesis, and biomineralization [8]. 

The bottom-up approach enables the production of nanostructures, such as nanoparticles, nanotubes, 

nanocrystals, quantum dots, and carbon nanotubes, which possess unique optical, electrical, magnetic, and 

catalytic properties. For instance, quantum dots can be formed by self-assembly under strain conditions to 

achieve uniform size and spacing, while carbon nanotubes form via self-assembly under specific chemical 

and temperature conditions. These nanostructures find applications across diverse fields, including medicine 

(biosensors, bioimaging, drug delivery), energy (catalysis, solar cells), and electronics (plasmonics, 

nanoelectronics) due to their finely tuned functionalities [9]. 

Thus the bottom-up approach has proven to be a highly effective strategy for the synthesis of nanoferrites, 

offering precise control over particle size, morphology, and cation distribution, all of which critically 

influence their structural, magnetic, and electrical properties. Techniques such as sol-gel synthesis, co-

precipitation, hydrothermal methods, and combustion routes exploit atomic- and molecular-level interactions 

to produce uniformly distributed nanoferrites with tunable characteristics. Compared to conventional bulk 

synthesis, these bottom-up methodologies enable the fabrication of nanoferrites with enhanced surface-to-

volume ratios, superparamagnetic behavior, and improved catalytic, dielectric, and magnetoresistive 

properties. Such finely tailored features broaden the application potential of nanoferrites in diverse 

technological fields, including high-frequency devices, magnetic storage systems, catalysis, ferrofluids, 

microwave absorption, and biomedical applications such as targeted drug delivery and magnetic 

hyperthermia. Therefore, the bottom-up synthesis of nanoferrites not only represents a crucial route for 
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achieving advanced functional materials but also underscores their significance in developing next-generation 

technologies across electronics, energy, and medicine. 

3.2 Sol-gel method 

The sol-gel (SG) synthesis method is indeed a bottom-up approach widely recognized for preparing 

homogeneous nano ferrites with high purity. The process encompasses a series of chemically irreversible 

reactions, primarily polymerization or hydrolysis, which generate the initial sol phase. This sol subsequently 

undergoes condensation reactions to form a gel network, promoting growth and aggregation of the mixture. 

The solvent is then removed by evaporation, drying, or extraction, yielding a solid gel. Finally, calcination is 

applied to remove organic residues and crystallize the nanoparticles. 

This SG method is advantageous for several reasons: 

Low Agglomeration: Compared to other synthesis routes, the SG process tends to produce ferrites with 

reduced particle agglomeration. This is attributed to the controlled growth environment within the gel matrix, 

which restricts uncontrolled particle coalescence during synthesis and calcination steps [10], [11]. 

Uniform Particle Size: The gel network restricts nucleation and growth, allowing for the preparation of 

nanoparticles with narrow size distributions. This uniformity is crucial in tailoring magnetic and structural 

properties of nano ferrites, as observed in studies showing particle sizes around 20–45 nm with good size 

control through synthesis parameters [10], [12]. 

Cost-Effectiveness: The SG process operates typically at relatively low temperatures before calcination, and 

uses readily available precursors, making it an economical technique. The usage of waste materials as 

precursors (e.g., eggshells for CaO) also enhances cost-effectiveness and sustainability [13], [14]. 

Controlled Morphology: Parameters such as pH, precursor concentration, chelating agents, and calcination 

temperature allow effective tuning of particle morphology and surface characteristics. This control is reflected 

in various studies demonstrating tailored morphologies and magnetic properties by adjusting SG synthesis 

conditions and post-synthesis treatments [15], [16]. 

Further, SG-synthesized nano ferrites show high compositional homogeneity due to molecular-level mixing 

of precursors, which results in pure phase spinel structures as confirmed by XRD analyses. The calcination 

step ensures removal of organic residues and crystallization, which contributes to enhanced structural and 

magnetic properties [12], [16]. 

3.3 Citrate-Gel Auto-Combustion Method for Metal Ferrites 

The citrate-gel auto-combustion method for synthesizing metal ferrites typically involves the following steps: 

First, metal nitrates (e.g., Co, Fe, Er) are dissolved in distilled water to form a clear solution, which is stirred—

commonly around 300 rpm—for about 1 hour to ensure homogeneity. Then, citric acid is added as a fuel in a 

metal nitrate to citric acid molar ratio often around 1:3. Ammonia solution is introduced drop-wise to adjust 

the pH to approximately 7, promoting effective chelation and gelation. The resulting solution is heated, 

generally near 100 °C, to facilitate slow evaporation and gel formation over several hours (10–12 h), during 

which auto-combustion occurs spontaneously, producing a voluminous, black-colored powder. This as-burnt 

powder is further ground manually and subsequently calcined at temperatures commonly between 500 °C and 

700 °C for a few hours (e.g., 4 h) in air to remove residual organic compounds and crystallize the metal ferrite 

phase. 

This procedure yields nano-crystalline metal ferrites with a single-phase cubic spinel structure, confirmed 

through X-ray diffraction studies, and typically particle sizes in the nanometer range (6–45 nm, depending on 

conditions) with controlled morphology and magnetic properties [17], [18], [19], [20], [21], [22]. 

The use of stoichiometric ratios of metal nitrates to citric acid and careful pH adjustment is crucial for uniform 

chelation and homogeneous gel formation, which in turn influences the particle size distribution and phase 

purity of the final product. Auto-combustion is exothermic and self-sustaining once initiated during heating, 
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allowing rapid synthesis of metal ferrite powders with low agglomeration and good crystallinity. Calcination 

temperature and duration are optimized to balance removal of organic residues with prevention of excessive 

grain growth [23], [24]. 

3.4 Top-down approach 

The top-down approach to fabricating nanostructures involves starting with larger materials or patterns and 

systematically reducing their size to achieve nanoscale dimensions. This reduction is typically realized 

through various lithographic, etching, and mechanical fabrication techniques. This approach is especially 

prevalent in microelectronics, where macro-sized patterns are scaled down to form intricate and tiny electronic 

circuits. 

Common top-down methods include: 

Photolithography: This technique uses light to transfer geometric patterns onto a substrate, followed by 

chemical etching to remove the unprotected area. It remains a foundational technology in semiconductor 

device manufacturing, although it faces intrinsic limitations due to the diffraction limit of light, typically 

restricting attainable feature sizes. Recent advances explore extreme ultraviolet lithography and parallel laser 

micro/nanoprocessing to push beyond these constraints [25]. 

Electron beam lithography (EBL): EBL utilizes a highly focused beam of electrons for direct-write 

patterning, which allows the creation of features well below 100 nm with high precision. However, its serial 

nature results in low throughput and high cost, making it better suited for prototyping and small-batch 

production rather than mass manufacturing. Innovations in controlling electron beam parameters and resist 

materials continue to enhance resolution and processing efficiency , [26]. 

Scanning Probe Microscopy (SPM) techniques: SPM-based lithography harnesses a physical probe to 

manipulate surfaces at atomic or molecular resolution. Techniques such as dip-pen nanolithography, 

anodization lithography, and nanoshaving allow localized patterning on inorganic and organic surfaces. SPM 

is valuable for both imaging and nanoscale modifications but typically involves slow serial processes, limiting 

scalability[27]. 

These techniques are capable of producing nanostructures with a high degree of spatial precision and control 

over morphology. However, challenges remain in scaling down certain materials or patterns, limiting 

throughput and increasing cost. For example, photolithography is constrained by optical diffraction limits, 

and EBL suffers from low throughput, while SPM methods have limited scalability. 

In comparison, bottom-up approaches assemble nanostructures from atomic or molecular precursors, enabling 

the formation of unique structures with distinctive properties via self-assembly or chemical synthesis. While 

bottom-up methods excel at producing complex and novel nanostructures, they often lack the precise pattern 

control inherent in top-down approaches. 

Hybrid methods combining top-down and bottom-up strategies are gaining attention to leverage the 

advantages of both, enabling precise patterning with the diversity of bottom-up material synthesis [28]. 

Additionally, recent progress in data-driven process control and machine learning promises to address 

throughput and quality challenges associated with top-down nanomanufacturing . 

Thus, top-down fabrication techniques such as photolithography, electron beam lithography, and scanning 

probe microscopy remain central to nanostructure manufacturing due to their precision and control, although 

each faces unique limitations in scalability and material compatibility. Both top-down and bottom-up 

approaches are complementary and often integrated to meet diverse nanoscale fabrication demands across 

scientific and technological fields [30], [31]. 
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3.5 Ball Milling Process 

The ball milling method is a widely used mechanical technique for synthesizing nanoparticles by grinding 

and blending materials. This process involves placing a bulk material, along with milling balls, into a rotating 

cylindrical container, commonly referred to as a ball mill. As the container rotates, the balls are lifted and 

then dropped onto the material, causing repeated impact and shear forces that fracture the particles, reducing 

their size to the nanoscale. Key parameters such as the size, material, and number of milling balls, the rotation 

speed of the mill, and the duration of milling are crucial in determining the final particle size, morphology, 

and phase of the nanoparticles. The impact energy from the collisions between the milling balls and the 

material leads to a reduction in particle size and can also induce phase transformations, enhancing material 

properties. Ball milling offers several advantages, including simplicity, cost-effectiveness, scalability, and 

environmental friendliness. It does not require hazardous chemicals or solvents, making it a greener 

alternative to chemical synthesis methods. The technique is versatile and can be applied to a wide range of 

materials, including metals, alloys, ceramics, and polymers, enabling the production of both single-component 

and composite nanoparticles. Nanoparticles synthesized via ball milling are utilized in various applications 

such as catalysis, drug delivery, electronics, and energy storage due to their unique properties. This method 

provides a straightforward approach to creating advanced materials with specific functionalities, making it a 

valuable tool in nanotechnology research and development [32], [33] 

3.6 Laser ablation 

The synthesis of nanoparticles using laser ablation is a physical method that involves irradiating a solid target 

material with a high-energy laser beam in a liquid medium or vacuum. This process leads to the formation of 

nanoparticles directly from the bulk material without the need for chemical reagents. The method is 

particularly favored for its simplicity, cleanliness, and ability to produce pure nanoparticles with minimal 

contamination. During laser ablation, a pulsed laser is focused on the surface of a solid target material 

submerged in a liquid, such as water, ethanol, or other solvents. The intense laser pulses generate a rapid, 

localized rise in temperature, causing the material at the surface to vaporize or melt. As this vaporized material 

cools and condenses in the surrounding liquid, nanoparticles form. The characteristics of the produced 

nanoparticles, such as size, shape, and composition, can be controlled by adjusting laser parameters like 

wavelength, pulse duration, energy, and repetition rate, as well as the properties of the liquid medium.  

One of the key advantages of laser ablation in liquids (LAL) is the ability to produce highly pure nanoparticles, 

free from chemical by-products that often accompany chemical synthesis methods. This purity is crucial for 

applications in fields such as biomedicine, where nanoparticles are used for drug delivery, imaging, and as 

therapeutic agents. Additionally, LAL allows for the synthesis of a wide range of nanoparticle materials, 

including metals, semiconductors, and oxides, making it a versatile technique. Laser ablation also enables the 

production of nanoparticles with unique properties due to the rapid quenching rates, which can lead to 

amorphous or metastable phases not easily achievable by other methods. Moreover, the size distribution of 

the nanoparticles can be tuned by varying the laser parameters or by post-synthesis treatments, such as 

centrifugation or filtration. Overall, the synthesis of nanoparticles using laser ablation is a powerful technique 

that provides precise control over nanoparticle production, offers high purity, and is versatile across different 

materials and applications. It is widely used in research and industry for developing advanced materials with 

tailored properties for specific applications [34].  

3.7 Green synthesis of Nano ferrites 

The green synthesis method is a sustainable and eco-friendly approach to synthesizing nanoparticles, using 

natural materials and environmentally friendly processes. This method involves selecting natural materials, 

such as plant extracts, microorganisms, or biomolecules, as reducing agents and stabilizers. The natural 

material is then mixed with a metal salt solution under suitable conditions, such as temperature, pH, and 

concentration, to form a reaction mixture. The natural material reduces the metal ions, forming nanoparticles, 

which then grow and are stabilized by the natural material. Finally, the synthesized nanoparticles are purified 

and characterized using various techniques. 

Green synthesis offers several advantages over physical and chemical methods, including non-toxicity, 

pollution-free, environmental friendliness, economical, and sustainability. However, challenges and 
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limitations of this method include the availability of raw materials, reaction time, and quality of final products, 

such as particle size and homogeneity. 

Overall, green synthesis is a promising approach for sustainable nanoparticle production, with potential for 

advancement in various fields. This method provides a viable alternative to traditional methods, reducing the 

environmental impact and improving the sustainability of nanoparticle synthesis[35]. 

IV. Applications : 

4.1 Bio-Medical Applications: 

Magnetic nanoparticles (NPs) have unique properties making them suitable for nanomedicine applications 

such as drug delivery, imaging, and hyperthermia. Iron oxide and cobalt-ferrite (Co-Fe) NPs are commonly 

used, with Co-Fe NPs showing larger magnetic anisotropy. However, their toxicity needs to be understood 

for successful application. Studies have shown that surface coating can reduce toxicity, and predictive 

toxicology approaches can help forecast toxic effects. This study explores the toxicological effects of Co-Fe 

NPs on cell viability and oxidative stress, using data mining and knowledge discovery to develop a predictive 

model of NP toxicity. The model predicts the relative hierarchy of variables such as concentration, cell type, 

and exposure duration, providing a multi-dimensional perspective on NP toxicity[36]. 

 4.2 Magnetic thermotherapy: 

Magnetic hyperthermia, a cutting-edge cancer treatment, leverages magnetic nanoparticles (MFNPs) to 

generate heat and selectively target tumor cells when exposed to an alternating magnetic field (AMF). Despite 

its clinical approval and registration, the technique faces limitations, including inefficient heat transfer. 

Recent breakthroughs have focused on optimizing MFNP properties to enhance heating efficiency. 

Researchers have explored various strategies, such as tailoring size, morphology, composition, and surface 

modification, as well as exchange-coupled and assembled MFNPs. Notably, innovative designs like vortex-

domain nanorings (FVIOs) and exchange-coupled core-shell MFNPs have demonstrated significantly 

improved heating performance. 

While these advancements hold promise, further research is crucial to overcome existing challenges and 

unlock the full potential of magnetic hyperthermia. Continued innovation in MFNP design and optimization 

is essential to enhance treatment efficacy and pave the way for future applications[37]. 

4.3 Magnetic resonance imaging (MRI) 

Magnetic Resonance Imaging is a crucial diagnostic tool in hospitals, relying on contrast agents to enhance 

image quality. Superparamagnetic iron oxide nanoparticles (SPIONs) are commonly used as MRI contrast 

agents, but their tendency to aggregate in water or tissue fluid limits their application. To overcome this, 

coating SPIONs with polymers like polyethylenimine (PEI) or poly(ethylene glycol) (PEG) improves their 

stability, biocompatibility, and circulation time.PEI-coated SPIONs have shown promise as MRI contrast 

agents, but PEI's toxicity limits its use. PEG, on the other hand, is a biocompatible and non-toxic polymer 

widely used in pharmaceuticals. Recent studies have combined PEG with PEI for gene delivery, but PEG-

modified PEI-coated SPIONs have not been explored for MRI contrast agents.This highlights the potential 

for developing PEG-modified PEI-coated SPIONs as safe and effective MRI contrast agents, combining the 

benefits of both polymers [38]. 

4.4 Drug delivery 

The application of magnetic nanoparticles (MNPs) in targeted drug delivery has revolutionized the field of 

medicine. MNPs have shown great promise in delivering drugs to specific sites in the body, reducing side 

effects and improving therapeutic outcomes. Magnetic nano ferrite particles can be used as a delivery vehicle 

for drugs, entrapping them in their matrix and releasing them at the target site. 
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4.5 Advantages of magnetic nano ferrites  

Targeted drug delivery: Magnetic nanoferrite particles can be guided to specific sites in the body using 

external magnetic fields, ensuring that the drug is delivered directly to the affected area. 

Controlled release: Magnetic nano ferrite particles can be designed to release drugs in response to specific 

stimuli, such as changes in pH or temperature.  

Biocompatibility: Magnetic nanoferrite particles are generally non-toxic and biocompatible, making them 

suitable for use in the body [39], [40], [41]. 

 

 

Fig 3: Nanoparticles in biomedical applications [Image is adopted from Karrina McNamara and Syed A. M. 

Tofaildepartment of Physics, Bernal institute, University of Limerick, Limerick, Ireland]. 

Table I: Survey on synthesis methods and surface functionalisation of ferrite NPs in biomedical 

applications. 

 

Ferrite 
Synthesis 

method 
Functionalization Application 

Ref 

no. 

Manganese – 

Magnesium 
SG Scandium 

Magnetic resonance imaging & 

Biosensor 
[42] 

Cobalt SG Transition metals Drug delivery [43] 

Zinc CCP Chitosan and PEG Magnetic resonance imaging [44] 

Nickel GS Glycine Leishmaniasis treatment [45] 

Cobalt HT Copper Antibiotic medicines [46] 

Manganese Zinc CCP Chitosan 
Hyperthermia 

 
[47] 

Cobalt GS Zinc 

Removal of Pb2+ from water 

and magnetic hyperthermal 

therapy 

[48] 

Silver CS -- Antimicrobial activity [49] 

Zinc ST PEG 
Drug delivery technique for 

improved cancer treatment 
[50] 

Manganese 

–Magnesium- 
CS --- Magnetic hyperthermia [51] 
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Cobalt 

SG: Sol-gel, CCP: chemical co-precipitation method, BS: green synthesis, HT: hydrothermal, CS: combustion 

synthesis, ST: solvothermal. 

4.6 Sensor applications 

Recent advances have established ferrite nanoparticles as robust materials for gas and humidity sensors across 

various industries. Spinel ferrites, due to their unique crystal structure and high surface area, offer enhanced 

sensitivity and selectivity. Zinc, cobalt, nickel, and manganese-doped ferrites are at the forefront, benefiting 

from controlled synthesis methods such as hydrothermal, co-precipitation, and sol–gel techniques, which 

enable the precise tuning of particle size and surface properties for improved sensor performance [52]. 

Fabrication of cobalt ferrite nanoparticles and their calcination at optimal temperatures has yielded sensors 

with strong sensitivity to ethanol and LPG gases; for example, smaller CoFe₂O₄ particles demonstrate rapid 

response and high sensitivity to low concentrations of LPG, with response times measured in mere seconds. 

Porous structures further enable operation at room temperature, broadening practical utility. In related 

research, manganese oxide-doped ferrite nanoparticles have been utilized in inkjet-printed sensors, offering 

low detection limits and reliable operation for pharmaceuticals and biological analytes . 

The selectivity of ferrite nanoparticles has also made them suitable for agricultural and environmental 

monitoring. Investigations show that cobalt-doped zinc ferrite can effectively sense hazardous herbicides like 

metribuzin, using electrochemical methods such as impedance spectroscopy. Ferrite-based sensors display 

remarkable stability, rapid response, and low cost, contributing to their deployment in pollution monitoring 

and toxic gas detection [53] [54]. 

Overall, integrating nanostructured ferrites with modern synthesis and detection technologies delivers sensors 

that are compact, energy-efficient, and capable of precise measurement even at low operating temperatures. 

This positions ferrite nanomaterials as leading candidates for next-generation sensor development, with 

ongoing research focusing on further performance optimisation through elemental doping and hybrid material 

engineering [55]. 

V. Conclusion 

In conclusion, this review underscores the remarkable potential of mixed nano ferrites across diverse 

application domains, particularly in biomedicine and sensor technology. The synthesis and processing 

techniques play a pivotal role in determining the structural, electrical, magnetic, and mechanical properties of 

these materials. As the particle size transitions from bulk to the nanoscale, properties such as surface-to-

volume ratio, porosity, and overall reactivity are dramatically altered—directly influencing their functional 

performance. Emerging research consistently shows that mixed nano ferrites outperform their single-metal 

counterparts, offering enhanced functionality through compositional tuning. Strategic doping with transition 

or rare earth metals significantly boosts key attributes like saturation magnetisation, coercivity, and electrical 

resistivity. These optimised characteristics make them ideal candidates for high-performance applications in 

both medical diagnostics and electronic systems. Crucially, the ability to precisely tailor the composition, 

size, and structure of mixed nano ferrites provides a powerful toolkit for engineering materials with 

application-specific performance profiles. Their unique crystal architectures and tunable properties—

especially when enhanced through doping—position them as a highly versatile platform for next-generation 

technologies requiring smart, efficient, and multifunctional materials. 
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