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Abstract 

Wind power has become a pillar of the worldwide transition to renewable energy. Yet, the very nature of 

wind as being variable and intermittent creates serious challenges for assured grid integration, energy 

storage, and electricity market operations. Reliable forecasting of the wind speed, especially on short and 

medium time horizons, is thus imperative. Classic models like ARIMA and persistence methods, though 

interpretable, are unable to handle the non-linearities and the huge volumes of contemporary high-frequency 

wind data. Deep learning architectures like LSTM offer better accuracy but require large computational 

resources and huge amounts of training data, which restrict their applicability in real-time 

environments.This paper suggests a pattern sequence similarity-based forecasting model applied in a big 

data setting with Hadoop and Spark. Building on Dynamic Time Warping (DTW) and Euclidean distance, 

the approach locates preceding periods with maximal similarities under current circumstances and projects 

them forward to estimate upcoming wind speed. Empirical verification was done on an empirical database 

consisting of 34,080 observations taken every 15 minutes spanning 2022. Cleaning, normalization, and lag 

feature extraction were the preprocessing activities.The model was compared with ARIMA and LSTM. 

Results show that the similarity-based method is better than these models, improving RMSE by about 15–

20% and MAE by 10–12%, and especially performing well in short-term predictions (1–6 hours ahead). In 

addition to better accuracy, the approach proves scalable and efficient, essential for real-time use.The 

research theoretically contributes by generalizing sequence similarity methods to renewable energy 

prediction, and practically contributes by providing a strong, scalable, and precise method to enable wind 

power scheduling, smart grid operation, and energy trading platforms. 

 

Index Terms - Wind speed prediction, time series, big data, pattern sequence similarity, renewable energy, 

machine learning, smart grid. 

 

1. Introduction 

1.1 Background 

The 21st century has seen a paradigm shift in the world's energy pattern driven by mounting worries about 

climate change, energy insecurity, and the accelerated depletion of fossil fuel deposits(Moreno et al., 2020). 

Governments and global institutions are now focusing on the deployment of renewable energy as a pillar of 

sustainable development. Of all the renewable energy forms, wind power has been one of the most vibrant 

and fast-growing industries(Li & Zhang, 2018). As per Global Wind Energy Council (GWEC), global 

installed capacity crossed 906 GW in 2022, and estimates are that wind may provide as much as 20% of 

world electricity needs by 2030. 

In contrast to traditional power stations running on deterministic fuel availability, electricity from wind 

farms is produced from natural, atmospheric effects(Fan et al., 2019). The randomness of wind, which is 

controlled by atmospheric pressure systems, topography, and seasonal patterns, renders energy production 

very uncertain(Soman et al., 2010). Wind velocity is the most significant parameter impacting power 

generation, as turbine generated power varies with the cube of wind velocity(Dhiman & Deb, 2020). Minor 
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errors in forecasting can hence cause large discrepancies in energy scheduling and financial losses in 

electricity trading(Lipu et al., 2023). 

Precise wind speed forecasting is paramount for: 

 Regulating grid balance – sustaining supply-demand balance. 

 Optimizing energy storage – controlling charging/discharging cycles of batteries and pumped hydro. 

 Operational reliability – curtailment or overloading avoidance of wind turbines. 

 Electricity market trading – offering precise day-ahead and intra-day forecasts for bidding purposes. 

Therefore, enhancing the accuracy of wind speed forecasting is not just a technical issue but also a socio-

economic imperative for a secure energy transition. 

 

1.2 Problem Description 

Despite the progress in computational modeling, wind speed prediction is still a difficult task. Standard 

statistical models like Autoregressive Integrated Moving Average (ARIMA) or persistence models work 

satisfactorily on short-term, low-resolution datasets but fail when tried on huge, high-resolution data 

common in Supervisory Control and Data Acquisition (SCADA) systems(Chen, 2022). These models 

postulate linearity and stationarity, requirements infrequently met with actual meteorological data(Gneiting 

et al., 2006). 

Machine and deep learning methods, specifically Long Short-Term Memory (LSTM) networks and hybrid 

ARIMA-ANN models, have been shown to predict non-linear and temporal relationships with greater 

accuracy(Cutler et al., 2007). Nevertheless, these models are in need of enormous amounts of labeled 

training data, heavy hyperparameter search, and significant amounts of computational resources like 

GPUs(Jung & Broadwater, 2014). Their training overhead and scalability concerns limit real-time 

forecasting applications, particularly when handling terabytes of SCADA data produced continuously at 1–

15 minute intervals(Bandara et al., 2020). 

There is, therefore, a vital space in between accuracy-driven models and scalable, computationally efficient 

models(Kim et al., 2024). The renewable energy field needs forecasting methods that are not just accurate 

but also able to function in distributed big data settings(Benti et al., 2023). 

1.3 Gap in Research 

The literature on wind speed forecasting shows that there are two significant gaps in research. Firstly, 

similarity-based methods have limited use in renewable energy forecasting(González-Aparicio & Zucker, 

2015). Though techniques like Dynamic Time Warping (DTW), Euclidean distance, and shape-based 

matching have been used intensively in areas ranging from financial time series analysis to speech 

recognition and anomaly detection for sensor networks, their application in renewable energy prediction, 

especially in predicting wind speed, is quite untouched. Second, similarity-based methods are not 

adequately being integrated with big data frameworks(Hong et al., 2014). The majority of forecasting 

literature depends on isolated statistical or machine learning methods with a strong emphasis on prediction 

accuracy but insufficient consideration of scalability(Yan et al., 2022). Few have tried systematically 

combining similarity-based models with large-scale computing platforms like Hadoop or Spark, which are 

essential for handling petabyte-scale energy data sets produced by contemporary wind farms(Yan et al., 

2022). This discrepancy between forecast accuracy and computational scalability is a major roadblock to 

real-time integration of renewable energy(Monteiro et al., 2009). By resolving these problems, the current 

research hopes to make theoretical as well as practical contributions towards the discipline of renewable 

energy analytics(Pinson, 2013). 

1.4 Importance of the Research 

The importance of this study is its two-fold contribution—methodological innovation and real-world 

application. Methodologically, the research brings sequence similarity techniques into the area of wind 

speed forecasting, thus challenging the predominance of conventional statistical and deep learning 

approaches. This not only enlarges the methodological arsenal for renewable energy forecasting but also 

introduces a new method for understanding non-linear and noisy time series data. From a technical point of 

view, the combination of similarity-based forecasting with big data platforms like Hadoop and Spark 

guarantees the suggested model to be accurate and scalable in real-time operations. This has direct 

ramifications for different stakeholders in the renewable energy system: wind farm operators can maximize 

turbine efficiency using accurate predictions, grid managers can depend on better forecasts to balance 

supply and demand, and policy makers can use these metrics to develop strategies for higher integration of 

renewables and less use of fossil fuels. Overall, the research responds to a critical industry requirement for 

predictive systems that are not only highly accurate but are computationally efficient and scalable in 

massive energy settings. 
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1.5 Objectives 

 To build a scalable forecasting model for wind speed prediction using pattern sequence similarity 

techniques. 

 To compare the proposed model with benchmark statistical approaches and advanced deep learning models 

in terms of forecasting accuracy and computational efficiency. 

 To validate the performance of the model on real-world SCADA datasets to ensure practical applicability 

and robustness. 

1.6 Research Questions 

 To what extent can a pattern sequence similarity approach build a scalable and efficient model for wind 

speed forecasting in a big data environment? 

 How does the forecasting performance of the similarity-based model compare with traditional statistical 

models (e.g., ARIMA) and deep learning models (e.g., LSTM) in terms of accuracy and computational cost? 

 Can the proposed forecasting model maintain robustness and practical applicability when validated against 

large-scale, real-world SCADA wind speed datasets? 

2. Literature Review 

2.1 Historical Methods 

Historically, wind speed prediction has depended on statistical and time series techniques because they are 

mathematically straightforward and understandable(Potter & Negnevitsky, 2006). Some of the earlier 

methods like the persistence model, which is based on the assumption that future wind speed will be equal 

to the latest measured value, offered a naive but sometimes competitive benchmark for extremely short-term 

forecasting horizons(Pilipović et al., 2025). Slightly more complex linear models, such as Autoregressive 

(AR) and Autoregressive Integrated Moving Average (ARIMA), became popular during the 1980s and 

1990s. These models utilize autocorrelation patterns within the time series data to forecast future values and 

have proved efficient for short-term forecasting, generally ahead of a few hours(Jahangir et al., 2024). 

Additionally, exponential smoothing methods like Holt–Winters were utilized to treat seasonality and trend. 

Although these statistical approaches are computationally intensive and yield interpretable estimates of the 

parameters, their performance is suboptimal when applied to highly non-linear, volatile, and large wind 

datasets(Hastie et al., 2005). Furthermore, they suppose data distribution stationarity, which in real 

meteorological situations with sudden wind speed oscillations is often violated(Box et al., 2015). Therefore, 

their effectiveness decreases as the horizon of forecasting widens or if the input data set becomes more 

complex and bigger in dimension(Tuğrul et al., 2025). 

ARIMA Model 

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜃1𝜀𝑡−1 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡 

2.2 Machine Learning and Deep Learning Models 

The limitations of conventional models prompted the use of machine learning (ML) and deep learning (DL) 

methods, which are more capable of accommodating the sophisticated, non-linear patterns of wind speed. 

Support Vector Machines (SVMs), Random Forests, and Gradient Boosting Decision Trees (GBDTs) have 

been used in wind speed forecasting with great success. Ensemble and kernel-based methods like these can 

accommodate high-order interactions and are more robust against non-stationarity than ARIMA-type 

models(Mohandes et al., 2004). 

The recent decade has witnessed a growing focus on deep learning models, especially sequential and 

temporal data models(Makridakis et al., 2018). Recurrent Neural Networks (RNNs) and their advanced 

versions, such as Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs), gained 

widespread use because they can represent long-range temporal dependencies. LSTMs, specifically, have 

been demonstrated to perform better in short- and medium-term wind forecasting activities, albeit at the 

expense of heavy training needs, hyperparameter sensitivity, and computational costs(Yang & Kleissl, 

2024). 

Tempraral Convolutional Networks (TCNs) and attention-based architectures were more recently introduced 

to process high-dimensional time series using parallelism over RNNs. Prophet, also created by Facebook, 

has become a useful tool for seasonal time series forecasting and has been used for renewable energy 

demand forecasting and wind speed forecasting(Duan et al., 2021). Nonetheless, such ML/DL models tend 

to need enormous labeled datasets and expert hardware like GPUs, which may confine their real-time 

application to large-scale energy systems(Quan et al., 2013). 

LSTM Cell Update 

ℎ𝑡 = 𝑓(𝑊𝑥𝑥𝑡 +𝑊ℎℎ𝑡−1 + 𝑏) 
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2.3 Sequence Similarity Methods 

Another paradigm to parametric or learning-based methods is the application of time series similarity 

measures. Rather than learn global functional mappings between input and output, these methods identify 

local sequence patterns from past data that are similar to the present path and utilize them to predict future 

values(Han et al., 2022). 

Methods like Dynamic Time Warping (DTW), Euclidean distance, cosine similarity, and motif 

identification have proven to be effective in various applications ranging from speech recognition, 

handwriting identification, anomaly detection, and financial time series forecasting. In wind forecasting, the 

hope is in leveraging the recurring patterns embedded within the meteorological process of diurnal cycles, 

seasonal patterns, and recurring weather fronts. 

One of the primary benefits of similarity-based methods is that they are interpretable and computationally 

efficient. As opposed to deep neural network models that operate like black boxes, sequence similarity tools 

enable energy analysts to trace predictions back to similar historical trends directly. Additionally, since they 

do not involve large training phases, these methods are most appropriate for streaming and big data settings 

where real-time flexibility is paramount. Yet their deployment in renewable energy is currently small, 

offering a gap for methodology expansion. 

2.4 Comparative Analysis 

Comparative analysis of the three leading classes of models—statistical, machine learning/deep learning, 

and similarity-based methods—identifies strengths as well as weaknesses. 

 Statistical Models: ARIMA, AR, and exponential smoothing techniques are extremely interpretable and 

computationally efficient. They are, however, limited by linearity and stationarity assumptions, which 

render them ineffective for highly volatile and large datasets of wind data. Their scalability is also poor if 

used for high-frequency, multi-year SCADA data. 

 Deep Learning and Machine Learning Models: These models, such as SVMs, LSTMs, GRUs, and TCNs, 

have the ability to capture intricate non-linearities and temporal relationships. They are able to perform 

highly accurate forecasting, particularly in the short-horizon. However, they are computationally intensive, 

demand large training sets, and are often non-interpretable, which limits their adoption into operational 

energy systems. 

 Similarity-Based Models: These models provide a trade-off between accuracy and computational 

performance. By comparing contemporary patterns to past sequences, they give interpretable predictions 

without extensive training needs. Their computational performance makes them specially appealing for 

large data platforms like Hadoop and Spark, which can utilize parallelism to support extensive similarity 

searches. Though strong contenders, they are less exploited in the renewable energy sector. 

2.5 Research Gap Identified 

The literature review shows that similarity-based sequence matching methods have not yet been 

exhaustively researched in wind speed forecasting, although they have proved to be successful in other 

fields like speech processing, handwriting recognition, and money-making pattern prediction. The 

incorporation of the methods with big data solutions—a requirement for dealing with enormous SCADA 

datasets produced by wind farms—is missing. Previous work has generally tended to concentrate on 

enhancing accuracy with deep learning, while only using conventional models that are non-scalable. 

Therefore, there is a great potential to fill the gap between forecast accuracy and computational scalability 

through a union of similarity-based approaches with distributed big data platforms. This research fills this 

research gap by suggesting a new framework that combines pattern sequence similarity methods with 

Hadoop and Spark platforms and tests the method using real-world wind speed data. The result will be 

hoped to give rise to a scalable, understandable, and efficient forecasting model that is able to facilitate the 

integration of renewable energy into contemporary power systems. 

 

3. Methodology 

3.1 Research Design 

The research uses a quantitative design based on simulations to assess the performance of sequence 

similarity methods for forecasting wind speed. The research is based on actual SCADA data obtained in 

2022 from wind farm monitoring systems. The design involves an experimental approach whereby the 

proposed method based on similarity is compared with existing forecasting methods such as ARIMA 

(statistical) and LSTM (deep learning). This framework facilitates accuracy determination as well as 

computational efficiency examination. Through the generation of simulations on distributed big data 

platforms, the design ensures that the results are not only methodologically sound but also feasibly scalable. 
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3.2 Data Description 

The dataset employed in this study comprises 34,080 data points collected every 15 minutes throughout 

2022, offering an exhaustive representation of day-to-day, week-to-week, and season-to-season wind 

patterns. Every record holds a number of meteorological and operational features such as: 

 Wind Speed (m/s) – the main forecast target variable. 

 Pre-Power (kW) – turbine power before conversion losses, indicative of the straightforward influence of 

wind speed on production. 

 Wind Direction (degrees) – relevant for wind pattern and potential turbulence. 

 Temperature (°C) – meteorological variable affecting air density and wind behavior. 

 Humidity (%) – impacting atmospheric stability. 

 Pressure (hPa) – atmospheric condition associated with wind movement. 

 Rounded Wind Speed/Power – discretized representations used for categorical analyses. 

The size of the dataset is large enough to represent seasonal variation and meteorological extremes, hence 

reliability in short-term and medium-term forecasting assessment. 

3.3 Preprocessing 
For quality and usability assurance, the dataset is passed through a systematic preprocessing pipeline: 

 Datetime Conversion: The DATATIME column is converted to a suitable datetime index to facilitate 

extraction of time features like hour, day, week, and month. 

 Data Cleaning: Missing or irregular values in YD15 (15-minute average wind speed) are imputed through 

linear interpolation, and outliers are identified through the interquartile range (IQR) technique. 

 Normalization: Numerical variables, such as wind speed, temperature, humidity, and pressure, are 

normalized with z-score standardization to enhance comparability and minimize bias in similarity searching. 

Feature Engineering: Temporal and lag features are extracted to optimize model performance. These 

include: 

 Lagged wind speeds at frequencies (t–1, t–4, t–12) to detect persistence. 

 Moving averages to filter short-term variability. 

 Seasonality features (hour of day, day of week, month) to detect cyclic wind patterns. 

This preprocessing guarantees that the dataset is standardized, scalable, and optimized for similarity-based 

search and benchmark models. 

3.4 Tools and Frameworks 

The implementation is based on a combination of big data platforms, programming languages, and domain-

specific libraries: 

Big Data Platforms: 

 Hadoop for distributed storage (HDFS) of large-scale time series data. 

 Apache Spark for parallel processing to facilitate scalable similarity computations for large datasets. 

Programming Tools: 

 Python (for machine learning, data processing, visualization). 

 R (statistical verification and ARIMA modeling). 

 SQL (structured queries and data aggregation). 

Libraries: 

 scikit-learn for data preprocessing, metrics, and ML baselines. 

 tslearn for similarity metrics such as DTW and Euclidean distance. 

 statsmodels for ARIMA modeling. 

 TensorFlow/Keras for LSTM model setup and training. 

These structures provide both computational scalability and methodological rigor, allowing the approach to 

be scalable for industrial-level datasets. 

 

3.5 Procedure 

The methodological procedure consists of a five-step workflow: 

1.Preprocessing – Clean, normalize, and engineer features as mentioned above. 

2.Extract Similarity Sequence – Calculate similarity scores between the present wind speed sequence and 

past subsequences with DTW and Euclidean distance. Find the most similar earlier patterns. 

3.Prediction – Employ corresponding past sequences to predict short-term wind speeds (forecast intervals of 

1–6 hours). 

4.Benchmarking – Compare predictions with ARIMA (statistical) and LSTM (deep learning) models trained 

on identical datasets. 
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5.Evaluation – Measure performance with error measures such as RMSE (Root Mean Squared Error), MAE 

(Mean Absolute Error), MAPE (Mean Absolute Percentage Error), and R² (coefficient of determination). 

This organized workflow guarantees both methodological innovation and comparative evaluation. 

 

Dynamic Time Warping (DTW) Distance 
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Figure 1: Research Methodology Framework 

Figure 1 Research Methodology Framework presents the serial process of this research, starting from data 

collection and preprocessing to its implementation in a big data environment. The methodology further 
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combines similarity-based forecasting with statistical models as well as deep learning models, where the 

results are computed using standard error measurements. This systematic workflow allows for both accuracy 

and scalability in wind speed prediction for practical use. 

 

Algorithm 1: Similarity-Based Wind Speed Forecasting 

Input: Historical wind speed dataset 𝐷, window length 𝐿, forecast horizon 𝐻, similarity measure (DTW or 

Euclidean). 

Output: Forecasted wind speeds 𝑤̂𝑡+1, 𝑤̂𝑡+2, … , 𝑤̂𝑡+𝐻. 

Steps: 

1. Preprocess the dataset by cleaning missing values, normalizing variables, and extracting temporal features. 

2. Construct sliding windows of length 𝐿 to represent historical sequences. 

3. Define the current sequence 𝑆current  as the most recent window. 

4. Compute similarity between 𝑆current  and all historical sequences using DTW or Euclidean distance. 

5. Rank the historical sequences based on similarity scores. 

6. Select the top- 𝑘 most similar sequences. 

7. Extract the subsequent horizon values from the selected sequences. 

8. Aggregate the horizon values (mean or weighted average) to generate the final forecast. 

9. Benchmark the results against ARIMA and LSTM models. 

10. Evaluate performance using RMSE, MAE, MAPE, and 𝑅2. 

3.6 Variables 

The research has the following variable structure: 

 Independent Variables: Previous wind speed sequences, lagged characteristics, and time characteristics like 

hour, day, and month. 

 Dependent Variable: Predicted wind speed at selected horizons (1–6 hours). 

 Control Variables: Location (kept constant for dataset), seasonal influences, and meteorological conditions 

like temperature and pressure. 

This setup enables the suggested model to control the impact of historical sequence similarity on wind speed 

forecasting with consistency throughout environmental controls. 

3.7 Ethical Considerations 

The data are derived from open-source SCADA and meteorological data, which has ensured ethical and 

privacy compliance. No personally identifiable information is involved, and the data are entirely 

environmental and operational. The utilization of open-access sources ensures openness and reproducibility 

of outcomes. Further, the research is in accordance with sustainable research principles by promoting the 

greater societal objective of renewable energy integration without creating confidentiality or commercial 

sensitivity concerns. 

4. Results 

4.1 Characteristics of the Dataset 

The dataset employed in the present study had 34,080 observations recorded at 15-minute intervals over the 

period of the year 2022. Descriptive analysis showed the following: 

 The mean wind speed for all records was 5.4 m/s, which is typical for normal onshore wind regimes 

appropriate for power generation. 

 The span of wind speeds ranged from 0.2 m/s (calm situation) to 21.5 m/s (high wind period), encompassing 

both operationally extreme and relevant situations. 

 Seasonal patterns were demonstrated, with greater mean wind speeds in winter (December–February) and 

lower speeds in summer (May–July). This was as expected in temperate climates, where winter pressure 

systems result in more stable and fast wind flows. 

 Analysis of distribution revealed that the most frequent wind speeds were 3–8 m/s, which is the best 

operating range for the majority of new wind turbines. 

This statistical stratification points out that the data set is diverse enough to test prediction models under a 

variety of conditions, such as low, moderate, and high wind speeds. 
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Table 1: Dataset Characteristics Summary (2022 SCADA Data) 

Attribute Unit Mean Min Max 

Wind Speed m/s 5.4 0.2 21.5 

Pre-Power kW 250 0 1200 

Wind 

Direction 

Degrees 180 0 360 

Temperature °C 16.8 -3.5 38.7 

Humidity % 58.2 20 95 

Pressure hPa 1012 986 1034 

Table 4.2 summarizes the SCADA dataset employed here, demonstrating range and central tendencies of 

some of the main meteorological and operational variables. There was average wind speed of 5.4 m/s with a 

maximum of 21.5 m/s, and temperature and humidity exhibited broad seasonality. These features reflect the 

richness and appropriateness of the dataset for validating forecasting models across a variety of conditions. 

 
Figure 2 :Wind Speed Time Series Overview 

Figure 2 illustrates the variations in wind speed throughout the year, with seasonal changes reflected in 

greater speeds in the winter months and comparatively lower speeds in summer. The seasonality is evident 

in the time series with marked short-run volatility as well as longer-run seasonals. This picture creates the 

foundation dynamics of wind speed, which is essential in developing forecasting models. 

 
Figure3: Seasonal/Monthly Trends 

Figure 3 depicts seasonal wind speed variation, with increased averages between winter months and reduced 

speed during the summer. A clear seasonality of monthly distribution is evident, where January to March 

and November to December show stronger winds. Such a trend supports the use of integrating seasonality 

into forecasting models. 
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4.2 Forecasting Performance 

The forecasting models—ARIMA, LSTM, and the proposed similarity-based approach—were compared on 

the same dataset based on various performance metrics. 

 

Table 2: Forecasting Model Performance 

 

Model RMSE MAE MA

PE 

R² 

ARIMA 2.43 1.78 14.6

% 

0.

71 

LSTM 2.11 1.52 12.3

% 

0.

77 

Similarity 1.86 1.39 11.1

% 

0.

82 

 

The comparative analysis of the forecasting models exhibits distinct performance differences. Whereas the 

ARIMA model performed fairly well in terms of accuracy, it could not handle nonlinear changes well, 

manifesting in higher RMSE and MAPE values. The LSTM model did better, containing errors and 

enhancing explanatory power with an R² of 0.77. The proposed similarity-based model, however, recorded 

the best performance with the lowest RMSE (1.86), MAE (1.39), and a better R² of 0.82. Its MAPE of 

11.1% suggests pragmatic reliability for deployment in renewable energy scheduling. Generally, the 

similarity-based method does well in terms of achieving a robust balance between accuracy and 

computational time and is hence especially suited for short-term forecasting requirements. 

 
Figure 4 Forecast Comparison (Short-Term) 

Figure 4 compares the short-term horizon forecast for ARIMA, LSTM, and the similarity-based model with 

the actual values for wind speed. The ARIMA model is slow in tracking abrupt changes, whereas LSTM is 

smoother in adapting but still does not catch abrupt peaks. The similarity-based model is closest to the 

actual values, reflecting higher short-term predictive accuracy. 

 
Figure 5 : Error Metrics Bar Chart 
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Figure 5 illustrates the comparison of error metrics for ARIMA, LSTM, and the similarity-based model, 

with evident performance differences. ARIMA demonstrates the greatest error values, with LSTM 

improving modestly in accuracy. The similarity-based model yields the lowest RMSE, MAE, and MAPE, as 

well as the highest R², affirming its better forecasting ability. 

4.3 Visualization of Results 

To further examine the findings, visual analysis was done. 

 Time Series Plots: Predicted wind speeds were compared with actual measurements for representative 

weeks in various seasons. Visual observation revealed that the similarity-based model followed large 

changes better than ARIMA and with lower lag than LSTM predictions. 

 Error Distribution Charts: Histograms of errors in forecasts showed that similarity-based predictions had a 

smaller error spread, fewer outliers compared to both ARIMA and LSTM. This shows more stability and 

robustness. 

 Forecast Horizon Analysis: Comparing performance between horizons (1–6 hours), the similarity-based 

model performed better consistently with respect to benchmarks, especially in ultra-short-term forecasts (1–

2 hours). This indicates that the detection of similar past sequences is particularly helpful when there is a 

need for real-time forecasting in grid balancing. 

 
Figure 6: Error Distribution Histogram/Density 

 

Figure 6 illustrates ARIMA, LSTM, and similarity-based model error distribution demonstrating how 

forecast errors are distributed around zero. ARIMA error has greater spread, reflecting greater variability, 

whereas LSTM indicates moderate improvement with more clustering. The similarity-based model has the 

least distribution indicating more reliable and consistent predictions. 

4.4 Statistical Significance Testing 

To make sure that the performance improvements observed were not due to variation at random, paired t-

tests were carried out among the error distributions of the models: 

 Similarity compared to ARIMA: The decline in RMSE and MAE was statistically significant at the 95% 

confidence level (p < 0.01). 

 Similarity vs. LSTM: The improvements were also statistically significant (p < 0.05), which verified that the 

similarity-based solution was yielding non-trivial performance improvements even over sophisticated deep 

learning solutions. 

The findings show that the suggested similarity-based approach is robust and statistically significant in 

improving prediction accuracy. Operationally, these gains can be seen in terms of more accurate energy 

scheduling, lower reserve expenses, and better grid stability. 
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Figure 7 Statistical Significance Boxplot 

 

Figure 7 displays the statistical significance of ARIMA, LSTM, and similarity-based model's forecast error 

distributions. ARIMA has the highest spread of errors, while LSTM depicts moderate improvement with 

reduced variability and the similarity-based model with the least spread. This verifies that the suggested 

method reliably produces better forecasts with statistically important improvements. 

 

5. Discussion 

The results show that pattern sequence similarity algorithms achieve superior accuracy and scalability 

compared to classical statistical and deep learning models. In contrast to ARIMA, the linear assumption, or 

LSTM, computation-intensive, similarity-based algorithms are dependent on matching past motifs. This 

makes them more efficient in the case of large-scale data. 

These findings are consistent with previous work in finance and anomaly detection time series similarity, 

but this work applies it to forecasting renewable energy. The enhanced performance in short-term forecasts 

makes this method especially useful for real-time grid operation and energy trading. 

Surprisingly, model sensitivity was higher under extreme weather conditions, and thus there is a need for 

hybrid models that integrate similarity-based and deep learning approaches. 

 

6. Limitations 

There are some limitations in this study. It relies on information from a single geographical location in 

2022, which makes it less generalizable. Processing very high-frequency data could be expensive in terms 

of computation. Also, performance could be reduced under extreme weather conditions. Absent data can 

also impact the results negatively. 

 

7. Conclusion 

This paper demonstrates that combining pattern sequence similarity with big data platforms produces 

reliable, scalable wind speed forecasts. The method decreases RMSE and MAE when compared with 

ARIMA and LSTM models, especially for short horizons.Practical Contributions: Offers a real-time 

forecasting tool for grid operators.Theoretical Contributions: Broads the application of sequence similarity 

to renewable energy forecasting. 

 

8. Future Work 

 Build hybrid similarity–deep learning models. 

 Increase evaluation on multiple geographic datasets. 

 Apply framework to smart grids, IoT-enabled wind turbines, and energy trading platforms. 
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