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Abstract

Wind power has become a pillar of the worldwide transition to renewable energy. Yet, the very nature of
wind as being variable and intermittent creates serious challenges for assured grid integration, energy
storage, and electricity market operations. Reliable forecasting of the wind speed, especially on short and
medium time horizons, is thus imperative. Classic models like ARIMA and persistence methods, though
interpretable, are unable to handle the non-linearities and the huge volumes of contemporary high-frequency
wind data. Deep learning architectures like LSTM offer better accuracy but require large computational
resources and huge amounts of training data, which restrict their applicability in real-time
environments. This paper suggests a pattern sequence similarity-based forecasting model applied in a big
data setting with Hadoop and Spark. Building on Dynamic Time Warping (DTW) and Euclidean distance,
the approach locates preceding periods with maximal similarities under current circumstances and projects
them forward to estimate upcoming wind speed. Empirical verification was done on an empirical database
consisting of 34,080 observations taken every 15 minutes spanning 2022. Cleaning, normalization, and lag
feature extraction were the preprocessing activities.The model was compared with-ARIMA and LSTM.
Results show that the similarity-based method is better than these models, improving RMSE by about 15—
20% and MAE by 10-12%, and especially performing well in short-term predictions (1-6 hours ahead). In
addition to better accuracy, the approach proves scalable and efficient, essential for real-time use.The
research theoretically contributes by generalizing sequence similarity methods to renewable energy
prediction, and practically contributes by providing a strong, scalable, and precise method to enable wind
power scheduling, smart grid operation, and energy trading platforms.

Index Terms - Wind speed prediction, time series, big data, pattern sequence similarity, renewable energy,
machine learning, smart grid.

1. Introduction

1.1 Background

The 21st century has seen a paradigm shift in the world's energy pattern driven by mounting worries about
climate change, energy insecurity, and the accelerated depletion of fossil fuel deposits(Moreno et al., 2020).
Governments and global institutions are now focusing on the deployment of renewable energy as a pillar of
sustainable development. Of all the renewable energy forms, wind power has been one of the most vibrant
and fast-growing industries(Li & Zhang, 2018). As per Global Wind Energy Council (GWEC), global
installed capacity crossed 906 GW in 2022, and estimates are that wind may provide as much as 20% of
world electricity needs by 2030.

In contrast to traditional power stations running on deterministic fuel availability, electricity from wind
farms is produced from natural, atmospheric effects(Fan et al., 2019). The randomness of wind, which is
controlled by atmospheric pressure systems, topography, and seasonal patterns, renders energy production
very uncertain(Soman et al., 2010). Wind velocity is the most significant parameter impacting power
generation, as turbine generated power varies with the cube of wind velocity(Dhiman & Deb, 2020). Minor
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errors in forecasting can hence cause large discrepancies in energy scheduling and financial losses in
electricity trading(Lipu et al., 2023).

Precise wind speed forecasting is paramount for:

Regulating grid balance — sustaining supply-demand balance.

Optimizing energy storage — controlling charging/discharging cycles of batteries and pumped hydro.
Operational reliability — curtailment or overloading avoidance of wind turbines.

Electricity market trading — offering precise day-ahead and intra-day forecasts for bidding purposes.
Therefore, enhancing the accuracy of wind speed forecasting is not just a technical issue but also a socio-
economic imperative for a secure energy transition.

1.2 Problem Description

Despite the progress in computational modeling, wind speed prediction is still a difficult task. Standard
statistical models like Autoregressive Integrated Moving Average (ARIMA) or persistence models work
satisfactorily on short-term, low-resolution datasets but fail when tried on huge, high-resolution data
common in Supervisory Control and Data Acquisition (SCADA) systems(Chen, 2022). These models
postulate linearity and stationarity, requirements infrequently met with actual meteorological data(Gneiting
et al., 2006).

Machine and deep learning methods, specifically Long Short-Term Memory (LSTM) networks and hybrid
ARIMA-ANN models, have been shown to predict non-linear and temporal relationships with greater
accuracy(Cutler et al., 2007). Nevertheless, these models are in need of enormous amounts of labeled
training data, heavy hyperparameter search, and significant amounts of computational resources like
GPUs(Jung & Broadwater, 2014). Their training overhead and scalability concerns limit real-time
forecasting applications, particularly when handling terabytes of SCADA data produced continuously at 1—
15 minute intervals(Bandara et al., 2020).

There is, therefore, a vital space in between accuracy-driven models and scalable, computationally efficient
models(Kim et al., 2024). The renewable energy field needs forecasting methods that are not just accurate
but also able to function in distributed big data settings(Benti et al., 2023).

1.3 Gap in Research

The literature on wind speed forecasting shows that there are two significant gaps in research. Firstly,
similarity-based methods have limited use in renewable energy forecasting(Gonzalez-Aparicio & Zucker,
2015). Though techniques like Dynamic Time Warping (DTW), Euclidean distance, and shape-based
matching have been used intensively in areas ranging from financial time series analysis to speech
recognition and anomaly detection for sensor networks, their application in renewable energy prediction,
especially in predicting wind speed, is quite untouched. Second, similarity-based methods are not
adequately being integrated with big data frameworks(Hong et al., 2014). The majority of forecasting
literature depends on isolated statistical or machine learning methods with a strong emphasis on prediction
accuracy but insufficient consideration of scalability(Yan et al., 2022). Few have tried systematically
combining similarity-based models with large-scale computing platforms like Hadoop or Spark, which are
essential for handling petabyte-scale energy data sets produced by contemporary wind farms(Yan et al.,
2022). This discrepancy between forecast accuracy and computational scalability is a major roadblock to
real-time integration of renewable energy(Monteiro et al., 2009). By resolving these problems, the current
research hopes to make theoretical as well as practical contributions towards the discipline of renewable
energy analytics(Pinson, 2013).

1.4 Importance of the Research

The importance of this study is its two-fold contribution—methodological innovation and real-world
application. Methodologically, the research brings sequence similarity techniques into the area of wind
speed forecasting, thus challenging the predominance of conventional statistical and deep learning
approaches. This not only enlarges the methodological arsenal for renewable energy forecasting but also
introduces a new method for understanding non-linear and noisy time series data. From a technical point of
view, the combination of similarity-based forecasting with big data platforms like Hadoop and Spark
guarantees the suggested model to be accurate and scalable in real-time operations. This has direct
ramifications for different stakeholders in the renewable energy system: wind farm operators can maximize
turbine efficiency using accurate predictions, grid managers can depend on better forecasts to balance
supply and demand, and policy makers can use these metrics to develop strategies for higher integration of
renewables and less use of fossil fuels. Overall, the research responds to a critical industry requirement for
predictive systems that are not only highly accurate but are computationally efficient and scalable in
massive energy settings.

[JCRT2510227 ] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ] b859


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

1.5 Objectives

To build a scalable forecasting model for wind speed prediction using pattern sequence similarity
techniques.

To compare the proposed model with benchmark statistical approaches and advanced deep learning models
in terms of forecasting accuracy and computational efficiency.

To validate the performance of the model on real-world SCADA datasets to ensure practical applicability
and robustness.

1.6 Research Questions

To what extent can a pattern sequence similarity approach build a scalable and efficient model for wind
speed forecasting in a big data environment?

How does the forecasting performance of the similarity-based model compare with traditional statistical
models (e.g., ARIMA) and deep learning models (e.g., LSTM) in terms of accuracy and computational cost?
Can the proposed forecasting model maintain robustness and practical applicability when validated against
large-scale, real-world SCADA wind speed datasets?

2. Literature Review

2.1 Historical Methods

Historically, wind speed prediction has depended on statistical and time series techniques because they are
mathematically straightforward and understandable(Potter & Negnevitsky, 2006). Some of the earlier
methods like the persistence model, which is based on the assumption that future wind speed will be equal
to the latest measured value, offered a naive but sometimes competitive benchmark for extremely short-term
forecasting horizons(Pilipovi¢ et al., 2025). Slightly more complex linear models, such as Autoregressive
(AR) and Autoregressive Integrated Moving Average (ARIMA), became popular during the 1980s and
1990s. These models utilize autocorrelation patterns within the time series data to forecast future values and
have proved efficient for short-term forecasting, generally ahead of a few hours(Jahangir et al., 2024).
Additionally, exponential smoothing methods like Holt—Winters were utilized to treat seasonality and trend.
Although these statistical approaches are computationally intensive and yield interpretable estimates of the
parameters, their performance is suboptimal when applied to highly non-linear, volatile, and large wind
datasets(Hastie et al., 2005). Furthermore, they suppose data distribution stationarity, which in real
meteorological situations with sudden wind speed oscillations is often violated(Box et al., 2015). Therefore,
their effectiveness decreases as the horizon of forecasting widens or if the input data set becomes more
complex and bigger in dimension(Tugrul et al., 2025).

ARIMA Model
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2.2 Machine Learning and Deep Learning Models
The limitations of conventional models prompted the use of machine learning (ML) and deep learning (DL)
methods, which are more capable of accommodating the sophisticated, non-linear patterns of wind speed.
Support Vector Machines (SVMs), Random Forests, and Gradient Boosting Decision Trees (GBDTSs) have
been used in wind speed forecasting with great success. Ensemble and kernel-based methods like these can
accommodate high-order interactions and are more robust against non-stationarity than ARIMA-type
models(Mohandes et al., 2004).
The recent decade has witnessed a growing focus on deep learning models, especially sequential and
temporal data models(Makridakis et al., 2018). Recurrent Neural Networks (RNNs) and their advanced
versions, such as Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUSs), gained
widespread use because they can represent long-range temporal dependencies. LSTMs, specifically, have
been demonstrated to perform better in short- and medium-term wind forecasting activities, albeit at the
expense of heavy training needs, hyperparameter sensitivity, and computational costs(Yang & Kileissl,
2024).
Tempraral Convolutional Networks (TCNs) and attention-based architectures were more recently introduced
to process high-dimensional time series using parallelism over RNNs. Prophet, also created by Facebook,
has become a useful tool for seasonal time series forecasting and has been used for renewable energy
demand forecasting and wind speed forecasting(Duan et al., 2021). Nonetheless, such ML/DL models tend
to need enormous labeled datasets and expert hardware like GPUs, which may confine their real-time
application to large-scale energy systems(Quan et al., 2013).
LSTM Cell Update

he = f(Wyxe + Wyphe_ 1 + b)

IJCRT2510227 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ] b860


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

2.3 Sequence Similarity Methods

Another paradigm to parametric or learning-based methods is the application of time series similarity
measures. Rather than learn global functional mappings between input and output, these methods identify
local sequence patterns from past data that are similar to the present path and utilize them to predict future
values(Han et al., 2022).

Methods like Dynamic Time Warping (DTW), Euclidean distance, cosine similarity, and motif
identification have proven to be effective in various applications ranging from speech recognition,
handwriting identification, anomaly detection, and financial time series forecasting. In wind forecasting, the
hope is in leveraging the recurring patterns embedded within the meteorological process of diurnal cycles,
seasonal patterns, and recurring weather fronts.

One of the primary benefits of similarity-based methods is that they are interpretable and computationally
efficient. As opposed to deep neural network models that operate like black boxes, sequence similarity tools
enable energy analysts to trace predictions back to similar historical trends directly. Additionally, since they
do not involve large training phases, these methods are most appropriate for streaming and big data settings
where real-time flexibility is paramount. Yet their deployment in renewable energy is currently small,
offering a gap for methodology expansion.

2.4 Comparative Analysis

Comparative analysis of the three leading classes of models—statistical, machine learning/deep learning,
and similarity-based methods—identifies strengths as well as weaknesses.

Statistical Models: ARIMA, AR, and exponential smoothing techniques are extremely interpretable and
computationally efficient. They are, however, limited by linearity and stationarity assumptions, which
render them ineffective for highly volatile and large datasets of wind data. Their scalability is also poor if
used for high-frequency, multi-year SCADA data.

Deep Learning and Machine Learning Models: These models, such as SVMs, LSTMs, GRUs, and TCNs,
have the ability to capture intricate non-linearities and temporal relationships. They are able to perform
highly accurate forecasting, particularly in the short-horizon. However, they are computationally intensive,
demand large training sets, and are often non-interpretable, which limits their adoption into operational
energy systems.

Similarity-Based Models: These models provide a trade-off between accuracy and computational
performance. By comparing contemporary patterns to past sequences, they give interpretable predictions
without extensive training needs. Their computational performance makes them specially appealing for
large data platforms like Hadoop and Spark, which can utilize parallelism to support extensive similarity
searches. Though strong contenders, they are less exploited in the renewable energy sector.

2.5 Research Gap ldentified

The literature review shows that similarity-based sequence matching methods have not yet been
exhaustively researched in wind speed forecasting, although they have proved to be successful in other
fields like speech processing, handwriting recognition, and money-making pattern prediction. The
incorporation of the methods with big data solutions—a requirement for dealing with enormous SCADA
datasets produced by wind farms—is missing. Previous work has generally tended to concentrate on
enhancing accuracy with deep learning, while only using conventional models that are non-scalable.
Therefore, there is a great potential to fill the gap between forecast accuracy and computational scalability
through a union of similarity-based approaches with distributed big data platforms. This research fills this
research gap by suggesting a new framework that combines pattern sequence similarity methods with
Hadoop and Spark platforms and tests the method using real-world wind speed data. The result will be
hoped to give rise to a scalable, understandable, and efficient forecasting model that is able to facilitate the
integration of renewable energy into contemporary power systems.

3. Methodology

3.1 Research Design

The research uses a quantitative design based on simulations to assess the performance of sequence
similarity methods for forecasting wind speed. The research is based on actual SCADA data obtained in
2022 from wind farm monitoring systems. The design involves an experimental approach whereby the
proposed method based on similarity is compared with existing forecasting methods such as ARIMA
(statistical) and LSTM (deep learning). This framework facilitates accuracy determination as well as
computational efficiency examination. Through the generation of simulations on distributed big data
platforms, the design ensures that the results are not only methodologically sound but also feasibly scalable.
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3.2 Data Description

The dataset employed in this study comprises 34,080 data points collected every 15 minutes throughout
2022, offering an exhaustive representation of day-to-day, week-to-week, and season-to-season wind
patterns. Every record holds a number of meteorological and operational features such as:

Wind Speed (m/s) — the main forecast target variable.

Pre-Power (kW) — turbine power before conversion losses, indicative of the straightforward influence of
wind speed on production.

Wind Direction (degrees) — relevant for wind pattern and potential turbulence.

Temperature (°C) — meteorological variable affecting air density and wind behavior.

Humidity (%) — impacting atmospheric stability.

Pressure (hPa) — atmospheric condition associated with wind movement.

Rounded Wind Speed/Power — discretized representations used for categorical analyses.

The size of the dataset is large enough to represent seasonal variation and meteorological extremes, hence
reliability in short-term and medium-term forecasting assessment.

3.3 Preprocessing

For quality and usability assurance, the dataset is passed through a systematic preprocessing pipeline:
Datetime Conversion: The DATATIME column is converted to a suitable datetime index to facilitate
extraction of time features like hour, day, week, and month.

Data Cleaning: Missing or irregular values in YD15 (15-minute average wind speed) are imputed through
linear interpolation, and outliers are identified through the interquartile range (IQR) technique.
Normalization: Numerical variables, such as wind speed, temperature, humidity, and pressure, are
normalized with z-score standardization to enhance comparability and minimize bias in similarity searching.
Feature Engineering: Temporal and lag features are extracted to optimize model performance. These
include:

Lagged wind speeds at frequencies (t-1, t—4, t-12) to detect persistence.

Moving averages to filter short-term variability.

Seasonality features (hour of day, day of week, month) to detect cyclic wind patterns.

This preprocessing guarantees that the dataset is standardized, scalable, and optimized for similarity-based
search and benchmark models.

3.4 Tools and Frameworks

The implementation is based on a combination of big data platforms, programming languages, and domain-
specific libraries:

Big Data Platforms:

Hadoop for distributed storage (HDFS) of large-scale time series data.

Apache Spark for parallel processing to facilitate scalable similarity computations for large datasets.
Programming Tools:

Python (for machine learning, data processing, visualization).

R (statistical verification and ARIMA modeling).

SQL (structured queries and data aggregation).

Libraries:

scikit-learn for data preprocessing, metrics, and ML baselines.

tslearn for similarity metrics such as DTW and Euclidean distance.

statsmodels for ARIMA modeling.

TensorFlow/Keras for LSTM model setup and training.

These structures provide both computational scalability and methodological rigor, allowing the approach to
be scalable for industrial-level datasets.

3.5 Procedure

The methodological procedure consists of a five-step workflow:

1.Preprocessing — Clean, normalize, and engineer features as mentioned above.

2.Extract Similarity Sequence — Calculate similarity scores between the present wind speed sequence and
past subsequences with DTW and Euclidean distance. Find the most similar earlier patterns.

3.Prediction — Employ corresponding past sequences to predict short-term wind speeds (forecast intervals of
1-6 hours).

4.Benchmarking — Compare predictions with ARIMA (statistical) and LSTM (deep learning) models trained
on identical datasets.
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5.Evaluation — Measure performance with error measures such as RMSE (Root Mean Squared Error), MAE
(Mean Absolute Error), MAPE (Mean Absolute Percentage Error), and R? (coefficient of determination).
This organized workflow guarantees both methodological innovation and comparative evaluation.

Dynamic Time Warping (DTW) Distance

DTW(X,Y) = minzn: i d(xi, ;)

i=1 j=1
Euclidean Distance for Similarity

DY) = |} -y
i=1

Forecasting Error Metrics

RMSE:
n
1 &5 \2
RMSE= |- (7.~ 3))
t=1
MAE:
n
MAE = 12 ly, — ¥
. Ye =Vt
t=1
MAPE:
n
100 s
MAPE = Z Ye — Vi
n = Y

Data

SCADA wind speed data

|

II gl Preprocessing

(

a Cleaning, normalization

|

4 5

Sequence Similarity
Extraction
DTW, Euclidean distance

!

Forecasting

Pattern sequence similarity

. »

|

7 ~

&5  BigData
c—n Framework
Hadoop/Spark cluster

\ J

Figure 1: Research Methodology Framework
Figure 1 Research Methodology Framework presents the serial process of this research, starting from data
collection and preprocessing to its implementation in a big data environment. The methodology further
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combines similarity-based forecasting with statistical models as well as deep learning models, where the
results are computed using standard error measurements. This systematic workflow allows for both accuracy
and scalability in wind speed prediction for practical use.

Algorithm 1: Similarity-Based Wind Speed Forecasting

Input: Historical wind speed dataset D, window length L, forecast horizon H, similarity measure (DTW or
Euclidean).

Output: Forecasted wind speeds W1, Wri2, «oo) Wiy

Steps:

Preprocess the dataset by cleaning missing values, normalizing variables, and extracting temporal features.
Construct sliding windows of length L to represent historical sequences.

Define the current sequence S,,...n¢ @S the most recent window.

Compute similarity between S_...,. and all historical sequences using DTW or Euclidean distance.

Rank the historical sequences based on similarity scores.

Select the top- k most similar sequences.

Extract the subsequent horizon values from the selected sequences.

Aggregate the horizon values (mean or weighted average) to generate the final forecast.

Benchmark the results against ARIMA and LSTM models.

. Evaluate performance using RMSE, MAE, MAPE, and R?.

3.6 Variables

The research has the following variable structure:

Independent Variables: Previous wind speed sequences, lagged characteristics, and time characteristics like
hour, day, and month.

Dependent Variable: Predicted wind speed at selected horizons (1-6 hours).

Control Variables: Location (kept constant for dataset), seasonal influences, and meteorological conditions
like temperature and pressure.

This setup enables the suggested model to control the impact of historical sequence similarity on wind speed
forecasting with consistency throughout environmental controls.

3.7 Ethical Considerations

The data are derived from open-source SCADA and meteorological data, which has ensured ethical and
privacy compliance. No personally identifiable information is involved, and the data are entirely
environmental and operational. The utilization of open-access sources ensures openness and reproducibility
of outcomes. Further, the research is in accordance with sustainable research principles by promoting the
greater societal objective of renewable energy integration without creating confidentiality or commercial
sensitivity concerns.

4. Results

4.1 Characteristics of the Dataset

The dataset employed in the present study had 34,080 observations recorded at 15-minute intervals over the
period of the year 2022. Descriptive analysis showed the following:

The mean wind speed for all records was 5.4 m/s, which is typical for normal onshore wind regimes
appropriate for power generation.

The span of wind speeds ranged from 0.2 m/s (calm situation) to 21.5 m/s (high wind period), encompassing
both operationally extreme and relevant situations.

Seasonal patterns were demonstrated, with greater mean wind speeds in winter (December—February) and
lower speeds in summer (May-July). This was as expected in temperate climates, where winter pressure
systems result in more stable and fast wind flows.

Analysis of distribution revealed that the most frequent wind speeds were 3-8 m/s, which is the best
operating range for the majority of new wind turbines.

This statistical stratification points out that the data set is diverse enough to test prediction models under a
variety of conditions, such as low, moderate, and high wind speeds.
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Table 1: Dataset Characteristics Summary (2022 SCADA Data)
Attribute Unit Mean Min Max |
Wind Speed m/s 54 02 215
Pre-Power kw 250 0 1200
Wind Degrees 180 0 360
Direction
Temperature °C 16.8 -3.5 38.7
Humidity % 582 20 95
Pressure hPa 1012 986 1034
Table 4.2 summarizes the SCADA dataset employed here, demonstrating range and central tendencies of
some of the main meteorological and operational variables. There was average wind speed of 5.4 m/s with a
maximum of 21.5 m/s, and temperature and humidity exhibited broad seasonality. These features reflect the
richness and appropriateness of the dataset for validating forecasting models across a variety of conditions.

Wind Speed Time Series Overview

12 4

10 A

Wind Speed (m/s)

2022-01 2022-04 2022-07 2022-07 2022-10 2022-10
Date

Figure 2 :Wind Speed Time Series Overview
Figure 2 illustrates the variations in wind speed throughout the year, with seasonal changes reflected in
greater speeds in the winter months and comparatively lower speeds in summer. The seasonality is evident
in the time series with marked short-run volatility as well as longer-run seasonals. This picture creates the
foundation dynamics of wind speed, which is essential in developing forecasting models.
Seasonal/Monthly Trends
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Figure3: Seasonal/Monthly Trends
Figure 3 depicts seasonal wind speed variation, with increased averages between winter months and reduced
speed during the summer. A clear seasonality of monthly distribution is evident, where January to March
and November to December show stronger winds. Such a trend supports the use of integrating seasonality
into forecasting models.
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4.2 Forecasting Performance
The forecasting models—ARIMA, LSTM, and the proposed similarity-based approach—were compared on
the same dataset based on various performance metrics.

Table 2: Forecasting Model Performance

Model RMSE MAE MA R?

PE
ARIMA 2.43 1.78 146 0.
% 71
LSTM 2.11 1.52 123 0.
% 77
Similarity  1.86 1.39 111 0.
% 82

The comparative analysis of the forecasting models exhibits distinct performance differences. Whereas the
ARIMA model performed fairly well in terms of accuracy, it could not handle nonlinear changes well,
manifesting in higher RMSE and MAPE values. The LSTM model did better, containing errors and
enhancing explanatory power with an R? of 0.77. The proposed similarity-based model, however, recorded
the best performance with the lowest RMSE (1.86), MAE (1.39), and a better R2 of 0.82. Its MAPE of
11.1% suggests pragmatic reliability for deployment in renewable energy scheduling. Generally, the
similarity-based method does well in terms of achieving a robust balance between accuracy and
computational time and is hence especially suited for short-term forecasting requirements.

Forecast Comparison (Short-Term Horizon)

Wind Speed (m/s)

— Actual
——~ ARIMA
——- LSTM
4} === Similarity

01-01 00 01-01 06 01-01 12 01-01 18 01-02 00 01-02 06 01-02 12 01-02 18 01-03 00
Time

Figure 4 Forecast Comparison (Short-Term)

Figure 4 compares the short-term horizon forecast for ARIMA, LSTM, and the similarity-based model with
the actual values for wind speed. The ARIMA model is slow in tracking abrupt changes, whereas LSTM is
smoother in adapting but still does not catch abrupt peaks. The similarity-based model is closest to the
actual values, reflecting higher short-term predictive accuracy.

: Error Metrics Comparison Across Models

. ARIMA
- L5TM
W Similarity-Based

14

values

MAE MAPE

Figure 5 : Error Metrics Bar Chart
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Figure 5 illustrates the comparison of error metrics for ARIMA, LSTM, and the similarity-based model,
with evident performance differences. ARIMA demonstrates the greatest error values, with LSTM
improving modestly in accuracy. The similarity-based model yields the lowest RMSE, MAE, and MAPE, as
well as the highest R?, affirming its better forecasting ability.

4.3 Visualization of Results

To further examine the findings, visual analysis was done.

Time Series Plots: Predicted wind speeds were compared with actual measurements for representative
weeks in various seasons. Visual observation revealed that the similarity-based model followed large
changes better than ARIMA and with lower lag than LSTM predictions.

Error Distribution Charts: Histograms of errors in forecasts showed that similarity-based predictions had a
smaller error spread, fewer outliers compared to both ARIMA and LSTM. This shows more stability and
robustness.

Forecast Horizon Analysis: Comparing performance between horizons (1-6 hours), the similarity-based
model performed better consistently with respect to benchmarks, especially in ultra-short-term forecasts (1—
2 hours). This indicates that the detection of similar past sequences is particularly helpful when there is a
need for real-time forecasting in grid balancing.

Error Distribution Histogram/Density

0.25 ARIMA
LSTM
Similarity-Based

0.20

0.15

Density

0.10

=15 =5.0 -2.5 0.0 25 5.0 7‘5 160
Forecast Error (Predicted - Actual)

Figure 6: Error Distribution Histogram/Density

Figure 6 illustrates ARIMA, LSTM, and similarity-based model error distribution demonstrating how
forecast errors are distributed around zero. ARIMA error has greater spread, reflecting greater variability,
whereas LSTM indicates moderate improvement with more clustering. The similarity-based model has the
least distribution indicating more reliable and consistent predictions.

4.4 Statistical Significance Testing

To make sure that the performance improvements observed were not due to variation at random, paired t-
tests were carried out among the error distributions of the models:

Similarity compared to ARIMA: The decline in RMSE and MAE was statistically significant at the 95%
confidence level (p < 0.01).

Similarity vs. LSTM: The improvements were also statistically significant (p < 0.05), which verified that the
similarity-based solution was yielding non-trivial performance improvements even over sophisticated deep
learning solutions.

The findings show that the suggested similarity-based approach is robust and statistically significant in
improving prediction accuracy. Operationally, these gains can be seen in terms of more accurate energy
scheduling, lower reserve expenses, and better grid stability.
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Statistical Significance - Error Distributions
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Figure 7 Statistical Significance Boxplot

Figure 7 displays the statistical significance of ARIMA, LSTM, and similarity-based model's forecast error
distributions. ARIMA has the highest spread of errors, while LSTM depicts moderate improvement with
reduced variability and the similarity-based model with the least spread. This verifies that the suggested
method reliably produces better forecasts with statistically important improvements.

5. Discussion

The results show that pattern sequence similarity algorithms achieve superior accuracy and scalability
compared to classical statistical and deep learning models. In contrast to ARIMA, the linear assumption, or
LSTM, computation-intensive, similarity-based algorithms are dependent on matching past motifs. This
makes them more efficient in the case of large-scale data.

These findings are consistent with previous work in finance and anomaly detection time series similarity,
but this work applies it to forecasting renewable energy. The enhanced performance in short-term forecasts
makes this method especially useful for real-time grid operation and energy trading.

Surprisingly, model sensitivity was higher under extreme weather conditions, and thus there is a need for
hybrid models that integrate similarity-based and deep learning approaches.

6. Limitations

There are some limitations in this study. It relies on information from a single geographical location in
2022, which makes it less generalizable. Processing very high-frequency data could be expensive in terms
of computation. Also, performance could be reduced under extreme weather conditions. Absent data can
also impact the results negatively.

7. Conclusion

This paper demonstrates that combining pattern sequence similarity with big data platforms produces
reliable, scalable wind speed forecasts. The method decreases RMSE and MAE when compared with
ARIMA and LSTM models, especially for short horizons.Practical Contributions: Offers a real-time
forecasting tool for grid operators.Theoretical Contributions: Broads the application of sequence similarity
to renewable energy forecasting.

8. Future Work

Build hybrid similarity—deep learning models.

Increase evaluation on multiple geographic datasets.

Apply framework to smart grids, loT-enabled wind turbines, and energy trading platforms.
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