### **IJCRT.ORG**

ISSN: 2320-2882



## INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

# A Study On Supply Chain Management In Water Distribution With Reference To Coimbatore City

1M.Banurekha, 2A.Arunprakash

1Assistant Professor, 2Student

1Dr. N.G.P. ARTS AND SCIENCE COLLEGE,

2Dr. N.G.P. ARTS AND SCIENCE COLLEGE

#### **ABSTRACT**

This research analyzes the effectiveness and problems of supply chain management (SCM) in the water supply industry in the case of Coimbatore city. Owing to fast industrialization and population expansion, Coimbatore is experiencing growing pressure on its water supply system. The study seeks to explore the present SCM operations in water purchase, storage, movement, and delivery, as well as the role played by technology, policy, and customer feedback. Based on primary data gathered through standardized questionnaires and supplemented by secondary data from reports and journals, the research determines major inefficiencies and prescribes measures to enhance the operational performance, customer satisfaction, and sustainability.

#### INTRODUCTION

Coimbatore, or Manchester of South India, has witnessed a spurt in industrial and population growth. This has led to a spurt in water demand, which has put pressure on supply systems. Sources of water supply in the city are primarily from Pillur and Siruvani reservoirs. Inefficiencies in supply due to leakage, irregular supply, unauthorized tapping, and aged infrastructure hinder proper supply.

A low-cost water supply chain is not only critical for economic development but also for public health and environmental sustainability. In this research paper, there is an effort to understand the SCM process in the water distribution sector in Coimbatore and the role of technology, policy, and public-private partnerships in improving the system.

www.ijcrt.org

STATEMENT OF THE PROBLEM

Despite being a basic necessity, water distribution in Coimbatore is plagued with inefficiencies:

Leakage due to old pipelines (30% water loss).

Unauthorized connections and inefficient metering systems (15% water loss).

Industrial water demand clashes with residential needs.

Budgetary constraints restrict the adoption of smart technologies.

The city requires a future-ready SCM approach that ensures equitable water distribution, reduces losses,

and integrates technology for sustainability.

**OBJECTIVES OF THE STUDY** 

To study the SCM practices in Coimbatore's water distribution sector.

To analyze inefficiencies in procurement, storage, transportation, and distribution.

To evaluate the role of technology and policy in water supply management.

To assess consumer satisfaction and preferences regarding water delivery.

To suggest improvements for a sustainable water SCM model.

SCOPE OF THE STUDY

This study focuses on consumers using canned water services provided by Gowra Solutions in Coimbatore and Tiruppur. The scope includes evaluating delivery patterns, pricing, order placement methods, and consumer satisfaction. It also looks into broader infrastructure and policy issues related to water SCM in

the region.

SIGNIFICANCE OF THE STUDY

The findings of the study provide valuable insights into how SCM can be improved to reduce wastage, enhance consumer satisfaction, and make water supply systems more resilient. The research benefits local policymakers, water supply companies, and technology providers working toward sustainable water

distribution.

RESEARCH METHODOLOGY

**Sources of Data** 

Primary Data: Structured questionnaires collected from 104 consumers.

Secondary Data: Journals, articles, and websites.

#### **Sample Design**

Sampling Method: Simple random sampling.

Sample Size: 104 respondents from Coimbatore and Tiruppur.

#### **Tools Used for Analysis**

- Simple Percentage Analysis
- Ranking Analysis
- Chi-Square Test

#### LIMITATIONS OF THE STUDY

- Data based on respondent opinions, subject to bias.
- Limited to Coimbatore and Tiruppur areas.
- Time-constrained and reliant on structured questionnaires.

#### **REVIEW OF LITERATURE**

- Kotler (2015): Advocates for customer-focused SCM.
- Pankaj Kumar (2016): Emphasizes the role of IoT and AI in reducing losses.
- Khaniwale (2015): Recommends integrating SCM with water resource management.
- Warakul (2016): Shows how real-time data and predictive maintenance enhance SCM.

These studies collectively support the need for advanced SCM solutions in water distribution, especially in urban settings.

#### DATA ANALYSIS

#### SIMPLE PERCENTAGE

#### GENDER OF THE RESPONDENTS

| S.No  | Gender | No. of Respondents | Percentage (%) |
|-------|--------|--------------------|----------------|
| 1     | Male   | 78                 | 75%            |
| 2     | Female | 26                 | 25%            |
| Total |        | 104                | 100%           |

#### **INTERPRETATION:**

The above Table 4.1 shows that, out of 104 respondents taken for the study, 75% of the respondents are male, and 25% of the respondents are female.

The majority (75%) of the respondents are male

#### **RANKING ANALYSIS**

#### PURCHASE DECISION FACTORS OF THE RESPONDENTS

| CATEGORY            | 1(5)      | 2(4)      | 3(3)      | 4(2)     | 5(1)     | TOTAL      | RANK |
|---------------------|-----------|-----------|-----------|----------|----------|------------|------|
| Price               | 28<br>140 | 12<br>48  | 34<br>102 | 20<br>40 | 11<br>55 | 105<br>385 | I    |
| Quality             | 3<br>15   | 28<br>113 | 36<br>108 | 30<br>60 | 8 8      | 105<br>304 | П    |
| Brand<br>Reputation | 4 20      | 11<br>44  | 49<br>147 | 33<br>66 | 8 8      | 105<br>285 | m    |
| Packaging           | 5<br>25   | 9 36      | 30<br>90  | 48 96    | 13<br>13 | 105<br>260 | IV   |
| Delivery speed      | 6 30      | 10<br>40  | 27<br>81  | 38<br>76 | 24<br>24 | 105<br>251 | V    |

#### **INTERPRETATION:**

From the Rank Analysis, It is found that the highest rank score Price and the lowest rank score is Delivery speed.

#### Majority of the respondents consider Price

#### **CHI-SQUARE ANALYSIS**

#### RELATIONSHIP BETWEEN INCOME AND DELIVERY OF WATER SUPPLY

#### **Case Processing Summary**

|                                                                   | Cases |         |         |         |       |         |
|-------------------------------------------------------------------|-------|---------|---------|---------|-------|---------|
|                                                                   | Valid |         | Missing |         | Total |         |
|                                                                   | N     | Percent | N       | Percent | N     | Percent |
| delivery of water supply *<br>monthly income of the<br>respondant | 104   | 100.0%  | 0       | 0.0%    | 104   | 100.0%  |

#### delivery of water supply \* monthly income of the respondant Crosstabulation

|                          |                  | monthly income of the respondant |                       |                     |                     |                     |       |
|--------------------------|------------------|----------------------------------|-----------------------|---------------------|---------------------|---------------------|-------|
|                          |                  |                                  | Less than Rs<br>10000 | Rs 10001 -<br>30000 | Rs 30001 -<br>50000 | Rs 50001 -<br>70000 | Total |
| delivery of water supply | Same Day         | Count                            | 31                    | 1                   | 0                   | 0                   | 32    |
|                          |                  | Expected Count                   | 9.5                   | 9.2                 | 5.5                 | 7.7                 | 32.0  |
|                          | 1-2 Days         | Count                            | 0                     | 29                  | 8                   | 0                   | 37    |
|                          |                  | Expected Count                   | 11.0                  | 10.7                | 6.4                 | 8.9                 | 37.0  |
|                          | 3-5 Days         | Count                            | 0                     | 0                   | 10                  | 6                   | 16    |
|                          |                  | Expected Count                   | 4.8                   | 4.6                 | 2.8                 | 3.8                 | 16.0  |
|                          | More than 5 Days | Count                            | 0                     | 0                   | 0                   | 19                  | 19    |
|                          |                  | Expected Count                   | 5.7                   | 5.5                 | 3.3                 | 4.6                 | 19.0  |
| Total                    |                  | Count                            | 31                    | 30                  | 18                  | 25                  | 104   |
|                          |                  | Expected Count                   | 31.0                  | 30.0                | 18.0                | 25.0                | 104.0 |

#### Chi-Square Tests

|                                 | Value                | df | Asymptotic<br>Significance<br>(2-sided) |
|---------------------------------|----------------------|----|-----------------------------------------|
| Pearson Chi-Square              | 210.160 <sup>a</sup> | 9  | <.001                                   |
| Likelihood Ratio                | 215.353              | 9  | <.001                                   |
| Linear-by-Linear<br>Association | 93.288               | 1  | <.001                                   |
| N of Valid Cases                | 104                  |    |                                         |

a. 6 cells (37.5%) have expected count less than 5. The minimum expected count is 2.77.

#### **INTERPRETATION:**

There is a statistically significant association between the two variables (p-value = 0.001) between the variables, suggesting that the observed relationship is unlikely to occur by chance. It is noted that 37.5% of the cells have expected counts less than 5, which may affect the test's accuracy. The association is not due to chance (p-value < 0.05), Thus H<sub>0</sub> is rejected.

There is an association between Monthly income and Delivery of water supply

IJCR

#### **FINDINGS**

- Price is the most critical factor.
- Most respondents are students and make weekly purchases. Majority prefer ordering by phone.
- A considerable number value sustainability.

#### **SUGGESTIONS**

- Upgrade old infrastructure.
- Invest in smart meters and leak detection tools.
- Foster public-private partnerships.
- Educate consumers on water conservation.
- Develop mobile platforms for grievance redressal.

#### **CONCLUSION**

Efficient SCM for water supply is not merely a logistics necessity but also a social responsibility. Coimbatore can develop the water supply infrastructure by upgrading the existing infrastructure, using smart technology, and stakeholder involvement at all levels. Gowra Solutions is a great example of the type of initiative that private organizations can take. Coimbatore can be a model city in water management sustainability if it takes proactive steps.

