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Abstract: Inthis paper, we prove the Hyers-Ulam-Rassias (HUR) stability of fourth order partial differential equation:
P(X, DUxxxx(X, ) + Px(X, 1) Unxx (X, 1)+ p(X, 1) Uxx (X, )+ Px (X, 1) U (X, 1) = g(X, £, U(X, 1)).

Index Terms - Hyers-Ulam-Rassias Stability, Banach’s contraction principle, partial differentialequation, Functional
equations.

I. INTRODUCTION

In 1940, S. M. Ulam [15], gave a well-known talk on stability problems for several functional equations. In the
talk, Ulam discussed a problem concerning the stability of group homomorphism. In 1941, D. H. Hyers [5] gave a partial
solution to Ulam’s problem. There have been of publications on stability of solutions to differential equations [3, 6, 7] and
partial differential equations [8, 9]. This stability is now referred to as the Hyers Ulam (HU) stability and its various extensions
has been named with additional word. Hyers Ulam Rassias (HUR) stability is one such extension. In [10] and [11], HUR
stability for linear differential operators of n™ order with non-constant coefficients is invested. HUR stability for special types
of non-linear equations have been studied in [1, 2, 12, 13]. In 2011, Gordji et al. [4], established the HUR 'stability of non-
linear partial differential equations by using Banach’s Contraction Principle. In 2019, Sonalkar et. al. [14], proved the HUR
Stability of linear partial differential equations by using Laplace transform method. In this paper, by using the result of [4],
we prove the HUR stability of fourth order partial differential equation:

P(X, Uxxxx(X, ) + Pac(X, YUaxx (X, )+ (X, 1) Unx(X, 1) + Px (X, 1) U (X, ) = g(X, t, U(X, 1)). (11)
Here p: Jx J — R* be adifferentiable function at least once w. r. t. both the

arguments and p(x, t) #0, ¥x,t €J,J =[a, b] be a closed interval and g: J x J x R — R be a continuous function.

Definition 1.1: A function u: JxJ — R is called a solution of equation (1.1) if u € C #(J xJ) and satisfies the equation (1.1).
1. PRELIMINARIES
Definition 2.1: The equation (1.1) is said to be HUR stable if the following holds:
Let ¢-J xJ — (0, o) be a continuous function. Then 3 a continuous function ¥: J X J — (0, ),
which depends on ¢ such that whenever u: J x J — R is a continuous function with
| PO, OUarx (X, ) + Poc(X, lrrx (X, )+ PX, 1) Unx (X, )+ Px(X, DU (X, 1) - g(X, L, u(X, D)< p(x0),  (2.1)
there exists a solution ug :J xJ — R of (1.1) such that
lu(x, t) —uo(x, t)| < P(x, 1), vV (x,t) eJ xJ.

We need the following result.

IJCRT2303547 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.orqg | e818


http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 3 March 2023 | ISSN: 2320-2882

Banach Contraction Principle:
Let (Y, d) be a complete metric space, then each contraction map T: Y — Y has a unique fixed point,
that is, there exists b €Y such that Tb =b. Moreover, d(b,w) < ﬁd(W,TW), Yw € Y and

0=a <1

Using the results from Gordji et al. [4], we establish the following result.

. MAINRESULT
In this section we prove HUR stability of fourth order partial differential equation (1.1).

Theorem 3.1: Letc € J. Let p and g be as in (1.1) with additional conditions:
i) pix,t)>1, Vxted
(i) ¢ J xJ — (0, ) be a continuous function and M: J xJ — [1, o) be an integrable function.

(iii) Assume that there exists y, 0 <y < 1such that
[ M@, et )dt < yo(x,t), 3.1)
SIS I M@B 008, DdBdadr < ye(x,t) (3.2)

and
K(xt,u(xt) =ple ) ple, Duga (e, £) — p(x, Du(x, ) + plc, (e, t) + fcxg('r, t,u(r, b)) dr). (3.3)
Suppose that the following holds:
Cl: |K(z t, I(z, £)) = K(z, t, m(z, 1)) <Mz, DIz, t) —m(z, t)|,V , t €J and |, m eC(J xJ).
C2:u:J xJ — R be a function satisfying the inequality (2.1).

Then there exists a unique solution %o :J xJ — R of the equation (1.1) of the form

uo ) =ule, ) + [ f7 [ K (B, t,uo(B, t))dBdadr

such that

14

u(x, t) —ug(x, t)| <
[uCe,t) = uo(, )l <

o(x,t), Vx,te].

Proof: Consider

| (X, )xrx (X, O+ Pr(X, 1) Unr(X, 1) + P(X, 1) Une(X, 1) + Pr(X, 1) Un(X, 1)- g(X, 1, U(x, D)
= [{p (o rr (x, O3, + (o (x, DU (6, )}, — (X, 1, U(X, D).
From the inequality (2.1), we get
[{p (x, Otr (6, O} + {p(x, Dure(x, O}, —9(X, U, )| <p(x, 1).
= - (%, 1) <{p (o Ot (6 DI+ (6 DU (r, O3, = 9X, 1 U(X, 1) < o, 1), 34)

= {p(6 D tyrx (o )+ {p G, Dux (x, )3, — 9(X, 1, U(X, 1) < (x, 1).

Integrating from c to x we get,

p(x' t)uxxx(x; t) - p(C' t)uxxx(c; t) + p(x' t)ux(x' t) - p(cl t)ux(cr t) - fcx g(T, t! u(Tl t)) dT S fcx (p(TI t)dT
= p(xl t) {uxxx (x’ t) - p(x: t)_l [p(cv t)uxxx(c’ t) - p(x: t)ux (X, t) + p(C: t)ux (C’ t) + ng (T' t’ u(TI t)) dT]}
< fcx o(t, t)dr.

= {uxxx (x,t) = p(x, )t [p (¢, Dy (6, ) — pCx, Due (3, 1) + p(c, Duy (e, t) + j-xg (T’ e t)) dT]}
<pl,t)? fxq)(r, t)dr.

= {uxxx(x; t) - p(x: t)_l [p(c: t)uxxx(c: t) - p(x: t)ux(x! t) + p(C: t)ux(C! t) + fxg(‘[’ t' u(T, t)) dT]} S J‘x(p(‘[! t)dT:
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(- plx, ) = 1).

= {0, ) — K(x, t,ulx, )} < J.x(p(r, t)dr.

where K (x,t,u(x,t)) is given by equation (3.3).

Since M: J xJ — [1, ) be an integrable function, we have
{thrx (6, £) — K (%, t,u(x, 1)} < JXM(T, te(z, t)dr.
c
Using inequality (3.1) we have,
{ter 00, ) — K (%, t,ulx, £))} < fcxM(‘r, Do(r,t)dr <ye(x,t).

= {u (0 8) — K(x, 6, ulx, )} < o(x,0), (~0<y<1). (3.5)
Again, integrating from ¢ to x we get,

Uy (1, £) — 11 (0, £) — f “K(o b u(r, 0)dr < f o D).

Since M: J xJ — [1, ) be an integrable function, we have
U (6, 8) — U (e, 8) — [ K (7, t,u(r, 0)dr < [ M(7,0) (7, t)dr.
Using inequality (3.1) we have,

Uy (X, 1) — Uy, (c, ) — fxl{(r, t,u(r, t))dr < fo(‘r, te(r, t)dt < yp(x,t).

2 Uy (1, 8) — Uy (6, ) — f xK (z,t,u(z, t))dr < yo(x, t).

c
S Uy (1, 8) — Uy (c,t) — fcx K(z, t,u(r, t))dr < o(x,t), (~+ 0 <y <1).
Again, integrating from ¢ to x we get,
u (x,t) —u,(c, t) — fcx fCT K(a, t,u(a,t))dadr < fcx o(t, t)dr.
Since M: J xJ — [1, «) be an integrable function, we have
u, (x,t) —u,(c, t) — fcx fCT K(a, t,u(a,t))dadr < fcx M(z, t)p(z, t)dr.
Using inequality (3.1) we have,
u (x,t) —u,(c,t) — fcx fCTK(a, t,u(e, t))dadr < fo M(z,t)e(z,t)dt < ye(x,t).
= u, (x,t) —u,(ct) — fcx fCTK(a, t,u(a,t))dadr < ¢(x,t), (+ 0 <y <1).
Again, integrating from c to x we get,
ulx, t) —ulc,t) — fo fCT fca K(B,t, u(B,t))dpdadr < fo o(1,t)dr.
= u(x,t) — [ule, ) + fcx N fca K(B,t,u(B, t))dpdadr] < fcx o(z,t)dT.
Since M: J xJ — [1, «) be an integrable function, we have
ulx, t) — [ulc,t) + fcx fCT fca K(B,t,u(B, t))dBdadr] < foM(T, to(r, t)dr.
Using inequality (3.1) we have,

u(x, t) — [u(c, t) + jxjjal((/)’,t,u(ﬁ, t))dﬁdad‘[l < fo(r, e(t,t)dt < ye(x,t).

> ulx,t) = [ulc, ) + [ [ [TK(B.t,u(B,0))dpdadr] <ye(x,t). (3.6)
In a similar way, from the left inequality of (3.4), we obtain
—{ulx,t) = [ule,t) + fcx fCT fca K(B, t,u(B, v))dpdadr|} <yep(x,t). (3.7)
From the inequalities (3.6) and (3.7) we get,
luCx, t) — {ulc,t) + fcx f; fca K(B,t,u(B, t))dpdadr}| < yo(x,t). (3.8)
Let Y be the set of all continuously differentiable functions I: J x J — R. We define a metric d and an operator
TonY as follow: Forl,m €Y
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1(x,t)-m(x,t)

d(l! m) = Supx,t €] o(xt)

and the operator

(T = ule,0) + f7 [T [ K (B, t, m(B, t))dBdadr. (3.9)
Consider,

Ti(x,t) — Tm(x,t)

d(TL,Tm) = supy, ¢ )

_ 17 I7 IS K(B.EUB.D)dBdadt - [T [T [T K(B.tm(Bt))dBdadr
= SUPytej s :

IX T 18R (BELB.D)-K (Bt m(B,E))|dBdadT
< SUpy: e]{ £c-c TS .

By using condition C1 we get,

JESZ S MBI LB~ m(B.D)|dBdadT
d(Tl, Tm) < supy,; e,{ £-c-c o .

JEEIEMBOB.Y w dfdadt
= SUPxtej e .

P LT IEMBOOBY x supgre W dBdadt
< SUPyrej YT .

| JE I IEMBe(BY) dpdadt
=d(l,m) X supy, e,{ oD }
By using inequality (3.2) we get,

d(TI,Tm) < yd (I, m).

By using Banach contraction principle, there exists a unique %o€ Y such that Tuo= o, that is

u(e, ) + [ [T [EK(B.t, uo(B, ) dpdadr = uo(x, ),

(by using equation (3.9))
and

1
< —
d(ug,u) < — d(u, Tu). (3.10)
Now by using inequality (3.8) we get,
lu(x,t) — (Tw)(x,t)| < yo(x,t).
= [u(x,0)—(Tw ()| <y.
es)
[u(x,t)—(Tw) (x,t)|

N
Thus d(u,Tu) <vy. (3.11)
Again,

ug(x,t) — u(xt)

d(ug,u) = supy,e; o)

From equation (3.10) we get,
1
d(up,u) < md(u, Tu).

ug(x,t)—u(x,t)
@(xt)

1

Su =
px,t €J] (1-y)

d(u, Tu).

ug(x,t)—u(x,t)
T < SUDyxt ey

ug (x,t)—u(x, t)|
@ (x.t) -

From equation (3.11) we get,

ug(x,t)—u(x,t)

1
< d(u, Tu).
P(xt) -y ( )

) d(u, Tu).

ug(x,t)—u(x,t) Y
ox.t) - a-n
|u(x,t)—uo(x.t) < Y
Pxt) - a-y
IJCRT2303547 |
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luCx, t) — up(x, )| <=L

Vx,t €]J.
<050, xt €]

Hence the result.

IVV. CONCLUSION

In this paper we have proved the HUR stability of the fourth order partial differential equation (1.1) by employing Banach’s

contraction principle.
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