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Introduction and preliminaries 

Huang and Zhang [9] generalized the concept of a  metric space, replacing the set of real numbers 

by an ordered Banach space, and obtained some fixed point theorems for non linear mappings satisfying 

different contractive conditions. Subsequently, Abbas and Jungck [2] and Abbas and Rhoades [1] studies 

common fixed point theorems in cone metric space. Recently, Beg et al. [5] studied common fixed point of 

a pair of maps on topological vector space (TVS) valued cone metric space which is the larger class than 

that of introduced by Hang and Zhang [9]. Jungck [13] defined the pair of self mappings to be weakly 

compatible if they commute at their coincidence points. In this paper, common fixed point theorems for 

two pairs of weakly compatible maps, which are more general than 𝑅 −   𝑤𝑒𝑎𝑘𝑙𝑦 commuting and 

compatible mappings, are obtained in the setting of cone metric spaces, without exploiting the notion of 

continuity. It is worth mentioning that our results do not require the assumption that the cone is normal. 

Our results extend and unify various comparable results in the literature  ([2], [4], [7]). 

The following definitions and results will be needed in the sequel. 

Let 𝐸 be always a topological vector space(𝑖𝑛 𝑠ℎ𝑜𝑟𝑡𝑙𝑦, 𝑇𝑉𝑆) . A subset P of E called a cone if and 

only if, 
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(i) P is closed, non- empty and 𝑃 ≠ {0}; 

(ii) If 𝑎, 𝑏 ∈ 𝑅  𝑤𝑖𝑡ℎ 𝑎, 𝑏 ≥ 0 and 𝑥, 𝑦 ∈ 𝑃,  then 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃. 

(iii) 𝑃 ⋂(– 𝑃) = {0}. 

For a given cone 𝑃 ⊂ 𝐸, we define a partial ordering ≤  with respect to by  𝑥 ≤ 𝑦 if and only if  

𝑦 − 𝑥 ∈ 𝑃, where 𝑥 ≪ 𝑦 means that 𝑦 − 𝑥 ∈ 𝑖𝑛𝑡 𝑃 (the interior of P). A cone P is said to be normal if 

there is a number 𝐾 > 0 such that 

   0 ≤ 𝑥 ≤ 𝑦  ⇒ ‖ 𝑥‖ ≤   𝐾 ‖𝑦‖, ∀ 𝑥, 𝑦 ∈ 𝐸.  

The least positive number satisfying the above inequality is called the normal constant of P. 

Recently, Rezapour and Hamlbarani [16] proved that there is no normal cone with normal 

constant 𝐾 < 1 and for all  𝑘 > 1, there are cones with normal constants 𝐾 > 𝑘.  

Definition 1.1 Let X is a non empty set. Suppose that the mapping 𝑑 ∶ 𝑋 × 𝑋 → 𝐸 satisfies 

(a)  0 ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋  and 𝑑(𝑥, 𝑦) =  0 if and only if 𝑥 = 𝑦; 

(b) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋; 

(c) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. 

Then d is called a TVS – valued cone metric on X and (𝑋, 𝑑) is called a TVS-valued cone metric space. 

Definition 1.2 Let (𝑋, 𝑑) be a TVS-valued cone metric space. Let {𝑥𝑛} be a sequence in X and 𝑐 ∈ 𝐸 

with 0 ≪ 𝑐. 

(a) The sequence {𝑥𝑛} is called a Cauchy sequence if there is an N such that 𝑑(𝑥𝑛, 𝑥𝑚) ≪ 𝑐 for all 

𝑚, 𝑛 ∈ 𝑁. 

(b) The sequence {𝑥𝑛} is said to be convergent if there exist a positive integer N and 𝑥 ∈ 𝑋 such 

that 𝑑(𝑥𝑛, 𝑥) ≪ 𝑐  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑁. 

(c) A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.  

It is known that a sequence {𝑥𝑛} converges to a point 𝑥 ∈ 𝑋 if and only if 𝑑(𝑥𝑛, 𝑥) → 0  𝑎𝑠  𝑛 → ∞. 

A subset A of X is closed if every Cauchy sequence in A has its limit point in A. 

Definition 1.3 Let f and g be self mappings on a set X. If 𝑤 = 𝑓𝑥 = 𝑔𝑥 for some 𝑥 ∈ 𝑋, then 𝑥 is called 

a coincidence point of f and g, where w is called a point of the coincidence of f and g. 

Definition 1.4 Let f and g be two self mappings defined on a set X. Then f and g are said to be weakly 

compatible if they commute at every coincidence point. 

Remarks 1.1 Let E is a TVS- valued cone metric space with cone P.  Then we have the following: 

(1) If 𝑎 ≤ ℎ𝑎  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝑃 𝑎𝑛𝑑 ℎ ∈ (0,1), then 𝑎 = 0. 

(2) If 0 ≤ 𝑢 ≪ 𝑐 for all 0 ≪ 𝑐, then 𝑢 = 0. 

(3) If 𝑎 ≤ 𝑏 + 𝑐 𝑓𝑜𝑟 𝑎𝑙𝑙 0 ≪ 𝑐, then 𝑎 ≤ 𝑏. 

For more on the properties of the cone, we refer to [10]. 
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Common Fixed Point Results 

Lemma 2.1  Let  𝑓, 𝑔, 𝑆 𝑎𝑛𝑑 𝑇 be self mappings on a TVS- valued cone metric space X with a cone P 

having the non empty interior satisfying 𝑓(𝑋) ⊂ 𝑇(𝑋) and 𝑔(𝑋) ⊂ 𝑆(𝑋). Define the sequences {𝑥𝑛} 

and {𝑦𝑛} in X by 

  𝑦2𝑛+1 = 𝑓𝑥2𝑛 = 𝑇𝑥2𝑛+1   and   𝑦2𝑛+2 = 𝑔𝑥2𝑛+1 = 𝑆𝑥2𝑛+2  ∀ 𝑛 ≥ 0. 

Suppose that there exists  𝛼 ∈ [0,1)  such that 

  𝑑(𝑦𝑛, 𝑦𝑛+1) ≤ 𝛼𝑑(𝑦𝑛−1, 𝑦𝑛)     ∀ 𝑛 ≥ 1.       2.1   

Then either 

(1) The pair {𝑓, 𝑆}, {𝑔, 𝑇} have coincidence points and the sequence {𝑦𝑛} converges to a point X or 

(2) {𝑦𝑛} is a Cauchy sequence in X. 

Moreover, if  X is complete, then the sequence {𝑦𝑛} converges to a point 𝑧 ∈ 𝑋 and  

  𝑑(𝑦𝑛, 𝑧) ≤  
𝛼𝑛

1−𝛼
𝑑(𝑦0, 𝑦1),   ∀ 𝑛 ≥ 1.     2.2  

Proof: To prove of the theorem, suppose that there exists a positive integer n such that 𝑦2𝑛 = 𝑦2𝑛+1. 

Then, from the definition of {𝑦𝑛},  𝑔𝑥2𝑛−1 = 𝑆𝑥2𝑛 = 𝑓𝑥2𝑛 =  𝑇𝑥2𝑛+1  and the mappings f and  S have a 

coincidence point 𝑥2𝑛.  moreover, from (2.1)  yields 𝑦2𝑛 = 𝑦𝑚  for each 𝑚 > 2𝑛  and hence the 

sequence {𝑦𝑛} converges to a point in X.   

The conclusion holds if 𝑦2𝑛+1  =   𝑦2𝑛+2 for some positive integer n. 

Assume that 𝑦2𝑛 ≠ 𝑦2𝑛+1 for all 𝑛 ≥ 1. then by (2.1) we have  

  𝑑(𝑦𝑛, 𝑦𝑛+1) ≤ 𝛼𝑛 𝑑(𝑦0, 𝑦1)     ∀ 𝑛 ≥ 1. 

𝑓𝑜𝑟 𝑎𝑛𝑦  𝑚, 𝑛 ≥ 1  with 𝑚 > 𝑛,  it follows that 

  𝑑(𝑦𝑛, 𝑦𝑚) ≤ ∑ 𝑑(𝑦𝑖, 𝑦𝑖+1)𝑚−1
𝑖=𝑛 ≤   ∑ 𝛼𝑖 𝑑(𝑦0, 𝑦1)𝑚−1

𝑖=𝑛   

  𝑑(𝑦𝑛, 𝑦𝑚) ≤ 𝛼𝑛 𝑑(𝑦0, 𝑦1) ∑ 𝛼𝑗𝑚−𝑛−1
𝑗=0       2.3 

  𝑑(𝑦𝑛, 𝑦𝑚) ≤  
𝛼𝑛

1−𝛼
𝑑(𝑦0, 𝑦1),     

Let 0 ≪ 𝑐 be given. Choose a symmetric neighborhood V of 0 such that  𝑐 + 𝑣 ⊆ 𝑖𝑛𝑡 𝑃.  also, choose a 

positive integer 𝑁1 such that 

 
𝛼𝑛

1−𝛼
𝑑(𝑦0, 𝑦1) ∈ 𝑉 ,   ∀ 𝑛 ≥ 𝑁1. 

Then 
𝛼𝑛

1−𝛼
𝑑(𝑦0, 𝑦1) ≪ 𝑐   for all  𝑛 ≥ 𝑁1. thus, for all  𝑚, 𝑛 ≥ 𝑁1, 

  𝑑(𝑦𝑛, 𝑦𝑚) ≤  
𝛼𝑛

1−𝛼
𝑑(𝑦0, 𝑦1) ≪    𝑐  
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And so the sequence {𝑦𝑛} is a Cauchy sequence in X. If X is complete, there exists a point 𝑧 ∈ 𝑋  such 

that  {𝑦𝑚}  converges to z as 𝑚 → ∞.   Choose a positive integer 𝑁2  such that 𝑑(𝑦𝑚, 𝑧) ≪

𝑐  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 𝑁2.  thus it follows that, 

  𝑑(𝑦𝑛, 𝑧) ≤   𝑑(𝑦𝑛, 𝑦𝑚) +   𝑑(𝑦𝑚, 𝑧)  

  𝑑(𝑦𝑛, 𝑧) ≤  
𝛼𝑛

1−𝛼
𝑑(𝑦0, 𝑦1) +   𝑑(𝑦𝑚, 𝑧)  

  𝑑(𝑦𝑛, 𝑧) ≤  
𝛼𝑛

1−𝛼
𝑑(𝑦0, 𝑦1) +   𝑐  

Which yields 2.2  by using remark 1 (3). This completes the proof. 

Theorem 2.2  Let  𝑓, 𝑔, 𝑆 𝑎𝑛𝑑 𝑇 be self mappings of a  TVS- valued cone metric space X with a cone P 

having the non empty interior satisfying 𝑓(𝑋) ⊂ 𝑇(𝑋),  𝑔(𝑋) ⊂ 𝑆(𝑋)  and there exists  𝛼, 𝛽 ∈ (0,1) 

such that 0 ≤  𝛼 +  𝛽 < 1and 

 𝑑(𝑓𝑥, 𝑔𝑦) ≤ 𝛼 max{𝑑(𝑆𝑥, 𝑇𝑦), 𝑑(𝑆𝑥, 𝑓𝑥), 𝑑(𝑇𝑦, 𝑔𝑦)}  

   + 𝛽 max{𝑑(𝑆𝑥, 𝑔𝑦), 𝑑(𝑇𝑦, 𝑓𝑥)}     2.4  

If one of 𝑓(𝑋) ∪ 𝑔(𝑋)  𝑎𝑛𝑑 𝑆(𝑋) ∪ 𝑇(𝑋) is complete, then the pairs {𝑓, 𝑆}  𝑎𝑛𝑑  {𝑔, 𝑇} have a unique 

point of coincidence in X. Moreover, if the pairs {𝑓, 𝑆}  𝑎𝑛𝑑  {𝑔, 𝑇} are weakly compatible, then the 

mapping 𝑓, 𝑔, 𝑆, 𝑎𝑛𝑑 𝑇 have a unique common fixed point in X. 

Proof:- For any arbitrary point 𝑥0 in X, construct the sequence {𝑥𝑛} 𝑎𝑛𝑑 {𝑦𝑛} in X such that 

 𝑦2𝑛+1 = 𝑓𝑥2𝑛 = 𝑇𝑥2𝑛+1   and   𝑦2𝑛+2 = 𝑔𝑥2𝑛+1 = 𝑆𝑥2𝑛+2  ∀ 𝑛 ≥ 0. 

Thus it follows from 2.4 

  𝑑(𝑦2𝑛+1, 𝑦2𝑛+2)  =  𝑑(𝑓𝑥2𝑛, 𝑔𝑥2𝑛+1)  

  𝑑(𝑓𝑥2𝑛, 𝑔𝑥2𝑛+1) ≤  𝛼 max {
𝑑(𝑆𝑥2𝑛, 𝑇𝑥2𝑛+1), 𝑑(𝑆𝑥2𝑛, 𝑓𝑥2𝑛),

𝑑(𝑇𝑥2𝑛+1, 𝑔𝑥2𝑛+1)
}   

     + 𝛽 max{𝑑(𝑆𝑥2𝑛, 𝑔𝑥2𝑛+1), 𝑑(𝑇𝑥2𝑛+1, 𝑓𝑥2𝑛)}  

    𝑑(𝑦2𝑛+1, 𝑦2𝑛+2) ≤   𝛼 max{𝑑(𝑦2𝑛, 𝑦2𝑛+1), 𝑑(𝑦2𝑛, 𝑦2𝑛+1), 𝑑(𝑦2𝑛+1, 𝑦2𝑛+2)}    

     + 𝛽 max{𝑑(𝑦2𝑛+1, 𝑦2𝑛+2), 𝑑(𝑦2𝑛+1, 𝑦2𝑛+1)}  

  𝑑(𝑦2𝑛+1, 𝑦2𝑛+2) ≤   𝛼𝑑(𝑦2𝑛, 𝑦2𝑛+1)   + 𝛽𝑑(𝑦2𝑛+1, 𝑦2𝑛+2) 

  𝑑(𝑦2𝑛+1, 𝑦2𝑛+2) ≤  
𝛼

1−𝛽
𝑑(𝑦2𝑛, 𝑦2𝑛+1)    

𝑠𝑢𝑝𝑝𝑜𝑠𝑒 𝑡ℎ𝑎𝑡, 𝑞 =  
𝛼

1−𝛽
  and processing the same manner, it follows the condition of the lemma 2.1 is 

satisfied. 

𝑁𝑜𝑤  we show that the pairs {𝑓, 𝑆}  and {𝑔, 𝑇}  have coincidence points in X. In fact, without loss of 

generality, we may assume that 𝑦𝑛  ≠ 𝑦𝑛+1  for any  𝑛 ≥ 1.  If we have the equality for some n, then 

from lemma 2.1, the pairs {𝑓, 𝑆}  𝑎𝑛𝑑 {𝑔, 𝑇} have coincidence points in X. Thus, the sequence is the 

Cauchy sequence. 
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Suppose that 𝑆(𝑋) ∪ 𝑇(𝑋) is complete. Then there exists 𝑢 ∈ 𝑆(𝑋) ∪ 𝑇(𝑋) such that  𝑦𝑛 → 𝑢 as  𝑛 →

∞. Further, the subsequence {𝑆𝑥2𝑛+2} = {𝑔𝑥2𝑛+1}  = {𝑦2𝑛+2}  and  {𝑇𝑥2𝑛+1} = {𝑓𝑥2𝑛} = {𝑦2𝑛+1}   of 

{𝑦2𝑛}  also converges to the point u.  Now, since𝑢 ∈ 𝑆(𝑋) ∪ 𝑇(𝑋), we have 𝑢 ∈ 𝑆(𝑋)  or  𝑢 ∈ 𝑇(𝑋). 

If 𝑢 ∈ 𝑆(𝑋), then we can find 𝑣 ∈ 𝑋  such that  𝑆𝑣 = 𝑢  and claim that 𝑓𝑣 = 𝑢.  for this, consider 

                     𝑑(𝑓𝑣, 𝑢) ≤ 𝑑(𝑓𝑣, 𝑔𝑥2𝑛+1) +  𝑑(𝑔𝑥2𝑛+1, 𝑢) 

 𝑑(𝑓𝑣, 𝑢) ≤ 𝛼 max {
𝑑(𝑆𝑣, 𝑇𝑥2𝑛+1), 𝑑(𝑆𝑣, 𝑓𝑣),

𝑑(𝑇𝑥2𝑛+1, 𝑔𝑥2𝑛+1)
}  

          + 𝛽 max{𝑑(𝑆𝑣, 𝑔𝑥2𝑛+1), 𝑑(𝑇𝑥2𝑛+1, 𝑓𝑣)} + 𝑑(𝑔𝑥2𝑛+1, 𝑢) 

𝑎𝑠  𝑛 → ∞ , we have, 

  𝑑(𝑓𝑣, 𝑢) ≤ (𝛼 + 𝛽)𝑑(𝑓𝑣, 𝑢)  

Which contradiction, so that  𝑓𝑢 =   𝑆𝑣 = 𝑢  and so, since 𝑢 ∈ 𝑓(𝑋) ⊂ 𝑇(𝑋),  there exists 𝑤 ∈ 𝑋  such 

that 𝑇𝑤 = 𝑢. 

Now, we show that  𝑔𝑤 = 𝑢. In fact consider 

  𝑑(𝑔𝑤, 𝑢) ≤ 𝑑(𝑔𝑤, 𝑓𝑥2𝑛) +   𝑑(𝑓𝑥2𝑛, 𝑢)  

  𝑑(𝑔𝑤, 𝑢) ≤ 𝛼 max{𝑑(𝑆𝑥2𝑛, 𝑇𝑤), 𝑑(𝑆𝑥2𝑛, 𝑓𝑥2𝑛), 𝑑(𝑇𝑤, 𝑔𝑤)}  

    + 𝛽 max{𝑑(𝑆𝑥2𝑛, 𝑔𝑤), 𝑑(𝑇𝑤, 𝑓𝑥2𝑛)}  +  𝑑(𝑓𝑥2𝑛, 𝑢)  

𝑎𝑠  𝑛 → ∞ , we have, 

  𝑑(𝑔𝑤, 𝑢) ≤ (𝛼 + 𝛽)𝑑(𝑔𝑤, 𝑢)  

Which contradiction, so that 𝑔𝑤 = 𝑢.  similarly arguments to those given above, we obtain 𝑔𝑤 =

𝑇𝑤 = 𝑢. Thus the pairs {𝑓, 𝑆}  and {𝑔, 𝑇} have common fixed point of coincidence in X. 

Now, if the pairs {𝑓, 𝑆}  and {𝑔, 𝑇} are weakly compatible, 𝑓𝑢 = 𝑓𝑆𝑢 = 𝑆𝑓𝑢 =  𝑆𝑢 =  𝑤1 (say) and 

𝑔𝑢 = 𝑔𝑇𝑤 =  𝑇𝑔𝑤 =  𝑇𝑢 = 𝑤2(say). Now, we have 

 𝑑(𝑤1, 𝑤2) =   𝑑(𝑓𝑢, 𝑔𝑢) ≤   𝛼 max{𝑑(𝑆𝑢, 𝑇𝑢), 𝑑(𝑆𝑢, 𝑓𝑢), 𝑑(𝑇𝑢, 𝑔𝑢)}   

      + 𝛽 max{𝑑(𝑆𝑢, 𝑔𝑢), 𝑑(𝑇𝑢, 𝑓𝑢)}  

Which implies, 𝑤1 = 𝑤2 and hence 𝑓𝑢 = 𝑔𝑢 = 𝑆𝑢 = 𝑇𝑢, 𝑖. 𝑒 the point u is coincidence point of the 

pairs {𝑓, 𝑆}  and{𝑔, 𝑇}.  

Now, we show that 𝑢 = 𝑔𝑢. 

In fact, we have 

  𝑑(𝑢, 𝑔𝑢) = 𝑑(𝑓𝑣, 𝑔𝑢) ≤   𝛼 max{𝑑(𝑆𝑣, 𝑇𝑢), 𝑑(𝑆𝑣, 𝑓𝑣), 𝑑(𝑇𝑢, 𝑔𝑢)}   

     + 𝛽 max{𝑑(𝑆𝑣, 𝑔𝑢), 𝑑(𝑇𝑢, 𝑓𝑣)}  

This implies, 
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  𝑑(𝑢, 𝑔𝑢) ≤ (𝛼 + 𝛽)𝑑(𝑢, 𝑔𝑢)  

Which contradiction, so that 𝑔𝑢 = 𝑢  and hence u is a common fixed point of the mappings 𝑓, 𝑔, 𝑆, 𝑇. 

Finally, for the uniqueness of the point u, suppose that u’ is also a common fixed point of 𝑓, 𝑔, 𝑆 𝑎𝑛𝑑 𝑇, 

from 2.4, we have 

  𝑑(𝑓𝑢, 𝑔𝑢′) ≤ 𝛼 max{𝑑(𝑆𝑢, 𝑇𝑢′), 𝑑(𝑆𝑢, 𝑓𝑢), 𝑑(𝑇𝑢′, 𝑔𝑢′)}  

    + 𝛽 max{𝑑(𝑆𝑢, 𝑔𝑢′), 𝑑(𝑇𝑢′, 𝑓𝑢)}  

𝑤ℎ𝑖𝑐ℎ 𝑖𝑚𝑝𝑙𝑖𝑒𝑠  𝑢 = 𝑢′ , and hence u is unique common fixed point of 𝑓, 𝑔, 𝑆, 𝑎𝑛𝑑 𝑇, 𝑖𝑛 𝑋. 

Suppose that 𝑓(𝑋) ∪ 𝑔(𝑋) is complete and 𝑢 ∈ 𝑇(𝑋). then similarly we can prove that  𝑓, 𝑔, 𝑆 𝑎𝑛𝑑 𝑇, 

have unique common fixed point in X. 

Corollary 2.3   Let  𝑓, 𝑔, 𝑆 𝑎𝑛𝑑 𝑇 be self mappings of a  TVS- valued cone metric space X with a cone P 

having the non empty interior satisfying 𝑓(𝑋) ⊂ 𝑇(𝑋),  𝑔(𝑋) ⊂ 𝑆(𝑋)  and there exists  𝛼, 𝛽 ∈ (0,1) 

such that 0 ≤  𝛼 +  𝛽 < 1and 𝑚, 𝑛 ≥ 1 

 𝑑(𝑓𝑚𝑥, 𝑔𝑛𝑦) ≤ 𝛼 max{𝑑(𝑆𝑚𝑥, 𝑇𝑛𝑦), 𝑑(𝑆𝑚𝑥, 𝑓𝑚 𝑥), 𝑑(𝑇𝑛𝑦, 𝑔𝑛𝑦)}  

    + 𝛽 max{𝑑(𝑆𝑚𝑥, 𝑔𝑛𝑦), 𝑑(𝑇𝑛𝑦, 𝑓𝑚𝑥)}   2.4  

If one of 𝑓(𝑋) ∪ 𝑔(𝑋)  𝑎𝑛𝑑 𝑆(𝑋) ∪ 𝑇(𝑋) is complete, then the pairs {𝑓, 𝑆}  𝑎𝑛𝑑  {𝑔, 𝑇} have a unique 

point of coincidence in X. Moreover, if the pairs {𝑓, 𝑆}  𝑎𝑛𝑑  {𝑔, 𝑇} are weakly compatible, then the 

mapping 𝑓, 𝑔, 𝑆, 𝑎𝑛𝑑 𝑇 have a unique common fixed point in X. 

Proof  

It follows from Theorem 2.2 that {𝑓𝑚, 𝑆𝑚}𝑎𝑛𝑑 {𝑔𝑛, 𝑇𝑛} have a unique common fixed point 𝑝 ∈ 𝑋. 

Now, we have 

  𝑓(𝑝) = 𝑓(𝑓𝑚(𝑝)) = 𝑓𝑚+1(𝑝) = 𝑓𝑚(𝑓(𝑝))  

  𝑆(𝑝) = 𝑆(𝑆𝑚(𝑝)) = 𝑆𝑚+1(𝑝) = 𝑆𝑚(𝑆(𝑝))  

And so 𝑓(𝑝)𝑎𝑛𝑑 𝑆(𝑝) are also fixed point for the mappings  𝑓𝑚  𝑎𝑛𝑑  𝑆𝑚. Hence 𝑓(𝑝) = 𝑆(𝑝) = 𝑝.  by 

using the same argument in the proof of Theorem 2.2, we obtain 𝑔(𝑝) = 𝑇(𝑝) = 𝑝.  

This completes the proof. 
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