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Abstract: This work deals with determination of unknown temperature and thermal deflection of thin circular plate on lower 

surface with the stated conditions. The inverse heat conduction equation is solved by using finite Hankel transform and Laplace 

transform simultaneously and the results for unknown temperature and thermal deflection are obtained in terms of infinite series 

of Bessel's function and it is solved for special case by using Math-cad software and illustrated graphically by using Origin 

software. 
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I. INTRODUCTION 

The inverse problems of thermoelasticity consist of determination of temperature distribution and thermal deflection of solids 

when the conditions of temperature and deflection are known at the some points of the solid under consideration. Grysa and 

Cialkowski [1], Grysa and Koalowski [2] studied one-dimensional transient thermoelastic problems and derived the heating 

temperature and heat flux on the surface of an isotropic infinite slab. In [3] Dai et. al studied Based on the thermoviscoelastic 

theory and the classic plate theory, thermoviscoelastic behavior of a circular plate made from high strength low alloy (HSLA) 

steel material is investigated. The entire problem is solved by utilizing the finite difference method, Newmark method and 

iterative method. Khobragade et al.[4] and [5] discuss an inverse steady state and transient thermoelastic problem of thin circular 

plate and annular disc in Marchi-Fasulo transform domain. Deshmukh et al. [6] investigated inverse heat conduction problem of 

semi-infinite, clamped thin circular plate and their thermal deflection by quasi-static approach. Ghonge and Ghadle [7]-[10] 

investigated an inverse problems of thermoelastic behavior in different solids by integral transform methods. Further Ghonge and 

Ghadle [11]-[14] derived the analytical solution to deflection of thermoelastic circular plates for different conditions by using 

Marchi-Fasulo, Marchi-Zgrablich and Laplace integral transform. 

In this work, the temperature, unknown temperature on lower surface and quasi-static thermal deflection due to unknown 

temperature ( , )g t r are discuss. The inverse heat conduction equation is solved by using finite Hankel transform and Laplace 

transform simultaneously and the results for unknown temperature and thermal deflection are obtained in terms of infinite series 

of Bessel's function and it is solved for special case by using Math-cad software and illustrated graphically by using Origin 

software. 

II. MATHEMATICAL FORMULATION  

A thin wall work piece under lathe machine is modeled a circular plate occupying the space :0 ,0 2 ,D r a h z h          

in terms of cylindrical coordinates. As the work piece is rotated with outer edge is clamped and machined by tool moving along the 

horizontal radius. The zero heat flux is applied on the upper surface of plate and known temperature ( , )f t r  is provided at some fix 

interior z   and plate is insulated at curved surface. Under this more realistic prescribed conditions, the unknown temperature on 

lower surface and quasi-static thermal deflection due to unknown temperature ( , )g t r are required to determine. The differential 

equation satisfying the deflection function as in [15,16] is given as 
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Where, the operator 
2 is defined by  
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TM is the thermal moment of the plate defined as  
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and D is the flexural rigidity of the plate denoted as  
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, E and  are the coefficients of the linear thermal expansion, the Young’s modulus and the Poisson’s ration of the plate 

material respectively.  

Since the edge of the circular plate is fixed and clamped; 
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The temperature of the circular plate satisfying the heat conduction equation as in [15, 16] as 
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with initial condition 

 ( , , ) 0 0, 0 ,T t r z at t r a h z h         (8) 

the boundary condition's 

 ( , , ) 0 , , 0T t r z at r a h z h t       (9) 
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and interior condition 

 ( , , ) ( , ) , , 0 , 0T t r z f t r knownat z h h r a t           (11) 

      
( , , ) ( , ) , 0 , 0T t r z g t r unknown at z h r a t                                                                 (12) 

where 
1k and 

2k are the radiation constants on the two plane surfaces, k  is the thermal diffusivity of the material of the circular 

plate. The equations (1) to (12) constitute the mathematical formulation of the inverse transient thermoelastic deflection problem 

of circular plate. 

 

III. ANALYSIS OF THE PROBLEM 

 

Applying the finite Hankel transform to the equations (7)-(11), then making use of Laplace transform in Hankel domain as in 

[17], the equation (7) can be converted in second order differential equation in transform domain, solving this for temperature in 

domain by making use of boundary conditions in transform domain. Then taking inverse Laplace transform and making use of 

inversion theorem. Finally inverse Hankel transform gives as temperature distributions function as below 
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Now using value of temperature distribution in equation (10), one we obtain the unknown temperature as below 
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Using equation (13) in equation (3), we obtain  
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Assume the solution of (1) satisfying the (6) as 
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Using the (15), (16) and the result 
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in (1), once we obtain the expression for ( )nC t as  
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Substituting the equation (17) in the equation (16), once obtain the expression for thermal deflection function as 
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IV. PARTICULAR CASE AND NUMERICAL OUTCOMES 

For formulation of particular case and examine the numerical calculation of analytical behaviour of a circular plate, we 

consider the following functions and parameters: 

  ( , ) ( ) 1 t hf t r h e r a e    
 
and 1t   sec. 

Dimensions 

Radius of a circular plate 1a  m. Thickness of a circular plate 2 0.2h  m. 

 

Material properties 

The numerical calculation has been carried out for an aluminum (pure) circular plate with material properties as, 

Thermal diffusivity 6 2 184.18 10 ( )k m s    

Density 32707 /Jkg m   

Poisson ratio 0.35   

Coefficient of linear thermal expansion 622.2 10 1/ K    

Lame constant 26.67   

 

Roots of transcendental equation 

1 2 3 4 5 6 7

8 9 10

2 : 4048;   5 : 5201;   28 : 6537;   11: 7915;   14 : 9309;   18 : 0711;   21: 2116;

  24 : 3525;   27 : 4935  30.6346and

      

  

      

  
 

are the positive roots of the transcendental equation 
0 ( ) 0nJ r  . 

We set for our convenience, 
710X    and 510 / (1 )Y h E D   which assume to be constants. 

The numerical calculation has been carried out with the help of computational mathematical software Mathcad-2000 and graphs 

are plotted by using Origin software. 
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Fig. 1: Temperature distribution in thin circular plate 

 

 
Fig. 2: Unknown Temperature distribution in thin circular plate 

 

 

 
Fig. 3: Deflection distribution in thin circular plate 

 

Figure 1, show that the temperature goes on increasing from upper surface up to the center and then slowly goes on decreasing 

towards lower surface of the thin circular plate.  

Figure 2, show that the unknown temperature at center increases up to 0.4r   and then vanishes on outer surface of the thin 

circular plate.  
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Figure 3, show that the quasi-static thermal deflection which increases from upper surface up to 0z   and then analytically 

goes on decreases towards lower surface of the thin circular plate. 

 

V. CONCLUSION 

    This article investigates the temperature, unknown temperature at lower surface and quasi-static thermal deflection due 

to unknown temperature ( , )g t r . First, the mathematical model is constructed, and then the series solutions are obtained by using 

integral transform methods. As a special case and numerical results the functions and parameters are consider and the 

temperature, unknown temperature and quasi-static thermal deflection on upper surface determine by using MathCAD software 

and illustrated graphically by using Origin software. This type of inverse problems has the many applications in engineering such 

as main shaft of a lathe machine and aircraft structure. The results obtained here are mainly useful in the determination of state of 

strain in a circular plate. 
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