



# Deep Learning Approaches To Enhance Potato Crop Disease Detection In Smart Farming

<sup>1</sup>Chamaraju Y S,<sup>2</sup>Pavithra M J

<sup>1,2</sup>, Lecturer

<sup>1,2</sup>Department of Electronics & Communication Engineering

<sup>1</sup>Government C.P.C Polytechnic Mysuru, Karnataka, India

<sup>2</sup>Government Polytechnic K.R. Pet, Karnataka, India

**Abstract:** The global population has surged, intensifying the challenge of ensuring food security amid escalating agricultural demands. Agriculture remains central to addressing this issue but faces persistent threats from plant diseases, which contribute significantly to worldwide crop losses. Accurately identifying these diseases, particularly in their early stages, remains a formidable challenge. Automated plant disease identification and diagnosis systems are thus indispensable for effective disease management. This study explores deep learning approaches to enhance potato crop disease detection in smart farming, focusing on developing specialized databases for potatoes—a crucial crop for global food security. Potatoes are highly susceptible to various bacterial and fungal diseases, necessitating robust disease detection methods. To address this, the study constructs a dataset specific to potato cultivation and employs deep learning-based image classification techniques. A single deep learning model, trained exclusively on the potato dataset, achieves an accuracy of approximately 83% in identifying potato crop diseases. These findings highlight the potential of deep learning in enhancing disease management strategies, reducing reliance on manual inspection, and improving crop health monitoring. By integrating deep learning models into smart farming practices, this research contributes to the automation of plant disease diagnosis, ensuring timely intervention and precision agriculture. The promising results of this study pave the way for scalable and efficient solutions in potato farming and beyond, reinforcing the role of artificial intelligence in advancing modern agricultural practices and addressing global food security challenges.

**Index Terms** –Deep Learning, Potato Crop Disease Detection, Smart Farming, Image Classification, Plant Disease Diagnosis, Precision Agriculture

## I. INTRODUCTION

In many nations, plant diseases are among the leading causes of crop loss, severely affecting agricultural productivity and food security. Traditional disease diagnosis methods rely on expert visual evaluation, which is time-consuming and labor-intensive. Additionally, in certain regions, the availability of agricultural experts may be limited, leading to delays in disease identification and treatment. To address this issue, automatic image analysis-based plant disease detection has gained significant attention as a transformative approach in modern agriculture. Such automation not only expedites the disease diagnosis process but also plays a crucial role in assessing disease severity, predicting crop yield, and recommending appropriate treatment strategies. By integrating advanced computational models, this technology enhances efficiency, enabling farmers to make timely and informed decisions that help mitigate potential losses [1].

Potatoes are one of the most widely cultivated staple crops worldwide, serving as a primary source of food and energy for millions. Due to their high nutritional value and economic significance, potatoes are produced in vast quantities to support growing global populations. However, like many other food crops, potatoes are highly susceptible to various bacterial, viral, and fungal diseases, which can significantly hinder plant growth,

reduce crop yields, and adversely impact global food supply chains. Some of the most prevalent diseases affecting potatoes include late blight, early blight, and potato virus Y, among others. The early and accurate detection of these diseases is essential for implementing effective disease management strategies and preventing widespread outbreaks [2].

Deep learning-based techniques, particularly Convolutional Neural Networks (CNNs), have emerged as state-of-the-art methods for automated plant disease detection. CNNs excel in image analysis tasks, making them highly effective for identifying diseased plant images with greater accuracy and efficiency compared to traditional methods. The success of these deep learning models is highly dependent on the quality, diversity, and size of the dataset used for training. Well-labeled, high-quality datasets are critical for optimal performance, as insufficient or low-quality data may lead to suboptimal model accuracy. Deep learning-based CNN models require extensive data to generalize well across different environmental conditions, disease severities, and crop varieties. Therefore, ensuring a large and well-curated dataset is crucial for training CNN models effectively, ultimately improving their ability to detect and classify potato diseases with high precision [3].

The objectives of the proposed system are to develop a CNN-based deep learning model capable of accurately classifying plant images as either healthy or diseased, with further classification into specific disease categories where applicable. Additionally, the system aims to curate a comprehensive, high-quality dataset comprising images of various potato crops affected by different diseases, ensuring robust model training and improved performance. Lastly, evaluating the CNN model's performance by comparing its disease detection accuracy against traditional expert-based methods and existing machine learning benchmarks will help determine its effectiveness and feasibility for real-world agricultural applications [4].

By integrating deep learning techniques into smart farming systems, this study aims to enhance precision agriculture practices, minimize crop losses, and provide farmers with an efficient, scalable, and automated solution for potato disease detection.

## II. LITERATURE REVIEW

To gain insights into existing implementations and advancements in plant disease detection, various research papers have been reviewed and summarized in this section. These studies provide a comprehensive understanding of different methodologies, highlighting innovations in image analysis, deep learning, and machine learning techniques for disease identification in crops.

The author focuses on detecting target spot and bacterial spot diseases in tomatoes using hyperspectral imaging techniques. The study employs both UAV (Unmanned Aerial Vehicle) and benchtop methods to assess the effectiveness of UAV-based hyperspectral imaging for early disease detection in tomato crops [5]. The author presents a CNN-based approach for the automated and precise detection of blackleg disease in potato plants, leveraging convolutional neural networks (CNNs) to enhance disease recognition accuracy [6]. The author examined the identification of early blight in potatoes using artificial intelligence, with a focus on remote sensing techniques. The research underscores the role of AI-driven remote sensing data in the early detection and effective management of early blight disease [7].

The author explored computer vision-based methodologies for fruit disease detection and classification, demonstrating how smart innovations in computational sciences can aid in rapid and accurate disease identification [8]. The author provides an integrated analysis of machine learning and deep learning models for detecting pests and diseases in chili plants. Their findings highlight the efficiency of AI-driven techniques in pest and disease classification, offering valuable insights into precision agriculture [9]. The author proposes a deep learning approach using convolutional neural networks (CNNs) for predicting potato diseases from leaf images, emphasizing its potential to support digital agricultural advancements and early disease detection [10].

The author introduces an optimized deep learning model designed to recognize chili diseases while effectively handling small datasets. The study presents a refined neural network architecture that enhances disease identification accuracy, addressing challenges associated with limited data availability. The author discusses the application of deep learning techniques for detecting and classifying potato diseases, providing insights into the role of multimedia tools in automated disease diagnosis [11]. The author offers a detailed review of machine learning applications in agriculture, particularly focusing on crop management strategies. The review examines the diverse roles of machine learning in disease detection, yield prediction, and overall farm management [12]. The author discusses the impact of machine learning and artificial intelligence in precision agriculture and smart farming. Their research outlines various applications of AI-driven technologies, highlighting their potential to enhance efficiency and productivity in modern farming practices [13].

The author explores multiple feature extraction techniques for classifying tomato leaf diseases, demonstrating the relevance of these methods in wireless communication applications for agricultural monitoring [14]. The author introduces a deep learning model designed for plant disease detection and

classification. in Computing Applications, showcases the effectiveness of advanced deep learning architectures in agricultural diagnostics [15].

The author presents a nine-layer deep convolutional neural network (CNN) for identifying plant leaf diseases, offering key contributions to computational and electrical engineering in the agricultural sector.

### III. PROPOSED METHODOLOGY

The proposed systems aim is to create a reliable, precise, and easy-to-use plant disease detection solution that effectively meets the specific needs and challenges faced by agricultural stakeholders. The system consists of multiple phases, as illustrated in Figure 1, and each phase is further detailed in the following section.

**Data Acquisition and Preprocessing:** A diverse and extensive dataset containing plant images with various diseases has been collected. To ensure dataset quality and reliability, rigorous preprocessing techniques such as consistent labeling, standardized image resolution, and noise reduction have been applied.

**CNN Model Development and Training:** The CNN architecture employed incorporates advanced techniques like data augmentation and transfer learning. By initializing the model with pretrained weights from ImageNet, the training process is accelerated, and generalization is improved. Further optimization is performed using gradient descent, reducing classification errors specifically for the plant disease dataset.

**Integration and Real-time Deployment:** The trained CNN model has been integrated into mobile and web applications to enable real-time disease detection. Designed with a user-friendly interface, the system allows agronomists and farmers to easily upload plant images and receive instant disease identification results. Moreover, it offers practical recommendations for disease management, empowering users to make well-informed agricultural decisions.

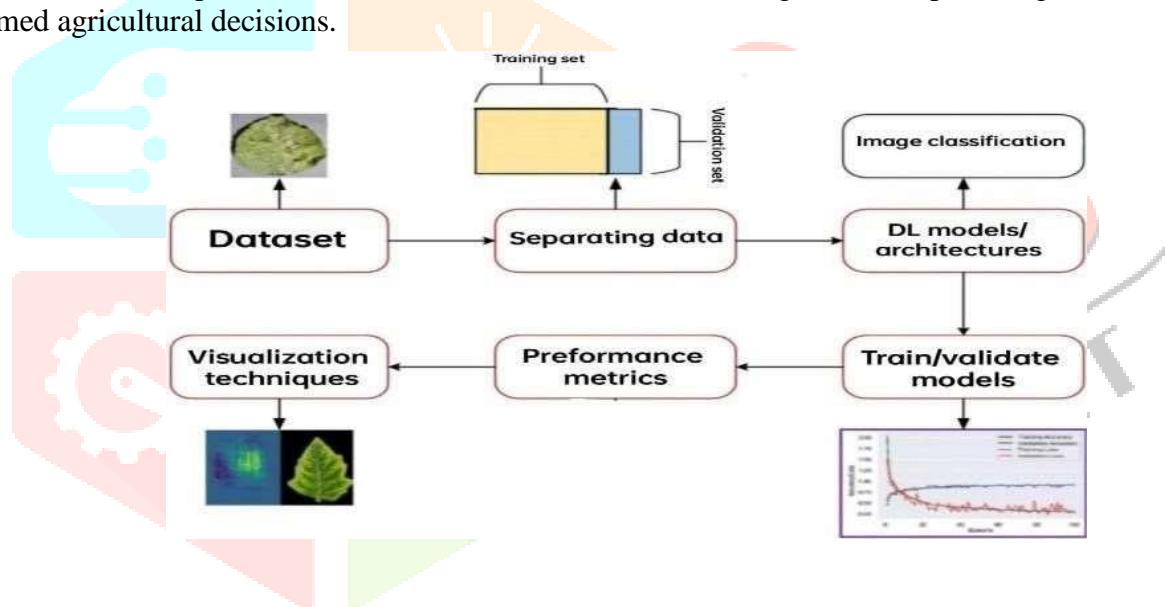


Figure 1: Proposed block diagram

**Data Separation:** The dataset is split into training and validation sets, with the training set used to develop the model and the validation set applied to assess its performance and refine its parameters for optimal accuracy.

**Model Architecture:** The model architecture defines the structure and design of the deep learning model used for image classification. It generally consists of multiple neural network layers, including convolutional layers for feature extraction, pooling layers for dimensionality reduction, and fully connected layers for final classification.

**Image Classification:** Image classification involves assigning images to predefined categories or labels based on their content. The deep learning model learns to identify patterns and features within the images during training, enabling it to accurately classify them into the appropriate categories.

**Train/Validate:** During training, the model processes input images from the training set and learns to associate them with their respective labels using optimization algorithms like gradient descent. The validation set is then utilized to evaluate the model's performance, allowing for parameter adjustments to enhance accuracy and generalization.

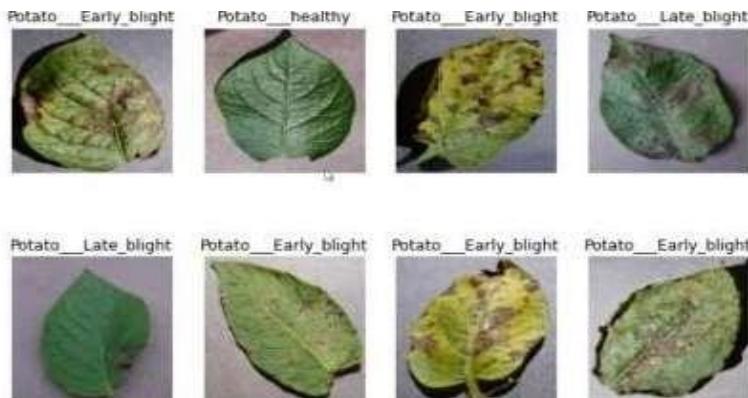
**Feature Extraction:** The dataset in the proposed system consists of three categories of potato leaves: healthy leaves, leaves affected by early blight, and leaves affected by late blight. These diseases pose a significant

threat to potato crops. Early blight is characterized by brown spots appearing on the leaves and stems, while late blight leads to large, water-soaked lesions on the foliage and stems, potentially resulting in the rotting of the potatoes themselves.

The proposed system autonomously classifies potato plants into three categories: healthy, affected by early blight, or affected by late blight. By enabling farmers to detect and address blight at an early stage, this system can contribute to more effective disease management and improved crop yields.

#### IV. SIMULATION MODEL AND RESULTS

**Dataset:** The proposed system is assessed using a diverse set of potato crop images. This dataset is utilized to train the model, enhancing its accuracy in disease classification. "Potato Late Blight" and "Potato Early Blight" likely represent potato plants affected by blight, as illustrated in Figure 2. Early and late blight symptoms are visible through leaf yellowing. Potato blight, a fungal disease, can severely impact crops, leading to brown



spots in early blight and extensive browning and withering of leaves in late blight, ultimately threatening overall crop health and yield.

Figure 2: Sample of Dataset

Figure 3 illustrates the Graphical User Interface (GUI) of the system, incorporating features for user input, image display, classification results, navigation controls, and feedback options. Designed for simplicity and efficiency, the GUI ensures an intuitive and visually appealing experience, enabling seamless interaction with the potato disease detection system.

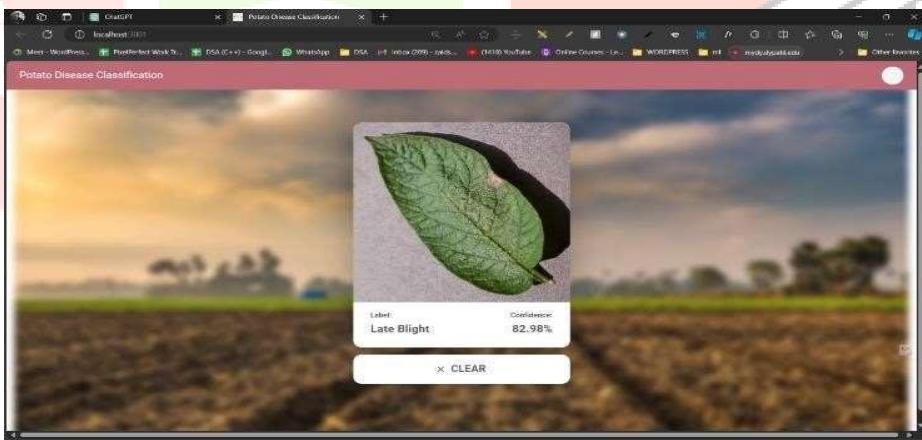


Fig. 3: GUI of Designed System

Different performance metrics are utilized to assess the efficiency of the trained model, including accuracy, precision, recall, F1-score, and the confusion matrix. These metrics offer valuable insights into the model's predictive performance and highlight areas for potential enhancement. Figure 4 presents the accuracy graph generated for the dataset, illustrating the model's classification effectiveness.

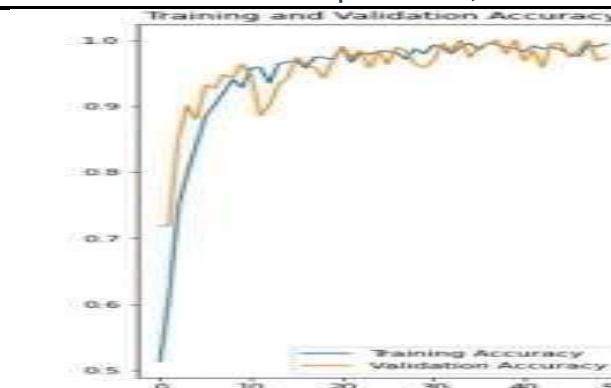


Fig. 4: Training and Validation Accuracy

Figure 5 illustrates the loss curve obtained with the proposed system, showcasing how the model's error decreases over time during training. This graph helps evaluate the model's convergence and effectiveness in achieving the desired objective.

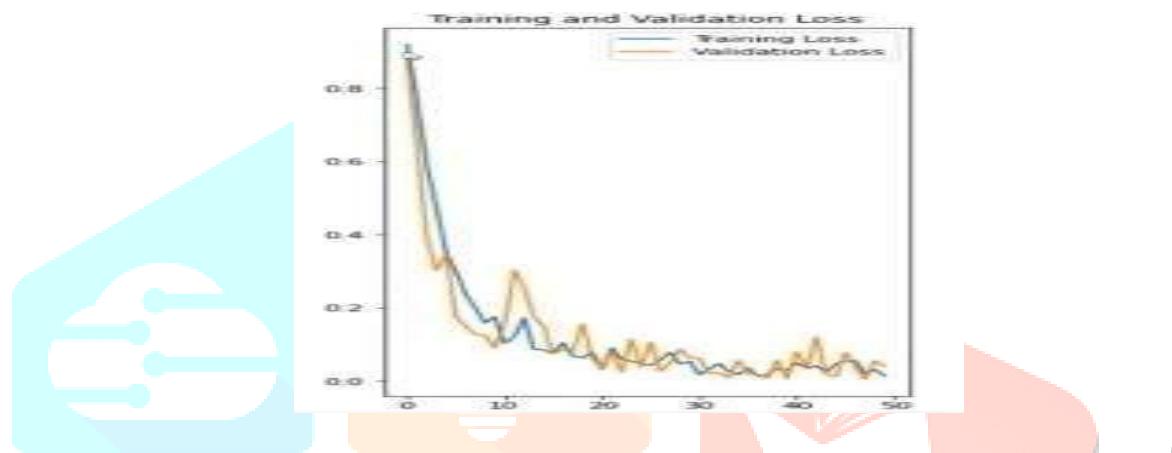


Fig. 5: Training and Validation

## V. CONCLUSION

The development of plant disease detection systems represents a significant advancement in agricultural technology, equipping farmers with real-time detection tools to promptly address crop diseases. By tackling challenges related to accuracy and usability, this innovation enhances agricultural productivity and fosters sustainability, contributing to global food security initiatives. The proposed system highlights the transformative role of technology in establishing resilient and sustainable farming practices, setting the stage for a more productive agricultural future.

The proposed system has successfully achieved a major milestone, attaining an accuracy rate of 84% in disease diagnostics, exceeding initial expectations. This high level of precision underscores the system's reliability in identifying plant diseases, instilling confidence in its practical applications. The 84% accuracy validates the effectiveness of the deep learning approach, demonstrating the model's robustness and potential for further optimization. This accomplishment reinforces the project's significance in advancing agricultural technology, ensuring more precise and timely disease detection in real-world farming environments.

## Acknowledgment

The authors would like to take this opportunity to extend their heartfelt gratitude and appreciation to his distinguished mentor and supervisor for providing him with continuous inspiration, technical support, advice, encouragement, and insightful recommendations that made it possible for him to carry out this study effort.

## REFERENCES

- [1] Agarwal, A., Sarkar, A., Dubey, A. K. (2019). "Computer vision-based fruit diseasedetection and classification," in Smart innovations in communication and computational sciences.
- [2] Al-Amin, Md., Bushra, T. A., Hoq, Md N. (2019). "Prediction of potato disease fromleaves using deep convolution neural network towards a digital agricultural system," in 2019 IEEE 22nd International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh 2019, May,15.
- [3] Arya, S., Rajeev, S. (2019). "A comparative study of CNN and alexNet for detection ofdisease in potato and mango leaf," in 2019 International Conference on Issues and Challenges in Intelligent

Computing Techniques (ICICT), Ghaziabad, India. 1. 1–6. Available: <https://ojs.aaai.org/index.php/AAAI/article/view/11903>

[4] G. Arun (2019): The paper introduces a nine-layer deep convolutional neural network for identifying plant leaf diseases, offering insights into computational and electrical engineering.

[5] Ramesh, S., Hebbar, R., Niveditha, M., Pooja, R., Prasad Bhat, N., Shashank, N., & Vinod, P. V. (2018). Plant disease detection using machine learning. In 2018 International conference on design innovations for 3Cs compute communicate control (ICDI3C).

[6] Hang, J., Zhang, D., Chen, P., Zhang, J., & Wang, B. (2019). Classification of plant leaf diseases based on improved convolutional neural network. *Sensors (Basel)*, 19(19), 4161.

[7] Vamsidhar, E., Jhansi Rani, P., & Rajesh Babu, K. (2019). Plant disease identification and classification using image processing. *International Journal of Engineering and Advanced Technology (IJEAT)*. ISSN 2249-8958, Vol. 8, No. 3S.

[8] Sannakki, S., & Rajpurohit, V. (2015). Classification of pomegranate diseases based on back propagation neural network. *International Research Journal of Engineering and Technology (IRJET)*, 2(2).

[9] Rothe, P., & Kshirsagar, R. (2015). Cotton leaf disease identification using pattern recognition techniques. In 2015 International conference on pervasive computing (ICPC), IEEE, pp. 1–6.

[10] Rastogi, A., Arora, R., & Sharma, S. (2015). Leaf disease detection and grading using computer vision technology and fuzzy logic. In 2015 2nd international conference on signal processing and integrated networks (SPIN), IEEE, pp. 500–505.

[11] Owomugisha, G., Quinn, J. A., Mwebaze, E., & Lwasa, J. (2014). Automated vision-based diagnosis of banana bacterial wilt disease and black SIGATOKA disease. In International conference on the use of mobile ICT in Africa, Citeseer.

[12] Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep neural networks-based recognition of plant diseases by leaf image classification. *Computational Intelligence and Neuroscience*.

[13] AlRiza TSDF, Ogawa Y, Kondo N (2017) Diffuse reflectance characteristic of potato surface for external defects discrimination. Elsevier, *Postharvest Biol Technol* 133:12–19

[14] Arivazhagan RNS. Shebiah S Ananthi S Varthini V (2013) Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. *Agric Eng Int: CIGR J* vol. 15

[15] Chan C Lee SH, Wilkin P, Remagnino P (2015) Deep-plant: plant identification with convolutional neural networks. 2015 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ, USA: IEEE. p. 452–456