

# Deep Learning Based Weed Crop Detection For Smart Agriculture

**Rajendrakumar**

Asst Professor,

Department of Computer Science,  
Government First Grade College, Sedam.

## Abstract

Deep learning-based weed crop for farmers represent an innovative application of artificial intelligence in agriculture. These drones are designed to identify and pluck weed from plants with precision and efficiency, reducing labor costs and improving productivity. Automation in the agricultural industry moderates the usage of resources and can increase the quality of food in the post-pandemic world. Agricultural robots have been developed for crop seeding, monitoring, weed control, pest management and harvesting. Physical counting of fruitless, flowers or fruits at various phases of growth is labor intensive as well as an expensive procedure for crop yield estimation. Remote sensing technologies offer accuracy and reliability in crop yield prediction and estimation. The automation in image analysis with computer vision and deep learning models provides precise field and yield maps. In this review, it has been observed that the application of deep learning techniques has provided a better accuracy for smart farming.

As the demand for pollution-free and organic agricultural products rises, there is a pressing need for innovative solutions. The emergence of smart agricultural equipment, including intelligent robots, unmanned aerial vehicles and satellite technology, proves to be pivotal in addressing weed-related challenges. The effectiveness of smart agricultural equipment, however, things on accurate detection, a task influenced by various factors, like growth stages, environmental conditions and shading. To achieve precise crop identification, it is essential to employ suitable sensors and optimized algorithms. Deep learning plays a crucial role in enhancing weed recognition accuracy. This advancement enables targeted actions such as minimal pesticide spraying or precise laser excision of weeds, effectively reducing the overall cost of agricultural production. Keyword Deep Learning, **Data Collection:** Model Training: Semantic Segmentation **Robotics and Drones:** Spraying Mechanism, Edge Computing.

**Keywords:** Deep Learning, Weed Detection, Crop Classification, Smart Agriculture, Convolution Neural Networks (CNN), Image Processing, Precision Farming

## I. INTRODUCTION

Smart farming helps farmers plan their work with the data obtained with agricultural drones, satellites and sensors. The detailed topography, climate forecasts, temperature and acidity of the soil can be accessed by sensors positioned on the agricultural farms. This paper provides a thorough overview of the application of deep learning for crop and weed recognition in smart agricultural equipment. The narrative highlights recent breakthroughs in automated technologies for precision plant identification while acknowledging existing challenges and proposing prospects. The agriculture sector is the foundation of any economy. However, with an increase in population, the agriculture sector will feel pressure and need to scale its supplies several times to cope with the increasing consumption. In addition, uncertain factors like climate change, diseases, and infertile land have propelled the sector to adopt innovative approaches like artificial intelligence to protect and increase crop yield. Deep learning is known as a promising multifunctional tool for processing images and other big data. By assimilating large amounts of heterogeneous data, deep-learning technology provides reliable prediction results for complex and uncertain phenomena. Recently, it has been increasingly used by horticultural researchers to make sense of the large datasets produced during planting and postharvest processes.

As a branch of machine learning, deep learning focuses on teaching artificial neural networks to carry out tasks that normally call for human intellect. These neural networks, which are modeled after the human brain, are made up of linked layers that analyze and identify patterns in vast amounts of data. Smart farming helps farmers plan their work with the data obtained with agricultural drones, satellites and sensors. The detailed topography, climate forecasts, temperature and acidity of the soil can be accessed

by sensors positioned on the agricultural farms. Improve the marketing and distribution of the farm products. According to the 2011 census, in India nearly 54.6% of the entire workforce is dedicated to agricultural and associated sector tasks, which in 2017–2018 accounted for 17.1% of the nation's Gross Value Added. To safeguard from the risks inherent to agriculture, the Ministry of Agriculture and Farmers Welfare announced an insurance scheme for crops in 1985. Problems have emerged in the scheme technology to collect data and lessen the delays in responding to insurance claims by the farmers.

The result of competition for resources is reduced crop yields. Yield losses depend on factors, such as weed species, population density and relative time of emergence and distribution, as well as on the soil type, soil moisture levels, pH and fertility. For decades, researchers and farmers have struggled to control weeds to overcome the thorny challenges they pose. Weeds in the field compete with crops for water, nutrients and sunlight. If not controlled properly, weeds can adversely affect crop yield and quality. In addition, research has shown that there is a significant link between reduced crop yields and weed competition. For example, the annual cost of weeds in Australia within grain production systems is USD 3.3 billion, comprising USD 2.6 billion in costs for weed control and USD 0.7 billion in lost yield. This paper reviews the current state of research on applying deep learning to crop and weed recognition for smart agricultural equipment. They paid special attention to sensors and systems used for crop row detection in order to validate their sensing and detection capabilities and, thus, improve their sensing and inspection capabilities.

In today's agricultural sector, accurately identifying crops and weeds is crucial for improving agricultural productivity, reducing production costs and achieving sustainable agricultural development. The fast development of deep learning techniques for wide application in computer vision provides new opportunities for crop and weed recognition. The high automation and learning capabilities of deep learning models enable them to learn from large datasets and gradually improve their performance, bringing unprecedented breakthroughs to precision agriculture. Recently, the main methods of weed control in agricultural fields have included hand weeding, mechanical weeding, laser weeding and chemical weeding.

## Discussion

While drones offer many benefits to farmers, there are also some challenges that may be holding farmers back from adopting this technology. Here are some of the key challenges:

1. Fear of job loss: Many farmers are concerned that the adoption of drone technology will lead to job loss, as fewer workers will be needed to perform manual labor on the farm.
2. Lack of knowledge and training: Farmers may not have the knowledge or training necessary to operate drones effectively. This can make it difficult for them to adopt this technology, as they may not be confident in their ability to use it.
3. Cost: Drones can be expensive, and many farmers may not have the financial resources to invest in this technology.
4. Regulatory barriers: There may be regulatory barriers to the use of drones in agriculture, which could make it difficult for farmers to adopt this technology.

The adoption of drone technology in the agriculture sector in rural India is still in its early stages. While there is interest in this technology, there are also concerns about job loss and a lack of knowledge and training. However, there are efforts underway to address these challenges and encourage the adoption of drone technology. One of the key initiatives is the Digital India campaign, which aims to provide digital infrastructure and connectivity to rural areas. This initiative includes a focus on training and education, which could help to address the lack of knowledge and training among farmers. In addition, there are a number of organizations and initiatives that are focused on promoting the use of drone technology in agriculture. For example, the Indian Council of Agricultural Research (ICAR) has established a Centre for Precision and Farming Technologies, which is focused on promoting precision agriculture technologies, including drones. A rapidly developing topic, deep learning for agriculture uses cutting-edge machine-

learning techniques to transform many facets of farming and agricultural management. In the agricultural industry, deep learning presents a viable tool to maximize resource use, boost production, and solve environmental issues. These difficulties include population expansion, climate change, and the need for sustainable agriculture methods.

**Crop Monitoring** Drone or satellite photos may be analyzed by deep learning algorithms to track crop health and spot any problems. These models enable prompt action by early illness, pest, or nutritional deficiency detection. This skill lessens the need for extensive pesticide use by assisting farmers in implementing tailored treatments. Managing the use of natural assets like water, pesticides, and fertilizers is an essential part of precision agriculture. Farmers can acquire insights into crop growth, weather patterns, and soil conditions by using deep learning algorithms to examine data from sensors, satellites, and Internet of Things devices. With the use of this information, resource management may be done precisely and effectively, increasing agricultural yields and minimizing environmental damage. Deep learning algorithms can distinguish between weeds and crops in photos, which will assist farmers in using targeted weed management techniques. This enhances weed control effectiveness while reducing the need for pesticides, supporting ecologically friendly agricultural methods.

Harvesting operations are being automated with the use of deep learning. When crops are ready to be harvested, computer vision systems can determine this and operate machines to ensure the best possible yield. By doing this, labor expenses are decreased and crops are harvested when they are at their most mature, improving crop quality overall. It helps to forecast crop yields for those in the supply chain as well as farmers. Accurate yield estimates may be generated via algorithms using deep learning that have been based on historical data and taking account of a variety of features, including crop kinds, soil health, and climate. Farmers may use this information to make well-informed decisions on the planting, harvesting, and selling of their crops. Agriculture faces a danger from climate change. Farmers can use adaptive techniques by using deep learning models to forecast extreme weather occurrences based on climate data analysis. This entails modifying planting dates, selecting hardy agricultural types, and allocating resources as efficiently as possible in front of climatic change.

## Future Prospects

The future of deep learning for agriculture looks promising, with ongoing research and advancements in technology. Integrating data from various sensors, including drones, satellites, and ground-based sensors, can provide a more comprehensive view of agricultural landscapes. Deep learning models that can effectively fuse information from multiple sources will enhance the accuracy of agricultural insights. Explainable AI is becoming more and more necessary as deep learning models get more intricate. Farmers and other interested parties must comprehend how these models make judgments. Developments in interpretable deep learning models will boost confidence and encourage broad implementation. Implementing deep learning models on edge devices, such as tractors or drones in agriculture, can reduce the need for constant internet connectivity. This approach enables real-time decision-making in the field, improving the efficiency of agricultural operations. Collaborative platforms that connect farmers, researchers, and technology developers will facilitate knowledge-sharing and the co-creation of solutions. These platforms can accelerate the adoption of deep learning technologies and address specific challenges faced by different regions and farming practices.

In agriculture, there are four groups of descriptive features: visual textures, spatial contexts, spectral features and biological morphological features. Visual Texture Feature For textural features, humans can judge them through their senses, such as identifying whether soft or hard, rough or fine, horizontally or vertically corrugated, etc. Research on texture-aware properties has its origins in computer vision as well as cognitive science. In computer vision-based approaches, visual textures have played a key role in image understanding. And because the texture of the local image descriptors is pooled in an

unordered manner, the texture of the image is represented by computing the intensity of the clustered pixels in the space, and six common variability directions are identified.

Many studies on machine vision and deep learning models for weed detection, counting and harvesting are being formulated. The accurate yield estimation for diverse vegetable and fruit crops is extremely essential for better harvesting, marketing and logistics planning. Bloom intensity estimation effectively provides crop yield predictions and fruit detection with machine vision techniques facilitates yield estimations. The accurate prediction of yield helps the farmers to improve the quality of the crop at an early stage.

## Conclusion

The use of deep learning in agriculture has the potential to revolutionize the field and solve the difficulties and complexities of contemporary farming. The applications range widely and have a significant influence, from climate resiliency to precision agriculture. Drones offer a range of benefits to farmers in the agriculture sector, including increased efficiency, improved yields, and reduced costs. However, there are also concerns about job loss and a lack of knowledge and training that may be holding farmers back from adopting this technology.

While the adoption of drone technology in rural India is still in its early stages, there are efforts underway to address these challenges and promote the use of drones in agriculture. It is important for farmers to understand the potential benefits of this technology and to receive the necessary training and support to use it effectively.

## Reference

1. Dias, P.A.; Tabb, A.; Medeiros, H. Multispecies fruit flower detection using a refined semantic segmentation network. *IEEE Robot. Autom. Lett.* **2018**, *3*, 3003–3010. [\[Google Scholar\]](#) [\[CrossRef\]](#) [\[Green Version\]](#)
2. Hong, H.; Lin, J.; Huang, F. Tomato disease detection and classification by deep learning. In Proceedings of the 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Fuzhou, China, 12–14 June 2020; p. 0001. [\[Google Scholar\]](#)
3. Liu, J.; Wang, X. Tomato diseases and pests detection based on improved YOLO V3 convolutional neural network. *Front. Plant Sci.* **2020**, *11*, 1–12. [\[Google Scholar\]](#) [\[CrossRef\]](#) [\[PubMed\]](#)
4. Bulanon, D.; Kataoka, T.; Ota, Y.; Hiroma, T. AE—automation and emerging technologies: A segmentation algorithm for the automatic recognition of Fuji apples at harvest. *Biosyst. Eng.* **2002**, *83*, 405–412. [\[Google Scholar\]](#) [\[CrossRef\]](#)
5. Wan, P.; Toudeshki, A.; Tan, H.; Ehsani, R. A methodology for fresh tomato maturity detection using computer vision. *Comput. Electron. Agric.* **2018**, *146*, 43–50. [\[Google Scholar\]](#) [\[CrossRef\]](#)
6. Payne, A.B.; Walsh, K.B.; Subedi, P.P.; Jarvis, D. Estimation of mango crop yield using image analysis—Segmentation method. *Comput. Electron. Agric.* **2013**, *91*, 57–64. [\[Google Scholar\]](#) [\[CrossRef\]](#)
7. Jiang, K.; Afzaal, U.; Lee, J. Transformer-Based Weed Segmentation for Grass Management. *Sensors* **2023**, *23*, 65. <https://doi.org/10.3390/s23010065>.
8. Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in Vision: A Survey. *ACM Comput. Surv.* **2022**, *54*, 200. <https://doi.org/10.1145/3505244>.
9. Tao, T.; Wei, X. A hybrid CNN-SVM classifier for weed recognition in winter rape field. *Plant Methods* **2022**, *18*, 29. <https://doi.org/10.1186/s13007-022-00869-z>.

10. Zhang, H.; Wang, Z.; Guo, Y.; Ma, Y.; Cao, W.; Chen, D.; Yang, S.; Gao, R. Weed Detection in Peanut Fields Based on Machine Vision. *Agriculture* 2022, 12, 1541. <https://doi.org/10.3390/agriculture12101541>.

11. Jin, X.; Sun, Y.; Che, J.; Bagavathiannan, M.; Yu, J.; Chen, Y. A novel deep learning-based method for detection of weeds in vegetables. *Pest Manag. Sci.* 2022, 78, 1861–1869. <https://doi.org/10.1002/ps.6804>.

12. Abouzahir, S.; Sadik, M.; Sabir, E. Paper Bag-of-visual-words-augmented Histogram of Oriented Gradients for efficient weed detection. *Biosyst. Eng.* 2021, 202, 179–194. <https://doi.org/10.1016/j.biosystemseng.2020.11.005>.

13. Haq, M.A. CNN Based Automated Weed Detection System Using UAV Imagery. *Comput. Syst. Sci. Eng.* 2022, 42, 837–849. <https://doi.org/10.32604/csse.2022.023016>.

14. Milioto, A.; Lottes, P.; Stachniss, C. Real-Time Blob-Wise Sugar Beets vs. Weeds Classification For Monitoring Fields Using Convolutional Neural Networks. In Proceedings of the International Conference on Unmanned Aerial Vehicles in Geomatics, Bonn, Germany, 4–7 September 2017; pp. 41–48.

15. Ong, P.; Teo, K.S.; Sia, C.K. UAV-based weed detection in Chinese cabbage using deep learning. *Smart Agric. Technol.* 2023, 4, 100181. <https://doi.org/10.1016/j.atech.2023.100181>.

