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Abstract—In this paper we establish finite integral which are believed to be new .Our integral involve the product of the
extended Jacobi polynomials,I-function and general class of polynomials, on account of the general nature of the function
and polynomials occurring in the integral our findings provide interesting extensions of a large number of results.

I. INTRODUCTION :TO UNIFY THE CLASSICAL ORTHOGONAL POLYNOMIALS V1z.JACOBI, HERMITE AND LAGUERRE FUJIWARA[2]
DEFINED A CLASS OF GENERALIZED CLASSICAL POLYNOMIALS BY MEANS OF FOLLOWING RODRIGUES FORMULA.!
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Rn(X)_den[( -pPf (-0 p<x<ga>-1,>-1 1.1)

Denote these polynomials by Fn (B, «; x) and call them extended Jacobi polynomials Thakare [9] obtained the following form of
Rn(x)=Fn(B, a; x)

Fn(B, a; x)= T X @0 Q4B 5y [' ni_fs ®p X]p <x<gq 1.2)
Fujiwara [2] proved that when p=-1,g=1 and k:l
Fn (B, o x)=P“P (x)Where P{* B)(x)—(HB)n = )“2F1[ 1 +B v X+1]IS Jacobi polynomial [3] (1.3)

Saxena [5] introduced the I-function defined as:
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For R=1, the I-Function reduces to well —known Fox’s H-function [6]

A general class of polynomials [7,p. 1, eq. (1)]
SM[x] = z[N/WM (N=0,1,2,....)) (15)
where M is an arbitrary positive integer and the coefficient Ay (N, k = 0) are arbitrary nstants real or complex. On suitably
specializing the coefficient Ay SN[x] yields a number of known polynomials as its special cases. These include, among others,

Laguerre polynomials, Hermite polynomials and several others [8. pp. 1 58-161].

PRELIMINARIES

In this paper we need the following results :

(i) [1] p.10, eq.(13) Visza (t—b)*l@a—-t)tdt=(a—b)**Y"1B(x,y),Re(x) > 0,Re(y) >0,b<a (2.1)
Where B(x,y) is beta function .
(ii) The Hyper Geometric function [3]2F1(a, b; ¢; z) = ¥ o(a)(r;)(b):'z (2.2)
(iii) Vandermonde’s theorem [3]
JFi(—n,b;c; 1) = (C( ;’)" c#0,—1,-2,..; (2.3)
(iv) The following results:
_ (=n"r@a-a)
@n =S50 (2.4)
and  (a), = F(:(:)“) (2.5)
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Main Integral :
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Sy [e(x — p)*]dx
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Provided that Re (@) > —1, Re (t + h(%))>-1,h>0, i=1,...,m
J
To establish (3.1) replace I-function by its Mellin-Barnes contour integral form (1.4) and get following form of integral (sayA)
A= [ (x =) (q = x)"Fa(B @ %) Sylle(x — )’ (3.2)

{Zm f ()25 (x - )hfdz} dx

Now interchange the order of integration which is justified due to absolute convergence of integral involved in the process, we get
1 3 ! t+hEé
= - — a
i | 4 [ fp (= p)*é(g — )

Fo(B, a,x) Syle(x — p)¥)dx]dé (33)

Now we put value of Fn((B, a, x) from (1.2) and value of S,I‘q’ll1 [e(x — p)¥] from (1.5) in (3.3) and interchange the order of
integration and summation and using the result (2.1) to (2.5) and after little simplification it becomes:

[N1/Mq] ( N ) A
st o Koy 4 g 1)
k=0 fey!
r h k)T h
(q — p)t+orrri iy A-CORERVINTA-BOM)___ g (£[2(q — p)*IEdE (3.4)

2mi L T(1—(n+B—-t)+hé&)I(1-(-1-t—a—h-vkq)+h &)
Now using definition of I-function, we obtain reqd. result (3.1)

Special Cases:
In the main result if we take N; =0 (the polynomial Sé"i will reduce to Ao,0 Which can be taken to be unity without loss of
generality), we arrive at a result given by S. C. Sharma [4, eq. (3.1)].
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