One Point Union Cordial Labeling of Graphs Related to triple -Tail of C_{4} and invariance

Abstract

Mukund V.Bapat ${ }^{1}$ Abstract: We discuss graphs of type $\mathbf{G}^{(k)}$ i.e. one point union of \mathbf{k}-copies of \mathbf{G} for cordial labeling. We take \mathbf{G} as triple-tail graph. A triple-tail graph is obtained by attaching a path P_{m} to any three vertices which forms a path p_{3} in given graph C_{4}. It is denoted by triple- tail $\left(\mathbf{G}, \mathrm{P}_{\mathrm{m}}\right)$ where \mathbf{G} is given graph and all the three tails are identical to \mathbf{p}_{m}. We take \mathbf{G} as \mathbf{C}_{4} and restrict our attention to $\mathbf{m}=2,3$ and 4 in \mathbf{P}_{m}. Further we consider all possible structures of $\mathbf{G}^{(k)}$ by changing the common point and obtain non-isomorphic structures. We show all these structures as cordial graphs. This is called as invariance of different structures of $\mathbf{G}^{(k)}$ under cordial labeling.

Keywords: cordial, one point union, triple-tail graph, cycle, labeling, vertex.
Subject Classification: 05C78

1. Introduction

The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Holton [6] , Graph Theory by Harary [7], A dynamic survey of graph labeling by J.Gallian [9] and Douglas West.[10].I.Cahit introduced the concept of cordial labeling[6]. $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ be a function. From this label of any edge (uv) is given by $|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})|$. Further number of vertices labeled with 0 i.e $\mathrm{v}_{\mathrm{f}}(0)$ and the number of vertices labeled with 1 i.e. $\mathrm{v}_{\mathrm{f}}(1)$ differ at most by one . Similarly number of edges labeled with 0 i.e. $e_{f}(0)$ and number of edges labeled with 1 i.e. $e_{\mathrm{f}}(1)$ differ by at most one. Then the function f is called as cordial labeling. Cahit has shown that : every tree is cordial; Kn is cordial if and only if $\mathrm{n} \leq 3 ; \mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is cordial for all m and n ; the friendship graph $\mathrm{C}_{3}{ }^{(t)}$ (i.e., the one-point union of t copies of C_{3}) is cordial if and only if t is not congruent to 2 (mod 4); all fans are cordial; the wheel W_{n} is cordial if and only if n is not congruent to $3(\bmod 4)$. A lot of work has been done in this type of labeling. One may refer dynamic survey by J. Gallian [9].

Our focus of attention is on one point unions on C_{4} graphs. For a given graph there are different one point unions (upto isomorphism) structures possible in $G^{(k)}$. It depends on which point on G is used to fuse to obtain one point union. It is called as invariance under cordial labeling. We use the convention that $\mathrm{v}_{\mathrm{f}}(0,1)=(\mathrm{a}, \mathrm{b})$ to indicate the number of vertices labeled with 0 are a in number and that number of vertices labeled with 1 are b. Further $e_{f}(0,1)=(x, y)$ we mean the number of edges labeled with o are x and number of edges labeled with 1 arey. The graph whose cordial labeling is available is called as cordial graph. In this paper we define triple -tail graph and obtain one point union graphs on it. For this we consider C_{4} and t-pendent edges attached to each of any three vertices of C_{4}. $\mathrm{t} \leq 4$)

2. Preliminaries

3.1 Tail Graph: A (p,q) graph G to which a path P_{m} is fused at some vertex. This also can be explained as take a copy of graph G and at any vertex of it fuse a path P_{m} with it's one of the pendent vertex. It's number of vertices are $\mathrm{P}+\mathrm{m}-1$ and edges are by q_{+} $\mathrm{m}-1$. It is denoted by tail $\left(G, P_{m}\right)$.
3.2 double-tail graph of G is denoted by double-tail $(\mathrm{G}, \mathrm{Pm})$.It is obtained by attaching (fusing) path P_{m} to a pair of adjacent vertices of G .It has $q+2 m-2$ edges and $p+2 m-2$ vertices. ($m \geq 2$)
3.3 Fusion of vertices. Let $\mathrm{u} \neq \mathrm{v}$ be any two vertices of G . We replace these two vertices by a single vertex say x and all edges incident to u and v are now incident to x. If loop is formed then it is deleted.[6]
$3.4 \quad G^{(K)}$ it is One point union of k copies of G is obtained by taking k copies of G and fusing a fixed vertex of each copy with same fixed vertex of other copies to create a single vertex common to all copies. If G is a (p, q) graph then $\mid V\left(G_{(k)} \mid=k(p-\right.$ $1)+1$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{k} . \mathrm{q}$
3.4 triple-tail graph of G is denoted by triple-tail $\left(G, P_{m}\right)$.It is obtained by attaching (fusing) path Pm to each of three vertices of G that forms a path P_{3}.It has $q+3 m-3$ edges and $p+3 m-3$ vertices. ($m \geq 2$)

Results Proved:
Theorem4.1 All non- isomorphic one point union on k-copies of graph obtained on $G=$ triple $-\operatorname{tail}\left(\mathrm{C}_{4}, \mathrm{p}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.

Proof: From fig.4.1 it follows that there are five non-isomorphic structures of one point union possible at vertices $\mathrm{a}, \mathrm{b}, \mathrm{c}$.

Define $f: V(G) \rightarrow\{0,1\}$ that gives us labeled copies of G as given below..We extend the same $\quad f: V\left(G^{(k)}\right): \rightarrow\{0,1\}$ to obtain cordial labeling of $G^{(k)}$. When the one point union is taken at point a then type A and type B label are fused alternately at vertex a.

Fig. 4.1 One Point Union may be taken at vertices ' a ', 'b', 'c','d','e'

Fig. $4.2 \mathrm{v}_{\mathrm{f}}(0,1)=(4,3)$
; $\mathrm{e}_{\mathrm{f}}(0,1)=(4,3)$

Fig. $4.4 \mathrm{v}_{\mathrm{f}}(0,1)=(4,3)$; $\mathrm{e}_{\mathrm{f}}(0,1)=(3,4)$

Fig. $4.3 \mathrm{v}_{\mathrm{f}}(0,1)=(4,3)$; $\mathrm{e}_{\mathrm{f}}(0,1)=(3,4)$

0

)

Fig. $4.5 \mathrm{v}_{\mathrm{f}}(0,1)=(4,3)$; $\mathrm{e}_{\mathrm{f}}(0,1)=(4,3)$ - 0,1) $(4,3)$

Define $f: V(G) \rightarrow\{0,1\}$ that gives us labeled copies of G as above. We extend the same $f: V\left(G^{(k)}\right): \rightarrow\{0,1\}$ to obtain cordial labeling of $\mathrm{G}^{(\mathrm{k})}$. To obtain one point union at points a or b or d we fuse type A label with type B label at one of these required points. When $\mathrm{k}=2 \mathrm{x}$ type A and type B are used x times each. When $\mathrm{k}=2 \mathrm{x}+1$ then type A label is used $\mathrm{x}+1$ times and type B label for x times to obtain $\mathrm{G}^{(\mathrm{K})}$.The label distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(5+9 \mathrm{x}, 5+9 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(5 \mathrm{k}, 5 \mathrm{k})$. when $\mathrm{k}=2 \mathrm{x}+1, \mathrm{x}=0,1,2$,.. The label number distribution is $\left.\mathrm{v}_{\mathrm{f}}(0,1)=(10+9(\mathrm{x}-1), 9+9(\mathrm{x}-1)), \mathrm{e}_{\mathrm{f}}(0,1)=(5 \mathrm{k}, 5 \mathrm{k})\right)$. when $\mathrm{k}=2 \mathrm{x}, \mathrm{x}=1,2$,

To obtain one point union at points e or c we fuse type A label with type C label at one of these required points. When $\mathrm{k}=2 \mathrm{x}$ type A and type C are used x times each. When $\mathrm{k}=2 \mathrm{x}+1$ then type A label is used $\mathrm{x}+1$ times and type C label for x times to obtain $\mathrm{G}^{(\mathrm{K})}$. The label distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(5+9 \mathrm{x}, 5+9 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(5 \mathrm{k}, 5 \mathrm{k})$. when $\mathrm{k}=2 \mathrm{x}+1, \mathrm{x}=0,1,2$,.. The label number distribution is $\left.\mathrm{v}_{\mathrm{f}}(0,1)=(9+9(\mathrm{x}-1), 10+9(\mathrm{x}-1)), \mathrm{e}_{\mathrm{f}}(0,1)=(5 \mathrm{k}, 5 \mathrm{k})\right)$. when $\mathrm{k}=2 \mathrm{x}, \mathrm{x}=1,2$, ..Thus the graph is cordialand invariance under cordiality is observed.

Theorem 4.3 All non- isomorphic one point union on k-copies of graph obtained on $G=\operatorname{triple}$ - tail $\left(\mathrm{C}_{4}, \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.(except possibly when one point union is taken at degree two vertex of cycle C_{4}.)

Proof: From figure 4.9 it follows that one can take one point union at vertices a, b, c, d, e. a

Fig. 4.9 One Point Union may be taken at vertices 'a', 'b' 'c', 'd','e'.

Fig. $4.11 \mathrm{v}_{\mathrm{f}}(0,1)=(7,6)$;
$\mathrm{e}_{\mathrm{f}}(0,1)=(7,6)$

Fig. $4.11 \mathrm{v}_{\mathrm{f}}(0,1)=(7,6)$;
$\mathrm{e}_{\mathrm{f}}(0,1)=(6,7)$

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ that gives us labeled copies of G as above. We extend the same $\mathrm{f}: \mathrm{V}\left(\mathrm{G}^{(\mathrm{k})}\right): \rightarrow\{0,1\}$ to obtain cordial labeling of $G^{(k)}$. To achieve this we fuse type A label with type B label at point a (at point b) (at point d)(at point e).These two types of labels are used alternately. The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(6 \mathrm{k}+1,6 \mathrm{k})$ and $\mathrm{e}_{\mathrm{f}}(0,1)=(7+13 \mathrm{x}, 6+13 \mathrm{x})$ when k is odd number given by $2 \mathrm{x}+1, \mathrm{x}=0,1,2, .$. And when k is an odd number given by $\mathrm{k}=2 \mathrm{x}, \mathrm{x}=1$, .. we have $\mathrm{v}_{\mathrm{f}}(0,1)=(6 \mathrm{k}+1,6 \mathrm{k})$ and $\mathrm{e}_{\mathrm{f}}(0,1)=(13 \mathrm{k}, 13 \mathrm{k})$. Note that the common point to all copies is vertex with label ' 0 '. At vertex c the one point union on k copies of G with cordial label can be obtained only at few stray cases. Eccept for the point c the graph is cordial.
\#
Theorem 4.4 All non- isomorphic one point union on k-copies of graph obtained on $G=$ triple- tail $\left(\mathrm{C}_{4}, 3 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.

Proof: from fig 4.12 it is clear that we can take one point union at five different vertices a, b, c, d, and e.

Define $f: V(G) \rightarrow\{0,1\}$ that gives us labeled copies of G as above. We extend the same $f: V\left(G^{(k)}\right): \rightarrow\{0,1\}$ to obtain cordial labeling of $G^{(k)}$. To achieve this we fuse type A label with type B label at point a (at point b) (at point d)(at point e),(at point c).These two types of labels are used alternately. When $k=2 x$ the type A label and type B label will each appear for x times. When $\mathrm{k}=2 \mathrm{x}+1$ type A label will appear for $\mathrm{x}+1$ times and type B label will appear for x times. The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=($ $8+8(\mathrm{x}), 8+8(\mathrm{x}))$ and $\mathrm{e}_{\mathrm{f}}(0,1)=(8 \mathrm{k}, 8 \mathrm{k})$ when k is odd number given by $2 \mathrm{x}+1, \mathrm{x}=0,1,2, .$. When k is an even number given by $\mathrm{k}=$ $2 \mathrm{x}, \mathrm{x}=1,2, .$. we have $\mathrm{v}_{\mathrm{f}}(0,1)=(16+15(\mathrm{x}-1), 15+15(\mathrm{x}-1))$ and $\mathrm{e}_{\mathrm{f}}(0,1)=(8 \mathrm{k}, 8 \mathrm{k})$. Note that the common point to all copies is vertex with label ' 0 '. Thus the graph is cordial. Conclusions: In this paper we define some new families obtained from C_{4}.We take a copy of C_{4} and to any three of it's vertices fuse t pendent edges each. We call this as triple-tail ($\mathrm{G}, \mathrm{tP} \mathrm{P}_{2}$) graph.. We show that

1) All non- isomorphic one point union on k-copies of graph obtained on $G=$ triple-tail $\left(\mathrm{C}_{4}, \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.
2) All non- isomorphic one point union on k-copies of graph obtained on $G=$ triplele-tail $\left(\mathrm{C}_{4}, 2 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.
3) All non- isomorphic one point union on k-copies of graph obtained on $G=$ triplele-tail $\left(\mathrm{C}_{4}, 3 \mathrm{P}_{3}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs. (except possibly at degree two vertex)
4) All non- isomorphic one point union on k-copies of graph obtained on $G=$ triple-tail $\left(\mathrm{C}_{4}, 4 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs. It is necessary to investigate the cordiality and invariance for for one point union graph for the general case when t pendent edges are attached at each three vertices of C_{4}.

References:

[1] M. Andar, S. Boxwala, and N. Limye, New families of cordial graphs, J. Combin. Math. Combin. Comput., 53 (2005) 117-154. [134]
[2] M. Andar, S. Boxwala, and N. Limye, On the cordiality of the t-ply Pt(u,v), Ars Combin., 77 (2005) 245-259. [135]
[3] Bapat Mukund, Ph.D. thesis submitted to university of Mumbai. India 2004.
[4] Bapat Mukund V. Some Path Unions Invariance Under Cordial labeling, IJSAM feb. 2018 issue.
[5] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207.
[6] J. Clark and D. A. Holton, A first look at graph theory; world scientific.
[7] Harary, Graph Theory, Narosa publishing ,New Delhi
[8] Yilmaz, Cahit, E-cordial graphs, Ars combina, 46,251-256.
[9] J.Gallian, Dynamic survey of graph labeling, E.J.C 2017
[10] D. WEST, Introduction to Graph Theory, Pearson Education Asia.

