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ABSTRACT 

ROBOTIC wheelchairs are made to increase the mobility of the elderly or crippled, hence enhancing their quality 

of life. In order to do this, autonomous navigation has undergone extensive research and evolved into a crucial 

feature for robotic wheelchairs. Identifying regions and anomalies in photos pixel-by-pixel is referred to as 

segmenting drivable areas and road abnormalities. It plays a key role in autonomous navigation. Robotic 

wheelchairs might bump or possibly roll over while travelling over road anomalies without properly separating 

drivable sections and road oddities, which could harm human riders. In this research, we propose a self-

supervised learning strategy to describe the solution to this problem for the purpose of segmenting drivable areas 

and road anomalies. The proposed method can automatically generate segmentation labels for drivable areas and 

road anomalies. Then, we train RGB-D data based semantic segmentation neural networks and get predicted 

labels. We firstly develop a pipeline named Self- Supervised Label Generator (SSLG) to automatically label 

drivable areas and road anomalies. Then, we use the segmentation labels generated by the SSLG to train several 

RGB-D data-based semantic segmentation neural networks. 
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INTRODUCTION 

Robotic wheelchairs are made to increase the mobility of the elderly or crippled, therefore improving their 

quality of life. In order to do this, autonomous navigation has undergone extensive research and evolved into a 

crucial feature for robotic wheelchairs. Identifying regions and anomalies in photos pixel-by-pixel is referred to 

as segmenting drivable areas and road abnormalities. It plays a key role in autonomous navigation. Robotic 

wheelchairs might bump or possibly roll over while travelling over road anomalies without properly separating 

drivable sections and road oddities, which could harm human riders. In this study, we define the drivable area as 

the space in which robotic wheelchairs of any size may go, whereas the road anomaly is the space with a height 

more than 5cm from the surface of the drivable area. The segmentation of drivable areas and road anomalies 

could be addressed using semantic segmentation techniques. RGB-D cameras, such as Kinect [1], are visual 

sensors that can stream RGB and depth images at the same time [2]–[4]. We use an RGB-D camera for the 

segmentation of drivable areas and road anomalies in this paper. The reason why we use RGB-D camera is that 

the depth difference between road anomalies and drivable areas could be useful to distinguish them. Recent 

development of deep learning techniques has brought significant improvements on the semantic segmentation 

using RGB-D cameras [5]–[7]. In order to train a deep neural network, we usually need a large-scale dataset with 

hand-labeled ground truth. However, generating such a dataset is time-consuming and labor- intensive. In order to 

provide a solution for the excessive consumption of time and labor for manual labeling, we present a self- 

supervised approach to segment drivable areas and road anomalies for robotic wheelchairs with an Intel 
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Realsense D415 RGB-D camera. Fig. 1 shows our robotic wheelchair, RGB-D camera and mini PC. The Intel 

Realsense D415 is an active stereo camera that estimates distances with emitted infrared lights. It is equipped with 

an Intel Realsense D415 RGB-D camera to collect data and a Mini PC to process data. 

 
Fig. 1: The robotic wheelchair used in this work. 

 

 
Fig. 2 illustrates the overview of our proposed self supervised approach. 

We firstly develop a pipeline named Self- Supervised Label Generator (SSLG) to automatically label drivable 

areas and road anomalies. Then, we use the segmentation labels generated by the SSLG to train several RGB-D 

data-based semantic segmentation neural networks. Experimental results show that although the segmentation 

Fig. 2 illustrates the overview of our proposed self supervised approach [10]. We firstly develop a pipeline 

named Self- Supervised Label Generator (SSLG) to automatically label drivable areas and road anomalies. Then, 

we use the segmentation labels generated by the SSLG to train several RGB-D data- based semantic 

segmentation neural networks. Experimental results show that although the segmentation labels generated by the 

SSLG present mis- labelings, the results of our proposed self-supervised approach  still outperforms the state-

of-the-art traditional algorithms and the state-of- the-art self-supervised algorithms. The contributions of this 

paper are summarized as follows: 

We propose a self-supervised approach to segment drivable areas and road anomalies for robotic wheelchairs. 

We develop a pipeline to automatically label drivable areas and road anomalies using RGB-D images. We 

construct an RGB-D dataset1 , which covers 30 common scenes where robotic wheelchairs usually work 

 

RELATED WORK 

Drivable Area Segmentation Labayradeet al.[8] proposed an algorithm that converted the drivable are 

segmentation  problem into a straight line detection problem. Following [8], some improvements [9]–

[10]were developed to enhance the robustness and accuracy. In recent years, some researchers have tried to solve 

this segmentation problem from other perspectives. For example, Ozgunalp et al. [12] proposed to use the 

estimated planar patches and patch orientations to reduce the impact of outliers. The proposed an approach to 

fuse the information of light detection and ranging (LIDAR) and vision data, respectively. 
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Road Anomaly Segmentation Early approaches of road anomaly segmentation mainly adopted traditional 

computer vision algorithms with handcrafted features. Cong et al. designed a feature based on the depth 

confidence analysis and multiple cues fusion. Lou et al. proposed an approach combining both regional stability 

and saliency for small road anomaly segmentation. With the development of deep learning, many 

work used deep neural networks to segment road anomalies. Peng et al. used a deep neural network to extract 

features from RGB-D images and fused these features in three levels to generate the predicted result. Chen et al. 

proposed a multiscale multi-path fusion network with cross-modal interactions, which could explore deep 

connections between RGB images and depth images. There also exist some RGB-D data- based semantic 

segmentation neural networks that fuse RGB and depth data together such as FuseNet [5] and Depth- aware CNN 

[6], which can achieve impressive performance. However, these methods rely on hand-labeled ground truth, 

which would become difficult to implement when there is no sufficient training dataset. Our proposed SSLG can 

automatically label drivable areas and road anomalies with RGB-D images, which greatly reduces the time and 

labor for manual labeling. 

 

Automatic Labeling 

Automatic labeling aims to generate labeling data automatically or in an unsupervised way without hand-labeled 

training data. Barnes et al. proposed an approach to generate training data for the segmentation problem of path 

proposals by exploiting the information of odometry and obstacle sensing. Mayr et al. designed a pipeline to 

automatically generate training data for the segmentation problem of drivable areas. However, neither of these 

two approaches can generate the label of drivable areas and road anomalies simultaneously. With the 

development of graphic rendering engines, some researchers utilized the data from real- world environments to 

construct simulation environments, where it is effortless to acquire segmentation labels. Gaidon et al. proposed a 

real-to- virtual world cloning approach to generate photorealistic simulation environments. Xia et al. proposed 

Gibson Environment for developing real-world perception for active agents. However, there is a certain gap 

between the data collected in simulation environments and in real-world environments. For example, the depth 

images collected in simulation environments are very dense, but the actual depth images collected by RGB-D 

cameras have some invalid pixels. Besides, these simulation environments cannot cover the common indoor and 

outdoor scenes where robotic wheelchairs usually work and the road anomalies that robotic wheelchairs may 

encounter in real environments. Furthermore, in order to construct such a 

 photo-realistic simulation environment for robotic wheelchairs, either large amounts of paired data for target-

source domains or physical measurements of important objects in the scene are needed, which is time-

consuming and labor-intensive. 

 

Self-Supervised Semantic Segmentation Zeng et al. proposed a self-supervised approach to semantic 

segmentation by utilizing the known background information. However, their approach is only suitable for 

single confined scenes with objects that can be moved. In common scenes where robotic wheelchairs usually 

work, there are many anomalies (e.g., street lamps) that can not be moved. Besides, some       researchers designed 

proxy tasks (e.g., image colorization) to extract meaningful representations for   self supervised learning. Recently, 

Zhan et al. presented a mix-and-match tuning approach for self supervised semantic segmentation based on 

the existed proxy tasks. 
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Fig. 3: The overview of our proposed SSLG 

 

PROPOSED METHOD 

Figure 3 consists of (a) Input of RGB-D images(b) Processing pipeline of RGB-D images and (c) Output of 

self-supervised labels. (b) is composed of RGB Processing Pipeline shown in the orange box, Depth Processing 

Pipeline shown in the green box and (VII) Final Segmentation Label Generator shown in the blue lines. The RGB 

Processing Pipeline consists of (I) Original RGB Anomaly Map Generator and (II) Generation of final RGB 

anomaly maps. The Depth Processing Pipeline consists of 

(III) Computation of original v-disparity maps, (IV) Filtering of original v-disparity maps, (V) Extraction of the 

drivable area and original depth anomaly maps as well as 

(VI) Generation of final depth anomaly maps. 

Evaluation Process Specification We defined an evaluation process that is depicted in Figure 4. This process 

consists of five steps: Route selection; Data acquisition; Anomaly recognition; Anomaly identification; and  

 

Results  

With the objective of evaluating the anomaly detection model described in Section 3 with data collected in real-

world conditions, we designed, developed and deployed a cloud-based road condition/anomaly information 

management service based on vehicle context data, collected during driving activities using       smartphones, and a 

Web application for identifying road anomalies. The overall functional process is as follows. Smartphones collect 

inertial data, i.e., accelerometer data for X, Y, and Z axes, GPS coordinates, speed, and bearing (this attribute is 

not used for anomaly detection), during driving activity. For this, smartphones are mounted on the vehicle’s 

windshield in a vertical portrait orientation. 

Self-Supervised Label Generator 

Our proposed Self-Supervised Label Generator (SSLG) is designed to generate self-supervised labels of drivable 

areas and road anomalies automatically. The overview of the SSLG is shown in Fig. 3. We firstly elaborate the 

depth processing pipeline inspired by [8]. As derived in [8], for an RGB-D camera consisting of two cameras, the 

projection of the real world point P with coordinates of (X, Y, Z) on the image coordinates (U, V ) can be 

computed by (1)– (3): 
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where b is the distance between the optical centers of two cameras; f is the focal length; (u0, v0) is the center of 

the image plane; ul , ur are the projection of the point P on two cameras, respectively; θ is the pitch angle with 

respect to the ground plane. Then, the disparity ∆ can be calculated by (4): 

 
Horizontal planes in the real world coordinates can be represented by Y = m, which leads to: 

 
Similarly, vertical planes in the real world coordinates can be represented by Z = n, which leads to: 

 
Equation (5) and (6) show that horizontal planes and vertical planes in the real world coordinates can be 

projected as straight lines in the v-disparity map. Actually, [8] proposed that this conclusion applies to all planes. 

The intuition behind the depth processing pipeline is that drivable areas can be regarded as planes in most cases 

and road anomalies can also be regarded as planes approximately. Then, the segmentation problem can be 

converted into a straight line extraction problem. The original v-disparity map can be obtained by computing the 

depth histogram of each row in the depth image (Fig. 3 III). Since the computed v-disparity map often contains 

much noise, the steerable filter with the second derivatives of Gaussian as the basis function [9] is applied to filter 

the original v-disparity map (Fig. 3 IV). Then, the Hough Transform algorithm 

[27] is applied to extract straight lines in the filtered v-disparity map (Fig. 3 IV). Gao et al. [9] concluded that the 

drivable area is dominant in v-disparity maps; the straight line with the smallest disparity is the projection of the 

infinity plane; the remaining straight lines except the two straight lines mentioned above are marked as road 

anomalies. According to these conclusions, we firstly filter out the straight lines representing road anomalies 

with a height smaller than 5cm from the surface of the drivable area according to their lengths. Then, it is easy 

to find that in the filtered v- disparity map, straight line No.1, No.2 and No.3 represent the drivable area, the road 

anomaly and the infinity plane, respectively. After that, we extract the drivable area MD and the original depth 

anomaly map Do according to the straight line detection results (Fig. 3 V). 

However, the original depth anomaly map lacks robustness and accuracy because the straight lines representing 

small road anomalies are too short and easy to be filtered out together with the noise. For instance, there are three 

road anomalies in the example (Fig. 3), but there is only one straight line representing road anomalies in the 

filtered v-disparity map and thus one road anomaly detected in the original depth anomaly map. The other two 

small road anomalies (i.e., the brick and the road sign) are filtered out together with the noise. In order to solve 

this problem, we utilize the drivable area that we have already generated. We can find that there are some holes 

inside the drivable area, which contain the missing road anomalies in the original depth anomaly map. Therefore, 

we extract holes in the drivable area and then combine the hole detection results with the original depth anomaly 

map to generate the final depth anomaly map Df , which is further normalized to the range [0, 1] (Fig. 3 VI). 

Although this method will bring some noise to the depth anomaly map, it greatly increases the detection rate of 

road anomalies to ensure the safety of the riders and we will correct it again with the information of RGB images. 
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Now we elaborate the RGB image processing pipeline inspired by. The intuition behind the RGB processing 

pipeline is that the areas with different colors from surrounding areas are often marked as road anomalies. Based 

on this principle, we design an original RGB anomaly map generator (Fig. 3 I), which is described in Algorithm 

1. Let L denote the image in the Lab color space transformed from the RGB image, and h and w denote the 

width and the height of the RGB image, respectively. 

We generate the original RGB anomaly map Ro by computing the difference between the Lab color vector of each 

pixel and its Gaussian blurred result. In order to suppress the pattern of the drivable area, we choose a large filter 

scale for the Gaussian kernel to blur each channel of the Lab color space. The size of the kernel is 3σ ×3σ with 

the standard deviation σ and σs is chosen to be 

12 to control the strength of weighting. However, the original RGB anomaly map lacks robustness and accuracy 

because of the interference outside the drivable area. In order to solve this problem, we utilize the drivable area 

that we have already generated to filter out the noise outside the drivable area (Fig. 3 II). After normalized to the 

range [0, 1], the final RGB anomaly map Rf is generated. The last step of our proposed SSLG is to combine two 

anomaly maps and the drivable area to generate the self supervised label. We design a final segmentation label 

generator (Fig. 3 VII), which is described in Algorithm 2. As for road anomalies, we firstly generate the final 

anomaly map MA. 

Then, we set a threshold κ and the area in the final anomaly map where the value is greater than κ is marked as 

road anomalies in the self-supervised label. In our case, we set α to 0.5 and κ to 0.3. The drivable area in the self-

supervised label is the same as the drivable area MD, and the rest area except drivable areas and road anomalies 

marked above is labeled as the unknown area. Finally the self-supervised label ML is generated, which is used 

for training RGB-D data-based semantic segmentation neural networks as described in the following sections. 

 
 

SIMULATION RESULTS 

 

 
Fig.4. Input image 
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Fig.5. V- disparity map 

 

 
Fig.6. Output result 

Conclusion 

In this work, we presented a comprehensive study on the drivable area and road anomaly segmentation problem 

for robotic wheelchairs. A self-supervised approach was proposed, which contains an automatic labeling pipeline 

for drivable area and road anomaly segmentation. Experimental results showed that our proposed automatic 

labeling pipeline achieved an impressive speed-up compared to manual labeling. In addition, our proposed self-

supervised approach exhibited more robust and accurate results than the state-of-the-art traditional algorithms 

as well as the state-of-the-art self-supervised algorithms. In our future work, we plan to investigate our work with 

planning algorithms for robotic wheelchairs to achieve autonomous navigation. 
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