Designing of Content Based Image Retrieval Using both Color and Shape Features

Raghu Kumar Lingamallu,
M.Tech., Ph.D Scholar,
Dept. of Compute science Engineering, O.P.J.S University,
Churu, Rajasthan State, India.

Abstract: Content-Based image acts to get back (CBIR) uses the seeing what is in of an image such as color, form, feeling of a material, and spatial general design to represent and list of words in a book the image. action-bound make observations in CBIR is geared in the direction of the development of methodologies for getting at details, interpreting price listing and giving pointer image knowledge-bases. In addition to their development, efforts are also being made to value the operation of image acts to get back systems. The quality of move is heavily dependent on the good quality of the careful way used to produce point gives directions to be taken and likeness measure for comparison of points. In this paper we offered an algorithm which makes into company the more chances of different other algorithms to get well the having no error and doing a play of acts to get back. The having no error of color histogram based matching can be increased by using Color soundness guide (CCV) for coming one after another polish. The rate of motion of form based acts to get back can be gave greater value to by giving thought to as rough form rather than the certain, errorless form. In addition to this a mix of color and form based acts to get back is also included to get well the having no error of the outcome.

Keywords: — CBIR, Shape, Color Coherence Vector, Centroid,

I. INTRODUCTION

CBIR is the process of getting back images from a knowledge-base or library of by numbers, electronic images according to the seeing What is in of the images. In other words, it is the getting back of images that have like What is in of colors, textures or forms; outlines. images have always been a necessary part to do with man news and its roots millennia earlier. images make the news process more interesting, illustrative, elaborate, clear and see-through. In CBIR system, it is general to group the image features in three main parts: color, feeling of a material and form [1]. Ideally, these features should be got mixed together to give better decision-making in the comparison process. Color is by far the most common seeing point used in CBIR, primarily because of the simpleness of getting from color information from images [3]. To clear substance news given about form and feeling of a material point are much more complex and high priced, of great value works, usually did after the first coming through slowly on condition that by color points. Many applications have need of simple methods for making a comparison of images based on their overall looks. For example, an user may desire to get back all images like to a given image from a greatly sized knowledge-base of images. Color histograms [7] are a pleasing to all answer to this hard question; the histogram gives a detailed account of the gray-level or color distribution for a given image, they are computationally good at producing an effect, but generally not recording small changes to small changes in camera position. Color histograms also have some limiting conditions. A color histogram provides no spatial knowledge; it merely gives a detailed account of which colors are present in the image, and in what amounts. In addition, color histograms are sensitive to both forced together things and changes in overall image brightness. For the design of histogram based careful way the main things we have need of are right color space, a color quantization design, a histogram pictures of, and a likeness metric. A by numbers, electronic image in these surrounding words, senses is a group of bit of picture. Each bit of picture represents a color. colors can be represented using different color spaces depending on the standards used by the person making observations or depending on the application such as Red-Green-Blue (RGB), Hue-Saturation-Value (HSV), Yiq or YUV and so on. In this paper we make, be moving in a color-based careful way for making a comparison images which are like to color histograms, but which also takes spatial knowledge into account. We Begin with a paper of color histograms. Then make, be moving in CCV's and how to make a comparison them. examples of CCV-based image questions put examples on view that they can give higher outcomes. at last, we present some possible additions made to CCV's.
II. COLOR AND TEXTURE FEATURE IN IMAGE

A. COLOR FEATURE:

For the initial process of histogram matching, we use the HSV color space. The HSV color space is preferred for manipulation of hue and saturation (to shift colors or adjust the amount of color) since it yields a greater dynamic range of saturation [4]. Figure 1 illustrates the single hex cone HSV color model. The top of the hex cone corresponds to $V = 1$, or the maximum intensity of colors. The point at the base of the hex cone is black and here $V = 0$. Complementary colors are 180° opposite one another as measured by H, the angle around the vertical axis V, with red at 0°. The value of S is a ratio, ranging from 0 on the center line vertical axis V to 1 on the sides of the hex cone. Any value of S between 0 and 1 may be associated with the point $V = 0$. The point $S = 0$, $V = 1$ is white. Intermediate values of V for $S = 0$ are the grays. Note that when $S = 0$, the value of H is irrelevant. From an artist’s viewpoint, any color with $V = 1$, $S = 1$ is a pure pigment whose color is defined by H. Adding white and black corresponds to decreasing S without changing V and corresponds to decreasing V without changing S respectively. Tones are created by decreasing both S and V.

B. TEXTURE FEATURE:

Shape is an important visual feature and it is one of the basic features used to describe image content. However, shape representation and description is a difficult task. This is because when a 3-D real world object is projected onto a 2-D image plane, one dimension of object information is lost. As a result, the shape extracted from the image only partially represents the projected object. To make the problem even more complex, shape is often corrupted with noise, defects, arbitrary distortion and occlusion. Further it is not known what is important in shape. Current approaches have both positive and negative attributes; computer graphics or mathematics use effective shape representation which is unusable in shape recognition and vice versa. In spite of this, it is possible to find features common to most shape description approaches. Basically, shape-based image retrieval consists of measuring the similarity between shapes represented by their features. Some simple geometric features can be used to describe shapes. Usually, the simple geometric features can only discriminate shapes with large differences; therefore, they are usually used as filters to eliminate false hits or combined with other shape descriptors to discriminate shapes. They are not suitable to stand alone shape descriptors. A shape can be described by different aspects. These shape parameters are Mass, Center of gravity (Centroid) Mean, Variance, Dispersion, Axis of least inertia, Digital bending energy, Eccentricity, Circularity ratio, Elliptic variance, Rectangularity, Convexity, Solidity, Euler number, Profiles, Hole area ratio, etc. Some of these are described as follows:

$$M = H(X, Y)$$

$$H = 1 \text{ Where } S(X,Y) \text{ Belongs To } C$$

$$0 \text{ Where } S(X,Y) \text{ Not Belongs To } C$$

III. PROPOSED WORK

A. Color Retrieval

Color retrieval system works in two stages. 1) In the first stage, Histogram based comparison is done and matching images are short listed. 2) In the second stage, the Color Coherence Vectors of the short listed images (stage 1) are used to refine the results. Numbers of coherent and non-coherent pixels for all color intensities are calculated in the image. Then size of coherency array, coherency array and no. of coherency pixels are stored as a vector. The Euclidean Distance is used for matching two histograms each of which n bins is given as operates by assuming each vector as a point in an n-dimensional vector space and computes the physical distance between the 2 points.

B. Algorithm for Color Retrieval

Step1: Read the image

Step2: Convert from RGB to HSV

Step3: Find HSV histogram and create vectors v1.

Step4: Read the vectors from database and compare one by one by one with vector v1.

Step5: Shortlist all the images which fall within the threshold. Step6: find coherency of the query image for each color and create coherency vector v1.
C. Shape Retrieval

The proposed shape retrieval system is based on the automatic segmentation process to get approximate information about the shape of an object. It begins by segmenting the image into 5 classes depending on their brightness. Then three attributes: Mass, Centroid and Dispersion for each class are calculated and stored as the shape vector. For retrieval the vectors of the query image and database images are compared and the most matching images are short listed as results.

D. Algorithm for shape Retrieval

1. read the image
2. convert it from RGB to grayscale
3. determine the range and number of classes.
4. calculate the number of pixels i.e. mass belonging to each class.
5. calculate the centroid and dispersion for each class.
6. compare centroid of each class of query image with the centroids of each class from database image and extract out that class.
7. compare that class’s mass and dispersion with respective class.
8. increase the count if it satisfies certain threshold.
9. consider second class and repeat steps 6-8 till all classes get over.
10. take another image from the database and repeat the comparison.
11. display the images with maximum count.

E. Similarity Measure:

In this algorithm we propose that matching is done on color by color basis. By analyzing histograms, first calculate the number of colors in both query image and database image. Then both the images are matched by seeing if the proportions of a particular color in both the images are comparable. The image which satisfies most of the conditions is the best match. Retrieval result is not a single image but a list of images ranked by their similarities with the query image since CBIR is not based on exact matching. If I is the database image and I” is the query image, then the similarity measure is computed as follows:

1. Calculate histogram vector \(v_I = [v_{I1}, v_{I2}, \ldots, v_{In}] \) and ccv vector \(c_I = [c_{I1}, c_{I2}, \ldots, c_{In}] \) of the database images.
2. Calculate the vectors \(v_{I”} \) and \(c_{I”} \) for the query image also.
3. The Euclidean distance between two feature vectors can then be used as the similarity measurement:

\[d = \sqrt{\sum_{i=1}^{n} (v_{Ii} - v_{I”i})^2} \]

4. If \(d \leq \tau \) (threshold) then the images match.
5. From all the matching images we display top 24 images as a result. Segmenting the query image into 5 classes based on its brightness and calculates the Euclidean distance between the respective classes of query image and database image attributes. Mass, centroid and dispersion parameters are calculated for each class. These features are compared with database images stored features. The features values which are less than defined threshold are sorted based on increasing difference between query and database images then stored separately.

IV. EXPERIMENTAL RESULTS

Both color and shape retrieval algorithms are implemented in MATLAB with the database of 570 images. All the images are stored in JPEG format with size 384 × 256 or 256 × 384. There are six different categories; which includes 100 horse, 100 rose, 100 dinosaur, 100 bus, 100 elephants and 70 bikes. To evaluate the performance of the image retrieval algorithm we use the two most well known parameters; precision and recall. The system is executed with 10 images from each of the six categories and calculated the average precision and average recall parameters for all of them.
The results obtained using shape and color based for different category of images is shown in Retrieval result images with query image of shape and color based are shown in Figure 3a-b and 4a-b respectively. The combination of color and shape for different types of images is given and corresponding result images are shown in Figure 5a-b. In both tables average accuracy of the proposed method is about more than 70 % which is much greater than the histogram based method.

V. CONCLUSION

With the advent of various search engines, image searching has become an easier task. But all the search engines use text based retrieval techniques. Though CBIR is a happening topic, we cannot expect the entire upheaval of existing techniques with CBIR. But certainly, CBIR can be used to complement the existing machinery to provide better results. The CBIR methods presented herein use low- level features to generate results. The purpose of this paper was to improve the accuracy (precision) of a CBIR application by allowing the system to retrieve more images similar to the source image. The new algorithms under research and also the recently published ones seem to be extremely invasive on the image. Also each new algorithm is always seen to have certain regions where it works best and poor. The proposed methodology had increased the average precision from an average of 44% to an average of 72%.

REFERENCES