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Abstract-Rapid urban growth, deforestation, and
natural disasters are driving substantial land cover
changes worldwide, posing significant challenges to
sustainable  development and environmental
stewardship.  Conventional change detection
methods, such as image differencing and manual
classification, often require intensive effort and
deliver inconsistent accuracy under varying
environmental conditions. GeoAlert is introduced as
an Al-powered change monitoring system that
automates the multi-temporal detection of land cover
change using satellite imagery from high-resolution
sensors, including Landsat-8 and Sentinel-2. The
system preprocesses raw satellite data, aligns images,
and applies advanced deep learning models, notably
U-Net and Siamese CNN architectures, for per-pixel
land cover classification and systematic change
mapping. Changes identified are visualized via
thematic maps and shared on a cloud-based
dashboard, providing near-real-time alerts to
stakeholders. In a comprehensive case study
focusing on Hyderabad, India, GeoAlert achieved
89% classification accuracy, notably outperforming
traditional image differencing approaches that scored

74%. These results highlight GeoAlert's potential as
a scalable, robust decision-support tool for urban
planners, environmental managers, and policy-
makers in rapidly changing landscapes.

Keywords— Change Detection, Remote Sensing,
Deep Learning, Siamese Network, U-Net, Landsat-
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I.LINTRODUCTION

Monitoring land cover changes has become
increasingly critical in the context of
urbanization, agricultural expansion,
deforestation, and the occurrence of extreme
weather events. These dynamic changes not only
transform local ecosystems but also impact
infrastructure, biodiversity, water resources, and
overall human well-being. Traditional methods
for monitoring such changes, including visual
interpretation and basic automated approaches,
have proved inadequate at large spatial and
temporal scales due to their labor-intensive
nature and high susceptibility to environmental
factors such as atmospheric variability and sensor
inconsistencies.

The advent of remote sensing technologies has
revolutionized how environmental changes are
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tracked. Satellites such as Landsat-8 and
Sentinel-2 provide multidimensional, multi-
temporal data that offer comprehensive coverage
of global land surfaces. However, extracting
actionable information from this wealth of data
remains a complex challenge. Issues such as
cloud cover, changing illumination, and data
heterogeneity across sensors can compromise the
accuracy of traditional change detection
algorithms.

Recent innovations in artificial intelligence,
particularly deep learning, have played a
transformative role in the analysis of remotely
sensed data. Convolutional neural networks
(CNNs), U-Net architectures, and Siamese
networks have demonstrated superior ability in
extracting hierarchical and spatial patterns,
making them suitable for complex tasks like
semantic segmentation and multi-temporal
change classification from satellite imagery.
GeoAlert leverages these advances to facilitate
end-to-end, automated change detection and
alerting. The platform combines a robust data
acquisition pipeline, advanced preprocessing,
and deep learning-based analysis for systematic
and scalable change monitoring. The inclusion of
a cloud-based dashboard ensures that detected
changes are visualized and communicated
efficiently to stakeholders, supporting proactive
environmental management and planning in
rapidly evolving regions.

Il. LITERATURE REVIEW

Despite progress, challenges remain in terms of
data privacy, model interpretability, and the
detection of sophisticated, context-aware attacks.
Future research focuses on improving model
transparency, cross-platform integration, and
incorporating multimodal data for
comprehensive threat analysis. Change detection
in remote sensing has evolved significantly over
the past decades, transitioning from simple pixel-
based methods to sophisticated deep learning
approaches. Early research focused on basic
algebraic  operations, including image
differencing, band ratioing, and vegetation index
differencing. While computationally efficient,
these methods suffered from high sensitivity to
radiometric differences, atmospheric conditions,
and phenological variations.[9][10]

Traditional supervised classification approaches,
such as Maximum Likelihood Classification
(MLC), Support Vector Machines (SVM), and
Random  Forest  classifiers,  represented
significant improvements in accuracy. However,

these methods required extensive ground truth
data collection and manual feature engineering,
limiting their scalability for large-area
monitoring.  Post-classification  comparison
techniques, while more semantically meaningful,
propagated classification errors from individual
time periods into change detection results.

The introduction of object-based image analysis
(OBIA) marked another evolutionary step,
incorporating spatial context and reducing salt-
and-pepper noise typical of pixel-based
approaches. Geographic Object-Based Image
Analysis (GEOBIA) methods demonstrated
improved performance in  heterogeneous
landscapes but remained computationally
intensive and required careful parameter tuning
for different geographic regions.

Machine learning algorithms brought substantial
improvements to change detection accuracy.
Conditional Random Fields (CRFs) incorporated
spatial dependencies, while ensemble methods
like Random Forest and Gradient Boosting
provided robust classification with built-in
feature importance measures. However, these
approaches still required manual feature
extraction and domain expertise for optimal
performance.

Satellite Data Workflow
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The deep learning revolution fundamentally
transformed remote sensing applications.
Convolutional Neural Networks (CNNSs) enabled
automatic feature extraction from raw pixel
values, eliminating the need for hand-crafted
features. U-Net architectures, originally
developed for biomedical image segmentation,
proved exceptionally effective for land cover
classification tasks due to their encoder-decoder
structure with skip connections that preserve
spatial details.

Siamese networks emerged as particularly
promising for change detection applications.
These architectures learn to compare pairs of
images by extracting comparable feature
representations, making them inherently suitable
for multi-temporal analysis. Fully Convolutional
Siamese Networks (FC-Siam) demonstrated
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superior performance in detecting changes while
maintaining spatial precision.

Recent advances have incorporated attention
mechanisms, transformer architectures, and
multi-scale analysis. Vision Transformers (ViTs)
and their variants have shown competitive
performance with CNNs while capturing long-
range dependencies more effectively. However,
they typically require larger training datasets and
more computational resources.

Despite significant progress, several challenges
persist in operational change detection systems.
Cloud contamination remains a major obstacle,
particularly in tropical regions. Seasonal
variations can be misinterpreted as land cover
changes, requiring sophisticated temporal
modeling. Cross-sensor harmonization becomes
critical when integrating data from multiple
satellite missions with different spectral and
spatial characteristics.

IHI.LMETHODOLOGY
3.1 Data Acquisition Module

The Data Acquisition Module interfaces with
multiple satellite data providers, including the
United States Geological Survey (USGS) for
Landsat data and the European Space Agency
(ESA) for Sentinel-2 imagery. The module
implements automated querying based on
geographic areas of interest, temporal windows,
and quality criteria such as cloud cover
thresholds.

Data ingestion follows a priority-based
scheduling system that considers data
availability, processing urgency, and
computational resource allocation. The module
maintains metadata catalogs for efficient data
discovery and implements robust error handling
for network interruptions and data provider
outages.  Real-time  monitoring  ensures
continuous data availability and triggers
automated fallback mechanisms when primary
data sources become unavailable.

3.2 Preprocessing Pipeline

The preprocessing pipeline ensures data quality
and consistency across different sensors and
acquisition conditions. The complete workflow
is illustrated in the data processing diagram,
showing the sequential steps from raw imagery
to analysis-ready datasets.

Atmospheric correction utilizes the Sen2Cor
processor for Sentinel-2 data and the Land
Surface Reflectance Code (LaSRC) for Landsat
imagery. Geometric correction employs Ground

Control Points (GCPs) and Digital Elevation
Models (DEMS) to achieve sub-pixel registration
accuracy. The pipeline implements quality
checkpoints at each stage to ensure data integrity
and processing reliability.

Cloud detection and masking integrate multiple
algorithms, including Fmask, Sen2Cor Scene
Classification, and custom deep learning-based
cloud detection models. The pipeline implements
adaptive quality assessment metrics that consider
regional characteristics and seasonal variations.
Radiometric harmonization addresses
differences between sensors using empirically
derived transformation coefficients and cross-
calibration techniques. Temporal compositing
reduces data gaps by creating cloud-free mosaics
over specified time windows, ensuring consistent
input data for change detection algorithms.

3.3 Deep Learning Engine

The Deep Learning Engine implements a hybrid
architecture combining U-Net for semantic
segmentation and Siamese CNN for change
detection, as detailed in the neural network
architecture diagram.

U-Net Architecture: The U-Net component
utilizes a ResNet-50 encoder pre-trained on
ImageNet, adapted for multispectral satellite
imagery through transfer learning techniques.
The encoder extracts multi-scale spatial features
while the decoder reconstructs detailed, per-pixel
land cover predictions. Skip connections
preserve spatial information at different
resolutions, . enabling  precise  boundary
delineation.

Siamese CNN Architecture: The Siamese
network processes image pairs through shared
convolutional layers, generating feature maps
that capture both spatial and temporal patterns. A
specialized fusion layer combines features from
different time periods, enabling robust change
detection while maintaining spatial precision.
The architecture includes attention mechanisms
that focus on regions with significant temporal
variations.

Model training employs a multi-stage approach
with initial training on large-scale datasets for
general feature learning, followed by fine-tuning
on region-specific data. The engine implements
ensemble methods combining multiple model
architectures and training strategies to improve
robustness and reduce prediction uncertainty.
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3.4 Visualization Dashboard

The web-based dashboard provides interactive
visualization capabilities for stakeholders with
varying technical expertise. The interface
supports multi-scale visualization, from regional
overviews to detailed patch-level analysis. Users
can overlay various data layers, including
satellite imagery, change maps, administrative
boundaries, and ancillary datasets.

Temporal visualization tools enable exploration
of change patterns over time through animated
sequences and time-series plots. Statistical
summaries  provide  quantitative  metrics
including total change area, change rates, and
class transition matrices. The dashboard
implements responsive design principles for
accessibility across desktop and mobile devices.

3.5 Alert Management System

The Alert Management System monitors change
detection results for user-defined thresholds and
triggers automated notifications. Alert criteria
can be configured based on change magnitude,
affected area, change type, or combination of
multiple factors. The system implements
machine learning-based anomaly detection to
identify unusual change patterns that may require
immediate attention.

Notification delivery supports multiple channels
including email, SMS, webhook integrations,
and mobile push notifications. The system
maintains comprehensive alert history and
implements escalation procedures for critical
changes requiring immediate response.

3.6 Cloud Infrastructure Integration

The entire system is deployed on cloud
infrastructure leveraging containerization and
microservices architecture. Container
orchestration using Kubernetes ensures scalable
deployment and automatic resource
management. The infrastructure  supports
horizontal scaling based on processing demands
and implements high availability configurations
for critical system components.

System Layers
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IV. IMPLEMENTATION
4.1 Technology Stack

GeoAlert is implemented using a modern cloud-
native technology stack optimized for geospatial
data processing and machine learning
workflows. The backend utilizes Python as the
primary programming language, leveraging
specialized libraries including GDAL/OGR for
geospatial data handling, Rasterio for raster
processing, and Geopandas for vector operations.
Deep learning models are implemented using
PyTorch framework, chosen for its flexibility in
implementing custom architectures and efficient
GPU utilization. The  training pipeline
incorporates PyTorch Lightning for experiment
management and distributed training capabilities
across multiple GPU clusters.

Data storage employs a hybrid approach
combining - object storage for raw satellite
imagery and PostGIS-enabled PostgreSQL
databases for metadata and vector data. Cloud-
optimized GeoTIFF (COG) format enables
efficient data access and visualization without
requiring full file downloads, significantly
reducing bandwidth requirements and improving
response times.

4.2 Cloud Infrastructure

The system is deployed on Amazon Web
Services (AWS) infrastructure, utilizing elastic
scaling capabilities to handle varying
computational demands. Amazon S3 provides
scalable object storage for satellite imagery
archives with lifecycle policies for cost-effective
long-term storage. Amazon RDS hosts the
metadata databases with Multi-AZ deployment
for high availability.

Computational processing leverages Amazon
EC2 instances with GPU support for deep
learning inference and CPU-optimized instances
for preprocessing tasks. Amazon Elastic

[JCRTBH02012

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 53


http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

Kubernetes  Service  (EKS)  orchestrates
containerized applications, enabling automatic
scaling based on workload demands and
implementing rolling updates for zero-downtime
deployments.

The preprocessing pipeline utilizes AWS Batch
for large-scale parallel processing of satellite
imagery, automatically provisioning compute
resources based on job queue lengths. Lambda
functions handle event-driven processing tasks,
such as triggering alerts and updating
visualization layers, with automatic scaling from
zero to thousands of concurrent executions.

4.3 Data Processing Workflow

The implementation follows an event-driven
architecture where new satellite data availability
triggers automated processing  workflow.
Amazon EventBridge coordinates processing
stages, ensuring proper sequencing and error
handling across distributed components. The
workflow implements checkpointing
mechanisms at each stage, enabling recovery
from interrupted processing and efficient
resource utilization.

Preprocessing tasks are containerized using
Docker,  enabling  consistent  execution
environments across different computational
resources. Each processing container includes
comprehensive  logging and  monitoring
capabilities for operational visibility and
debugging support.

The deep learning inference pipeline processes
image tiles in parallel across GPU clusters,
utilizing model parallelism for large-scale
processing. Results are aggregated using
distributed computing frameworks and post-
processed to generate coherent change maps and
statistical summaries.

4.4 Quality Assurance and Validation

Implementation includes comprehensive quality
assurance procedures throughout the processing
chain. Automated validation routines check data
completeness,  geometric  accuracy, and
radiometric consistency using statistical quality
metrics. These metrics are tracked over time to
identify potential system degradation or data
quality issues.

Ground truth validation utilizes independent
datasets including high-resolution  aerial
photography, field survey data, and authoritative
land cover maps. Validation results inform model
updates and system improvements through
continuous integration and deployment (CI/CD)

pipelines that automatically retrain models when
performance  degrades below acceptable
thresholds.

4.5 Performance Optimization

System performance is optimized through
multiple strategies including advanced data
compression algorithms, multi-level caching
mechanisms, and efficient spatial and temporal
indexing. Pyramid generation enables fast
visualization at multiple scales, while intelligent
prefetching reduces user wait times for common
operations.

Machine learning model optimization includes
quantization techniques to reduce model size and
inference time while maintaining accuracy. Edge
computing capabilities enable local processing
for time-critical applications with limited
connectivity, with seamless synchronization to
cloud infrastructure when connectivity is
restored.

V. EXPERIMENTAL SETUP

To rigorously evaluate GeoAlert's performance,
a comprehensive case study was conducted on
the Hyderabad metropolitan region, covering
both urban and surrounding rural areas spanning
approximately 7,200 square kilometers. Sentinel-
2 imagery from 2018 and 2022 was selected
based on minimal cloud cover (<10%) and
optimal seasonal timing ~to  minimize
phenological variations.

The experimental dataset comprised 48 Sentinel-
2 scenes with 10-meter spatial resolution across
13 spectral bands. Preprocessing ensured
radiometrically  calibrated, atmospherically
corrected, and geometrically aligned inputs
suitable for multi-temporal analysis. Ground
truth data was compiled from multiple sources
including high-resolution aerial photography,
cadastral maps, and field validation surveys.
Model training incorporated stratified sampling
to ensure balanced representation of major land
cover types: urban areas (25%), vegetation
(35%), agricultural land (25%), water bodies
(10%), and bare soil (5%). Training utilized an
80:20 split with five-fold cross-validation for
robust performance assessment. Hyperparameter
optimization employed Bayesian optimization
techniques to identify optimal network
configurations.
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Performance metrics included pixel-level

accuracy, precision, recall, and F1-score for land
cover classification, along with change detection
accuracy using area-adjusted error matrices.
Processing efficiency was measured as total
computation time from raw imagery to final
change products.

VI. RESULT

GeoAlert consistently outperformed classical
methods, achieving an overall classification
accuracy of 89% compared to 74% from
traditional differencing approaches. The system
demonstrated superior spatial coherence with
significantly reduced false positive rates,
particularly in areas with seasonal vegetation
changes that commonly confuse traditional
methods.

Detailed analysis revealed that the U-Net
architecture excelled in delineating complex
urban boundaries and mixed land cover types,
while the Siamese CNN effectively
discriminated between genuine land cover
changes and temporary variations. The integrated
approach reduced false positive rates by 65%
compared to baseline methods.

Processing  performance met operational
requirements with complete analysis of the
Hyderabad study area  completed in
approximately 35 minutes using standard cloud
infrastructure.  The  system  successfully
processed over 2.4 terabytes of satellite imagery
and generated comprehensive change maps
covering the entire metropolitan region.
Stakeholder evaluation through the interactive
dashboard received positive feedback for
usability and information clarity. Users
particularly valued the multi-scale visualization

capabilities and the ability to export results in
standard GIS formats for integration with
existing planning workflows.

VII. DISCUSSION

The experimental results clearly demonstrate the
effectiveness of using advanced machine and
deep learning techniques for real-time
cybercrime detection on social media platforms.
Among the models evaluated, deep learning
approaches—particularly BERT and LSTM—
significantly outperformed traditional machine
learning models in terms of accuracy, precision,
recall, and F1-score. This highlights the
advantage of deep learning in understanding the
context and semantics of user-generated content,
which is often informal, ambiguous, and rapidly
evolving.

The BERT model, due to its bidirectional
language understanding, was especially effective
in detecting sophisticated cyber threats such as
hate speech and misinformation, which often rely
on subtle linguistic cues. LSTM also performed
well, particularly in identifying threats that
follow sequential patterns, such as phishing
messages or harassment over time.

The real-time detection capability was another
critical success factor. With an average detection
latency of under 300 milliseconds and the ability
to process hundreds of messages per second, the
system demonstrated  its  practicality for
deployment in - live: environments. This
performance was made possible through the
integration of streaming tools like Apache Kafka
and Spark Streaming, which ensured timely
ingestion, analysis, and response.

However, several challenges were noted. The
class imbalance in datasets led to slightly higher
false positive rates, especially for borderline
content. Additionally, the models were primarily
trained on English-language data, limiting their
performance on multilingual content. These
issues highlight the need for more diverse and
balanced training datasets and multilingual NLP
capabilities.

From a practical perspective, integrating this
detection system into existing social media
platforms could provide real-time alerts to
moderators, helping prevent the spread of
harmful content. However, considerations
around privacy, fairness, and transparency must
be addressed to ensure ethical deployment.

The superior performance of GeoAlert stems
from the synergistic combination of U-Net and
Siamese CNN architectures, each optimized for
specific aspects of the change detection
challenge. The U-Net's encoder-decoder
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structure with skip connections enables precise
spatial localization, while the Siamese network's
shared-weight  architecture ensures robust
temporal comparison.

The cloud-based implementation provides
unprecedented scalability and accessibility,
enabling deployment across diverse geographic
regions and institutional contexts. However, the
system's dependency on cloud infrastructure
raises considerations for deployment in regions
with limited connectivity or strict data
sovereignty requirements.

Computational efficiency analysis reveals that
while deep learning approaches require more
processing time than traditional methods, the
significant accuracy improvements justify the
additional computational overhead. Future
optimizations focusing on model compression
and inference acceleration could further reduce
processing times.

The system's performance in the Hyderabad case
study demonstrates applicability to rapidly
urbanizing regions worldwide. However,
generalization to different geographic contexts,
climatic conditions, and land cover types requires
additional validation studies and potential model
adaptation strategies.

VIll. CONCLUSION AND FUTURE WORK

GeoAlert demonstrates significant advances in
automated, Al-driven change monitoring,
delivering superior accuracy and operational
scalability compared to traditional approaches.
The platform successfully integrates satellite
remote sensing, advanced deep learning, and
cloud computing to provide actionable
environmental  intelligence  for  diverse
stakeholder communities.

Key contributions include robust preprocessing
pipelines, accurate per-pixel classification,
automated multi-temporal change detection, and
accessible  visualization  interfaces.  The
performance  validation in Hyderabad
exemplifies the system's potential for supporting
evidence-based decision-making in
environmental management and urban planning
contexts.

Future development will address several priority
areas:

Multi-sensor Integration: Incorporating
Synthetic Aperture Radar (SAR) data for all-
weather monitoring capabilities, particularly
valuable in persistently cloudy regions.
Predictive Analytics: Developing forecasting
models that combine historical change patterns
with environmental drivers to provide early
warning capabilities for critical changes.

Explainable Al: Implementing interpretable
machine learning techniques to enhance user
trust and enable better understanding of model
decision-making processes.

Edge Computing Integration: Optimizing models
for deployment on edge devices to support real-
time monitoring in remote locations with limited
connectivity.
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