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Abstract—In contemporary software frameworks, the ability to 

dynamically manage networks and ensure robust security is essential. 
This study introduces a secure and scalable reverse proxy server that 
incorporates sophisticated load balancing and extensive security 
measures to address these needs. The design features TLS/SSL 
termination, rate limiting, and a Web Application Firewall (WAF) to 
defend against threats like DDoS, SQL injection, and XSS. Additionally, 
it offers detailed logging for monitoring and troubleshooting. To 
enhance performance, the proxy utilizes HTTP caching and effective 
load balancing techniques, such as round-robin and weighted round-
robin, to alleviate backend load and enhance response times. The 
architecture is equipped with auto-scaling capabilities: internal load 
balancing among worker processes and external balancing across 
upstream servers ensure high availability and fault tolerance. For 
instance, health checks enable the proxy to identify failed servers and 
redirect traffic, maintaining service continuity during partial failures. 
The system was tested under various loads, showing that it efficiently 
distributes traffic and scales with demand while maintaining secure 
and resilient network operations. 

I. INTRODUCTION 

In contemporary network management, proxy servers play a 
crucial role in facilitating secure, efficient, and scalable 
interactions between client devices and backend upstream 
servers. Acting as intermediaries, these servers manage the 
routing of client requests to the correct servers, thereby 
protecting internal servers and balancing workloads to 
enhance network performance. Proxy servers are mainly 
divided into two types: forward proxy servers and reverse 
proxy servers. A forward proxy represents clients, whereas a 

reverse proxy represents one or more backend servers. 
As depicted in Fig. 1, a forward proxy serves the client by 

intercepting outgoing internet requests. It can filter traffic, 
store content in a cache, and assist clients in maintaining 
anonymity. In environments where client anonymity and 
content control are vital, such as corporate networks, forward 
proxies can obscure client identities and enforce browsing 
rules. By caching responses, they also help decrease latency for 

frequently accessed content. 

Conversely, a reverse proxy, as depicted in Fig. 2, acts on 
behalf of backend servers. It takes in requests from clients and 
relays them to one or more upstream servers. Reverse proxies 
facilitate load balancing by distributing incoming traffic among 
multiple servers, thereby enhancing scalability and reliability. 
They also bolster security by concealing backend server details 

from clients and can handle SSL/TLS termination to relieve 

 

Fig. 1: Forward Proxy. 

servers of encryption and decryption tasks. By functioning as a 
protective gateway, a reverse proxy can enforce Web 
Application Firewall (WAF) rules and implement rate limiting, 
offering additional protection to servers. Reverse proxies are 
particularly advantageous in cloud-based or microservices 
architectures, where scalability and dynamic resource 
management are essential. 

A. Need for Reverse Proxy 

The need for reverse proxies emerges in settings that require 
high scalability, fault tolerance, and security. Modern 
applications, whether monolithic or based on microservices, 
often operate in dynamic networks (cloud or on-premises) and 
necessitate automatic scaling and strong security measures. By 
integrating a reverse proxy with advanced load balancing, 
organizations can distribute client requests to healthy servers, 
conduct health checks on backend servers, and automatically 

redirect traffic when a server becomes overloaded or fails. 
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Fig. 2: Reverse Proxy. 

This dynamic management reduces downtime and sustains 
performance under varying loads. 

B. Load Balancing in Reverse Proxy 

A primary function of a reverse proxy is load balancing. Two 
prevalent methods are Layer-4 (transport layer) load balancing 
and Layer-7 (application layer) load balancing. In Layer-4 load 
balancing, the proxy routes traffic based on IP address and port 
information without examining the application data. This 
method is efficient for high-throughput routing but cannot 
make content-based decisions. Layer-4 load balancers can also 
perform TLS passthrough, forwarding encrypted traffic to 
backend servers without decryption (Fig. 3), thereby reducing 

the proxy’s CPU load. 

 

Fig. 3: Layer-4 Load Balancing and TLS Passthrough. 

On the other hand, Layer-7 load balancing meticulously 
examines HTTP/HTTPS requests, allowing for more advanced 
routing decisions based on URL paths, cookies, or headers. This 
capability supports enhanced features such as session 
persistence and A/B testing. Additionally, Layer-7 load 
balancers are equipped to perform TLS termination: they 
decrypt incoming TLS traffic, analyze or adjust it, and 
subsequently re-encrypt it before relaying it to upstream 

servers (Figure 4). By offloading cryptographic tasks from 
backend servers, TLS termination enables the reverse proxy to 
enforce security protocols (e.g., WAF rules) on the decrypted 

HTTP traffic. 

 

Fig. 4: Layer-7 Load Balancing and TLS Termination. 

C. Security Enhancements 

Reverse proxies play a crucial role in enhancing network 
security. By centralizing access control at the proxy, they 
enable the application of strong security measures—like 
managing request rates, blocking malicious patterns, and 
checking requests before they reach internal servers. Ending 
TLS at the reverse proxy allows for examining incoming traffic 
for possible dangers, and a reverse proxy can work alongside a 
Web Application Firewall (WAF) to spot and tackle common 
web threats such as SQL injection and cross-site scripting. 
These features, paired with natural load-balancing abilities, 
make a secure reverse proxy an essential component of a 

robust network setup. 

D. Problem Statement 

In contemporary software architectures, whether they are 
monolithic or based on microservices, there is an ongoing 
escalation in the requirements for dynamic scalability and 
robust security measures. Present proxy solutions frequently 
lack integrated capabilities for load distribution and a 
comprehensive security framework. This research seeks to fill 
this deficiency by developing a secure and scalable reverse 
proxy server that integrates sophisticated load balancing 
algorithms alongside inherent security mechanisms, such as 
TLS termination, Web Application Firewall (WAF), and rate 
limiting. The objective is to formulate a resilient proxy capable 
of adapting to variable loads, effectively distributing network 
traffic, and safeguarding backend servers under a variety of 
conditions. 

II. LITERATURE REVIEW 

Chen et al. (2021) performed an in-depth performance and 
security comparison between TLS 1.3 (enhanced with TCP Fast 
Open) and Google’s QUIC protocol. Through both analytical 
modeling and real-world experiments on a CDN testbed, they 
show that QUIC’s 0-RTT resumption and multiplexing 
capabilities yield up to 30% faster page loads under high loss 
conditions. They also explore how each protocol mitigates 
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common attacks (e.g., replay, downgrade) and recommend 

best practices for secure deployment in web services. 
Lee et al. (2021) designed a high-performance, software-

only load balancer optimized for cloud-native infrastructures. 
By leveraging kernel bypass techniques (e.g., DPDK) and a flow-
aware scheduling algorithm, their prototype achieves wire-
speed packet processing on commodity servers. They also 
evaluate resilience under node failures, showing sub-second 

failover times and near-linear scaling up to 128 cores. 

Chatzoglou et al. (2022) cataloged architectures and 
techniques for Web Application Firewalls (WAFs), comparing 
inline versus side-car deployment models. They assess 
detection accuracy across signature-based, anomaly-based, 
and machine-learning-driven WAFs using a standardized 
benchmark of OWASP Top10 payloads, finding that hybrid 
approaches (combining signatures with behavior profiling) 

achieve the best balance of precision and recall. 
Rehman et al. (2022) survey fault-tolerance techniques in 

cloud computing—ranging from checkpoint/restart and 
replication to erasure coding—and evaluate them along 
metrics of recovery time, storage overhead, and network load. 
Their taxonomy helps practitioners select appropriate 
strategies: for stateless microservices, lightweight replication 
suffices, whereas stateful applications benefit more from 
incremental checkpointing combined with proactive failure 

prediction. 
Shafiq et al. (2022) provide a broad overview of load-

balancing techniques in cloud environments, categorizing 
them into static, dynamic, and hybrid methods. They compare 
approaches such as weighted least-connections, ant-colony 
optimization, and heuristic-driven algorithms across metrics of 
response time, fairness, and energy efficiency, identifying 
hybrid heuristics as a promising direction for heterogeneous 

resource pools. 
Ma and Chi (2022) benchmarked several NGINX load-

balancing algorithms—including round-robin, least-conn, and 
IP hash—under varying client-request distributions and 
network conditions. They further propose an adaptive hybrid 
algorithm that switches between strategies based on observed 
workload skew, delivering up to 15% higher throughput in 
bursty traffic scenarios while maintaining fair resource 

utilization. 
Chatzoglou et al. (2023) revisit known and emerging attack 

vectors against QUIC, combining a systematic literature survey 
with hands-on fuzzing tests against open-source 
implementations. Their taxonomy of QUIC threats includes 
header-compression exploits and packet-reordering attacks, 
and they demonstrate practical mitigations—such as stricter 
header validation and improved rate limiting—that reduce 

exploit success rates by more than 40%. 

Tang et al. (2023) perform a comparative study of reverse-
proxy solutions (e.g., HAProxy, Envoy, NGINX) in cloud-native 
contexts, measuring both request-forwarding performance 
and built-in security features like rate-limiting and TLS 
termination. They find that while Envoy provides the strongest 
security posture out of the box, HAProxy often outperforms in 
raw throughput; they conclude by outlining best-practice 

configurations to strike a balance between the two. 
Mahato et al. (2023) focus on failover strategies for reverse-

proxy load balancers in distributed systems, proposing a 

heartbeat-based leader election combined with a fast-path 
state-checkpointing mechanism. Their simulation and real-
world tests on a multi-datacenter setup demonstrate recovery 
times under 200 ms, significantly reducing visible downtime 

during partial cluster outages. 
Adewojo and Bass (2023) proposed a novel weight-

assignment algorithm for cloud application load balancing that 
adaptively adjusts server weights based on real-time metrics 
such as CPU utilization and network latency. They evaluated 
their approach on both simulated workloads and a live 
OpenStack cluster, reporting up to 18% lower response times 
compared to standard round-robin strategies. The authors also 
discuss the algorithm’s low overhead and its potential 
integration with autoscaling frameworks to further improve 

elasticity. 

Bhattacharya et al. (2024) introduced a dynamic load-
balancing framework for microservices that couples runtime 
monitoring with predictive overload control. Using a 
reinforcement-learning agent, their system anticipates traffic 
spikes and redistributes service instances proactively, reducing 
SLA violations by over 25% in Kubernetes deployments. They 
further analyze trade-offs between reaction speed and 
resource consumption, highlighting scenarios where more 

conservative versus aggressive control policies are preferable. 
Walker et al. (2023) survey auto-scaling and load-balancing 

patterns in Kubernetes, focusing on ingress controllers and 
service meshes (Istio, Linkerd). They analyze control-loop 
latencies, scaling stability, and observability support, showing 
that side-car-based meshes incur higher CPU overhead but 
offer richer telemetry for policy-driven routing, whereas 
ingress controllers remain leaner for simple HTTP routing use 
cases. 

III. PROPOSED METHODOLOGY 

A. Objective 

The objective of this study is to design and implement a 
secure, scalable reverse proxy server with integrated load 
balancing. The system must dynamically distribute traffic 
among back-end servers and adapt to changing network 
conditions. Key goals include minimizing response time, 
maximizing throughput, and enforcing robust security (e.g., 

TLS termination, traffic filtering) without downtime. 

http://www.ijcrt.org/


www.ijcrt.org                                          © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882 

IJCRTBG02017 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 155 
 

B. Proposed Architecture 

Fig. 5 shows the high-level architecture. The reverse proxy is 
built using Node.js and its Cluster module to leverage 
multicore CPUs. The system comprises a master process and 
multiple worker processes. The master process initializes the 
worker processes and manages the configuration distribution; 

each worker process listens on the same network port to The 
master process initializes the cluster. It reads configuration 
parameters (e.g., server port, protocol settings, and list of 
back-end servers) from JSON files and environment variables. 
The master process then forks several worker processes, 
passing along these configurations via IPC. It continuously 
monitors workers for failures: if a worker crashes, the master 
restarts it to maintain availability. When configurations change 
(e.g., a new backend server is added), the master gracefully 
shuts down existing workers and spawns new ones with 
updated settings, avoiding service interruption. This design 
ensures fault tolerance and dynamic reconfiguration. 

D. Worker Process 

Each worker process sets up the actual HTTP(S) server 
instance. Using the Node.js HTTP(S) libraries, a worker listens 
to the designated port for client requests. Upon receiving a 
request, the worker uses internal and external load balancing 
logic to forward the request to an appropriate upstream server. 
Because all workers share the same configuration, the system 
scales horizontally: as we increase the number of workers, the 
proxy can handle more concurrent connections by distributing 
them across processes. 

E. Load Balancing in the Reverse Proxy 

The load balancing occurs at two levels: internal and 
external. Internally, within each worker, we use a round-robin 
or weighted round-robin algorithm to distribute requests to 
the available upstream servers in its registry. For example, in 
Round Robin (Fig. 6) each new request is sent to the next server 

in a circular list. In Weighted Round Robin (Fig. 7), servers are 
assigned weights (based on capacity or priority), and requests 

are distributed proportionally. 

Externally, the master process manages the dynamic 
distribution of upstream servers among the workers. If an 

upstream Fig. 7: Workflow of the Reverse Proxy. 

server becomes overloaded, the master can reduce its weight 
or temporarily remove it from the rotation, causing workers to 
favor healthier servers. Conversely, if auto-scaling adds new 
servers, the master includes them in the routing. This 
combination of internal and external balancing achieves 
maximum utilization and efficiency. 

F. Scalability and Dynamic Network Management 

The proposed architecture supports horizontal scaling to 

handle increased load, the proxy can spawn additional worker 

 
 

Fig. 5: Overview of the Proposed Architecture. 
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Fig. 8: Workflow of the Reverse Proxy. 

processes or add more upstream servers. The use of Node.js 
Cluster allows the seamless use of multiple CPU cores. The 
proxy also implements health checks on upstream servers; 
unhealthy servers are temporarily excluded until they recover. 
These features enable dynamic network management as the 
proxy adapts in real time to traffic patterns, ensuring reliability 
and consistent performance. 

G. Security Considerations and Features 

Security features are integrated throughout the proxy. We 
implement TLS termination at the proxy, so HTTPS requests 
from clients are decrypted by the proxy (offloading the 
backend servers) and backend connections can use HTTP or 
reencrypted HTTPS. The proxy validates certificates when 
connecting to servers. A Web Application Firewall (WAF) 
module inspects requests for common attack signatures and 
can reject malicious traffic. The proposed system also includes 
ratelimiting per client IP to mitigate DDoS and brute-force 
attacks. All logs (detailed in the Results section) enable 
monitoring and threat analysis, contributing to overall security. 

IV. RESULTS AND DISCUSSION 

The proposed reverse proxy was implemented in Node.js 
and tested with a set of web service containers. Scaling has 
been simulated by running multiple back-end servers on 
separate ports. Figures 9-11 show sample request workloads 
and proxy behavior. The proxy correctly balances client 

requests across all healthy upstream servers. 
During load testing, as shown in Fig. 13-14, the system 

maintained low response times even under heavy concurrent 
connections. For example, with 1000 simultaneous requests, 
the round-robin strategy achieved an average response time of 
120 ms, whereas weighted round-robin (which assigns higher 
weight to more powerful servers) improved throughput by 
about 15%. The proxy successfully performed TLS termination 
and forwarded requests securely to the backend (captured in 
server logs, Fig. 12). When a simulated server was taken 
offline, the master process detected the failure and the worker 
processes rerouted traffic among the remaining servers 
without dropping connections, demonstrating fault tolerance. 
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Fig. 9: Back-end Upstream Servers for Testing. 

Fig. 10: Starting the Back-end Upstream Servers. 

Fig. 11: Multiple Requests to the Service 1. 

Fig. 13: Reverse Proxy Load Testing. 

 

Fig. 14: Load Test Results. 

 

V. CONCLUSION AND FUTURE WORKS 

The Node.js-based reverse proxy effectively orchestrates 
traffic distribution among backend servers, ensuring high 
availability and responsive scaling under variable demand 
conditions. TLS offloading at the proxy edge not only reduces 
computational overhead on application servers but also 
centralizes certificate management and accelerates secure 
session establishment. Integration of Web Application Firewall 
rules and rate-limiting policies mitigates common threats such 
as DDoS and injection attacks, strengthening the overall 
security posture. Benchmark results demonstrate measurable 
gains in request throughput and fault tolerance, confirming 
that the design meets and exceeds contemporary networking 

requirements. 
In future iterations, embedding machine-learning-driven 

traffic forecasting models can enable predictive scaling, 
allowing the proxy to pre-provision resources ahead of 
anticipated load spikes. Incorporating advanced protocols such 
as HTTP/3 will further reduce latency and improve connection 
resilience through QUIC’s multiplexing and 0-RTT features. 
Expanding the modular framework to support additional 
transports like WebSocket and gRPC will widen applicability 
across real-time and microservices-based applications. Finally, 
augmenting observability with real-time telemetry dashboards 
and anomalous traffic detection will enhance operational 
insight and expedite issue resolution in complex network 

topologies. 
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