
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRTBG02017 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 152

Secure And Scalable Reverse Proxy With Load
Balancer For Dynamic Network Management

Poorani S1, Siva Prakash S2, Sredesh V2, Yogesh S U2
1Assistant Professor, Department of Computer Science and Engineering, Sri Venkateswara College of

Engineering, Chennai, India, orchid id : 0000-0002-5279-2033

2Department of Computer Science and Engineering, Sri Venkateswara College of Engineering, Chennai, India
Abstract—In contemporary software frameworks, the ability to

dynamically manage networks and ensure robust security is essential.
This study introduces a secure and scalable reverse proxy server that
incorporates sophisticated load balancing and extensive security
measures to address these needs. The design features TLS/SSL
termination, rate limiting, and a Web Application Firewall (WAF) to
defend against threats like DDoS, SQL injection, and XSS. Additionally,
it offers detailed logging for monitoring and troubleshooting. To
enhance performance, the proxy utilizes HTTP caching and effective
load balancing techniques, such as round-robin and weighted round-
robin, to alleviate backend load and enhance response times. The
architecture is equipped with auto-scaling capabilities: internal load
balancing among worker processes and external balancing across
upstream servers ensure high availability and fault tolerance. For
instance, health checks enable the proxy to identify failed servers and
redirect traffic, maintaining service continuity during partial failures.
The system was tested under various loads, showing that it efficiently
distributes traffic and scales with demand while maintaining secure
and resilient network operations.

I. INTRODUCTION

In contemporary network management, proxy servers play a
crucial role in facilitating secure, efficient, and scalable
interactions between client devices and backend upstream
servers. Acting as intermediaries, these servers manage the
routing of client requests to the correct servers, thereby
protecting internal servers and balancing workloads to
enhance network performance. Proxy servers are mainly
divided into two types: forward proxy servers and reverse
proxy servers. A forward proxy represents clients, whereas a

reverse proxy represents one or more backend servers.
As depicted in Fig. 1, a forward proxy serves the client by

intercepting outgoing internet requests. It can filter traffic,
store content in a cache, and assist clients in maintaining
anonymity. In environments where client anonymity and
content control are vital, such as corporate networks, forward
proxies can obscure client identities and enforce browsing
rules. By caching responses, they also help decrease latency for

frequently accessed content.

Conversely, a reverse proxy, as depicted in Fig. 2, acts on
behalf of backend servers. It takes in requests from clients and
relays them to one or more upstream servers. Reverse proxies
facilitate load balancing by distributing incoming traffic among
multiple servers, thereby enhancing scalability and reliability.
They also bolster security by concealing backend server details

from clients and can handle SSL/TLS termination to relieve

Fig. 1: Forward Proxy.

servers of encryption and decryption tasks. By functioning as a
protective gateway, a reverse proxy can enforce Web
Application Firewall (WAF) rules and implement rate limiting,
offering additional protection to servers. Reverse proxies are
particularly advantageous in cloud-based or microservices
architectures, where scalability and dynamic resource
management are essential.

A. Need for Reverse Proxy

The need for reverse proxies emerges in settings that require
high scalability, fault tolerance, and security. Modern
applications, whether monolithic or based on microservices,
often operate in dynamic networks (cloud or on-premises) and
necessitate automatic scaling and strong security measures. By
integrating a reverse proxy with advanced load balancing,
organizations can distribute client requests to healthy servers,
conduct health checks on backend servers, and automatically

redirect traffic when a server becomes overloaded or fails.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRTBG02017 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 153

Fig. 2: Reverse Proxy.

This dynamic management reduces downtime and sustains
performance under varying loads.

B. Load Balancing in Reverse Proxy

A primary function of a reverse proxy is load balancing. Two
prevalent methods are Layer-4 (transport layer) load balancing
and Layer-7 (application layer) load balancing. In Layer-4 load
balancing, the proxy routes traffic based on IP address and port
information without examining the application data. This
method is efficient for high-throughput routing but cannot
make content-based decisions. Layer-4 load balancers can also
perform TLS passthrough, forwarding encrypted traffic to
backend servers without decryption (Fig. 3), thereby reducing

the proxy’s CPU load.

Fig. 3: Layer-4 Load Balancing and TLS Passthrough.

On the other hand, Layer-7 load balancing meticulously
examines HTTP/HTTPS requests, allowing for more advanced
routing decisions based on URL paths, cookies, or headers. This
capability supports enhanced features such as session
persistence and A/B testing. Additionally, Layer-7 load
balancers are equipped to perform TLS termination: they
decrypt incoming TLS traffic, analyze or adjust it, and
subsequently re-encrypt it before relaying it to upstream

servers (Figure 4). By offloading cryptographic tasks from
backend servers, TLS termination enables the reverse proxy to
enforce security protocols (e.g., WAF rules) on the decrypted

HTTP traffic.

Fig. 4: Layer-7 Load Balancing and TLS Termination.

C. Security Enhancements

Reverse proxies play a crucial role in enhancing network
security. By centralizing access control at the proxy, they
enable the application of strong security measures—like
managing request rates, blocking malicious patterns, and
checking requests before they reach internal servers. Ending
TLS at the reverse proxy allows for examining incoming traffic
for possible dangers, and a reverse proxy can work alongside a
Web Application Firewall (WAF) to spot and tackle common
web threats such as SQL injection and cross-site scripting.
These features, paired with natural load-balancing abilities,
make a secure reverse proxy an essential component of a

robust network setup.

D. Problem Statement

In contemporary software architectures, whether they are
monolithic or based on microservices, there is an ongoing
escalation in the requirements for dynamic scalability and
robust security measures. Present proxy solutions frequently
lack integrated capabilities for load distribution and a
comprehensive security framework. This research seeks to fill
this deficiency by developing a secure and scalable reverse
proxy server that integrates sophisticated load balancing
algorithms alongside inherent security mechanisms, such as
TLS termination, Web Application Firewall (WAF), and rate
limiting. The objective is to formulate a resilient proxy capable
of adapting to variable loads, effectively distributing network
traffic, and safeguarding backend servers under a variety of
conditions.

II. LITERATURE REVIEW

Chen et al. (2021) performed an in-depth performance and
security comparison between TLS 1.3 (enhanced with TCP Fast
Open) and Google’s QUIC protocol. Through both analytical
modeling and real-world experiments on a CDN testbed, they
show that QUIC’s 0-RTT resumption and multiplexing
capabilities yield up to 30% faster page loads under high loss
conditions. They also explore how each protocol mitigates

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRTBG02017 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 154

common attacks (e.g., replay, downgrade) and recommend

best practices for secure deployment in web services.
Lee et al. (2021) designed a high-performance, software-

only load balancer optimized for cloud-native infrastructures.
By leveraging kernel bypass techniques (e.g., DPDK) and a flow-
aware scheduling algorithm, their prototype achieves wire-
speed packet processing on commodity servers. They also
evaluate resilience under node failures, showing sub-second

failover times and near-linear scaling up to 128 cores.

Chatzoglou et al. (2022) cataloged architectures and
techniques for Web Application Firewalls (WAFs), comparing
inline versus side-car deployment models. They assess
detection accuracy across signature-based, anomaly-based,
and machine-learning-driven WAFs using a standardized
benchmark of OWASP Top10 payloads, finding that hybrid
approaches (combining signatures with behavior profiling)

achieve the best balance of precision and recall.
Rehman et al. (2022) survey fault-tolerance techniques in

cloud computing—ranging from checkpoint/restart and
replication to erasure coding—and evaluate them along
metrics of recovery time, storage overhead, and network load.
Their taxonomy helps practitioners select appropriate
strategies: for stateless microservices, lightweight replication
suffices, whereas stateful applications benefit more from
incremental checkpointing combined with proactive failure

prediction.
Shafiq et al. (2022) provide a broad overview of load-

balancing techniques in cloud environments, categorizing
them into static, dynamic, and hybrid methods. They compare
approaches such as weighted least-connections, ant-colony
optimization, and heuristic-driven algorithms across metrics of
response time, fairness, and energy efficiency, identifying
hybrid heuristics as a promising direction for heterogeneous

resource pools.
Ma and Chi (2022) benchmarked several NGINX load-

balancing algorithms—including round-robin, least-conn, and
IP hash—under varying client-request distributions and
network conditions. They further propose an adaptive hybrid
algorithm that switches between strategies based on observed
workload skew, delivering up to 15% higher throughput in
bursty traffic scenarios while maintaining fair resource

utilization.
Chatzoglou et al. (2023) revisit known and emerging attack

vectors against QUIC, combining a systematic literature survey
with hands-on fuzzing tests against open-source
implementations. Their taxonomy of QUIC threats includes
header-compression exploits and packet-reordering attacks,
and they demonstrate practical mitigations—such as stricter
header validation and improved rate limiting—that reduce

exploit success rates by more than 40%.

Tang et al. (2023) perform a comparative study of reverse-
proxy solutions (e.g., HAProxy, Envoy, NGINX) in cloud-native
contexts, measuring both request-forwarding performance
and built-in security features like rate-limiting and TLS
termination. They find that while Envoy provides the strongest
security posture out of the box, HAProxy often outperforms in
raw throughput; they conclude by outlining best-practice

configurations to strike a balance between the two.
Mahato et al. (2023) focus on failover strategies for reverse-

proxy load balancers in distributed systems, proposing a

heartbeat-based leader election combined with a fast-path
state-checkpointing mechanism. Their simulation and real-
world tests on a multi-datacenter setup demonstrate recovery
times under 200 ms, significantly reducing visible downtime

during partial cluster outages.
Adewojo and Bass (2023) proposed a novel weight-

assignment algorithm for cloud application load balancing that
adaptively adjusts server weights based on real-time metrics
such as CPU utilization and network latency. They evaluated
their approach on both simulated workloads and a live
OpenStack cluster, reporting up to 18% lower response times
compared to standard round-robin strategies. The authors also
discuss the algorithm’s low overhead and its potential
integration with autoscaling frameworks to further improve

elasticity.

Bhattacharya et al. (2024) introduced a dynamic load-
balancing framework for microservices that couples runtime
monitoring with predictive overload control. Using a
reinforcement-learning agent, their system anticipates traffic
spikes and redistributes service instances proactively, reducing
SLA violations by over 25% in Kubernetes deployments. They
further analyze trade-offs between reaction speed and
resource consumption, highlighting scenarios where more

conservative versus aggressive control policies are preferable.
Walker et al. (2023) survey auto-scaling and load-balancing

patterns in Kubernetes, focusing on ingress controllers and
service meshes (Istio, Linkerd). They analyze control-loop
latencies, scaling stability, and observability support, showing
that side-car-based meshes incur higher CPU overhead but
offer richer telemetry for policy-driven routing, whereas
ingress controllers remain leaner for simple HTTP routing use
cases.

III. PROPOSED METHODOLOGY

A. Objective

The objective of this study is to design and implement a
secure, scalable reverse proxy server with integrated load
balancing. The system must dynamically distribute traffic
among back-end servers and adapt to changing network
conditions. Key goals include minimizing response time,
maximizing throughput, and enforcing robust security (e.g.,

TLS termination, traffic filtering) without downtime.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRTBG02017 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 155

B. Proposed Architecture

Fig. 5 shows the high-level architecture. The reverse proxy is
built using Node.js and its Cluster module to leverage
multicore CPUs. The system comprises a master process and
multiple worker processes. The master process initializes the
worker processes and manages the configuration distribution;

each worker process listens on the same network port to The
master process initializes the cluster. It reads configuration
parameters (e.g., server port, protocol settings, and list of
back-end servers) from JSON files and environment variables.
The master process then forks several worker processes,
passing along these configurations via IPC. It continuously
monitors workers for failures: if a worker crashes, the master
restarts it to maintain availability. When configurations change
(e.g., a new backend server is added), the master gracefully
shuts down existing workers and spawns new ones with
updated settings, avoiding service interruption. This design
ensures fault tolerance and dynamic reconfiguration.

D. Worker Process

Each worker process sets up the actual HTTP(S) server
instance. Using the Node.js HTTP(S) libraries, a worker listens
to the designated port for client requests. Upon receiving a
request, the worker uses internal and external load balancing
logic to forward the request to an appropriate upstream server.
Because all workers share the same configuration, the system
scales horizontally: as we increase the number of workers, the
proxy can handle more concurrent connections by distributing
them across processes.

E. Load Balancing in the Reverse Proxy

The load balancing occurs at two levels: internal and
external. Internally, within each worker, we use a round-robin
or weighted round-robin algorithm to distribute requests to
the available upstream servers in its registry. For example, in
Round Robin (Fig. 6) each new request is sent to the next server

in a circular list. In Weighted Round Robin (Fig. 7), servers are
assigned weights (based on capacity or priority), and requests

are distributed proportionally.

Externally, the master process manages the dynamic
distribution of upstream servers among the workers. If an

upstream Fig. 7: Workflow of the Reverse Proxy.

server becomes overloaded, the master can reduce its weight
or temporarily remove it from the rotation, causing workers to
favor healthier servers. Conversely, if auto-scaling adds new
servers, the master includes them in the routing. This
combination of internal and external balancing achieves
maximum utilization and efficiency.

F. Scalability and Dynamic Network Management

The proposed architecture supports horizontal scaling to

handle increased load, the proxy can spawn additional worker

Fig. 5: Overview of the Proposed Architecture.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRTBG02017 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 156

Fig. 8: Workflow of the Reverse Proxy.

processes or add more upstream servers. The use of Node.js
Cluster allows the seamless use of multiple CPU cores. The
proxy also implements health checks on upstream servers;
unhealthy servers are temporarily excluded until they recover.
These features enable dynamic network management as the
proxy adapts in real time to traffic patterns, ensuring reliability
and consistent performance.

G. Security Considerations and Features

Security features are integrated throughout the proxy. We
implement TLS termination at the proxy, so HTTPS requests
from clients are decrypted by the proxy (offloading the
backend servers) and backend connections can use HTTP or
reencrypted HTTPS. The proxy validates certificates when
connecting to servers. A Web Application Firewall (WAF)
module inspects requests for common attack signatures and
can reject malicious traffic. The proposed system also includes
ratelimiting per client IP to mitigate DDoS and brute-force
attacks. All logs (detailed in the Results section) enable
monitoring and threat analysis, contributing to overall security.

IV. RESULTS AND DISCUSSION

The proposed reverse proxy was implemented in Node.js
and tested with a set of web service containers. Scaling has
been simulated by running multiple back-end servers on
separate ports. Figures 9-11 show sample request workloads
and proxy behavior. The proxy correctly balances client

requests across all healthy upstream servers.
During load testing, as shown in Fig. 13-14, the system

maintained low response times even under heavy concurrent
connections. For example, with 1000 simultaneous requests,
the round-robin strategy achieved an average response time of
120 ms, whereas weighted round-robin (which assigns higher
weight to more powerful servers) improved throughput by
about 15%. The proxy successfully performed TLS termination
and forwarded requests securely to the backend (captured in
server logs, Fig. 12). When a simulated server was taken
offline, the master process detected the failure and the worker
processes rerouted traffic among the remaining servers
without dropping connections, demonstrating fault tolerance.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRTBG02017 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 157

Fig. 9: Back-end Upstream Servers for Testing.

Fig. 10: Starting the Back-end Upstream Servers.

Fig. 11: Multiple Requests to the Service 1.

Fig. 13: Reverse Proxy Load Testing.

Fig. 14: Load Test Results.

V. CONCLUSION AND FUTURE WORKS

The Node.js-based reverse proxy effectively orchestrates
traffic distribution among backend servers, ensuring high
availability and responsive scaling under variable demand
conditions. TLS offloading at the proxy edge not only reduces
computational overhead on application servers but also
centralizes certificate management and accelerates secure
session establishment. Integration of Web Application Firewall
rules and rate-limiting policies mitigates common threats such
as DDoS and injection attacks, strengthening the overall
security posture. Benchmark results demonstrate measurable
gains in request throughput and fault tolerance, confirming
that the design meets and exceeds contemporary networking

requirements.
In future iterations, embedding machine-learning-driven

traffic forecasting models can enable predictive scaling,
allowing the proxy to pre-provision resources ahead of
anticipated load spikes. Incorporating advanced protocols such
as HTTP/3 will further reduce latency and improve connection
resilience through QUIC’s multiplexing and 0-RTT features.
Expanding the modular framework to support additional
transports like WebSocket and gRPC will widen applicability
across real-time and microservices-based applications. Finally,
augmenting observability with real-time telemetry dashboards
and anomalous traffic detection will enhance operational
insight and expedite issue resolution in complex network

topologies.

REFERENCES

[1] A. Adewojo and J. M. Bass (2023), “A Novel Weight Assignment Load
Balancing Algorithm for Cloud Application,” SN Comput. Sci., Vol. 4, No.
3, p. 270.

[2] R. Bhattacharya, Y. Gao, and T. Wood (2024), “Dynamically Balancing
Load with Overload Control for Microservices,” ACM Trans. Internet
Technol., Vol. 24, No. 1, pp. 1–11.

[3] S. Chen, S. Jero, M. Jagielski, A. Boldyreva, and C. Nita-Rotaru (2021),
“Secure Communication Channel Establishment: TLS 1.3 (over TCP Fast
Open) versus QUIC,” Journal of Cryptology, Vol. 34, No. 3, pp. 1– 41.

[4] E. Chatzoglou, V. Kouliaridis, G. Karopoulos, and G. Kambourakis (2023),
“Revisiting QUIC attacks: A comprehensive review on QUIC security and
a hands-on study,” Int. J. Inf. Security, Vol. 22, No. 2, pp. 347–365.

[5] E. Chatzoglou, V. Kouliaridis, G. Karopoulos, and G. Kambourakis (2022),
“A Survey on Web Application Firewall Architectures and Techniques,”
Computers & Security, Vol. 114, p. 102755.

[6] J.-B. Lee, T.-H. Yoo, E.-H. Lee, B.-H. Hwang, S.-W. Ahn, and C.-H. Cho
(2021), “High-Performance Software Load Balancer for Cloud-Native
Architecture,” IEEE Access, Vol. 9, pp. 123704–123716.

[7] K. R. Mahato, S. Sharma, and N. Singh (2023), “Efficient Failover
Strategies for Reverse Proxy Load Balancers in Distributed Systems,”
Future Generation Computer Systems, Vol. 141, pp. 112–125.

[8] C. Ma and Y. Chi (2022), “Evaluation Test and Improvement of Load
Balancing Algorithms of Nginx,” IEEE Trans. Cloud Comput., Vol. 10, No.
1, pp. 14311–14324.

[9] A. U. Rehman, R. L. Aguiar, and J. P. Barraca (2022), “Fault-Tolerance in
the Scope of Cloud Computing,” IEEE Access, Vol. 10, pp. 63422– 63441.

[10] D. A. Shafiq, N. Z. Jhanshi, and A. Abdullah (2022), “Load Balancing
Techniques in Cloud Computing Environment,” Future Generation
Computer Systems, Vol. 130, pp. 141–156.

[11] S. Tang, Z. Liang, and Q. Zhang (2023), “Reverse Proxy Performance and
Security in Cloud-Native Environments: A Comparative Study,” IEEE
Access, Vol. 11, pp. 58941–58957.

[12] P. Walker, J. Lee, and H. Kim (2023), “Auto-Scaling and Load Balancing in
Microservices Using Kubernetes Ingress and Service Mesh Patterns:
A Review,” ACM Computing Surveys, Vol. 55, No. 4, pp. 1–39.

http://www.ijcrt.org/

