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Abstract— Synthetic Aperture Radar (SAR) provides an
invaluable remote sensing capability, operating independently
of weather conditions and daylight. However, the usage of SAR
imagery is constrained by two inherent characteristics: the
presence of multiplicative speckle noise, which degrades image
quality and obscures details, and its monochromatic nature,
which complicates interpretation by humans and limits its di-
rect use with standard computer vision algorithms. To address
these issues, this paper introduces a sequential two-stage deep
learning framework designed to holistically enhance SAR im-
agery. The first stage employs a Convolutional Autoencoder
(CAE), specifically designed for speckle reduction. This net-
work learns a robust representation of the underlying scene
structure, filtering the granular noise. The second stage uses a
Pix2Pix architecture, a conditional GAN (cGAN) framework
tailored for paired image-to-image translation tasks, to per-
form SAR image colourisation. The CAE demonstrates strong
denoising performance, achieving a Peak Signal-to-Noise Ratio
(PSNR) of up to 32 dB and a Structural Similarity Index Mea-
sure (SSIM) of up to 0.88. The subsequent colourisation stage
generates visually plausible images, validated by a Fréchet
Inception Distance (FID) of 72.3 and a Learned Perceptual
Image Patch Similarity (LPIPS) of 0.28. This approach, by
decoupling the complex tasks of denoising and colourisation,
offers a robust and effective solution, significantly improving
the interpretability and analytical value of SAR data for a wide
range of geoscience and surveillance applications.

Keywords—Synthetic Aperture Radar (SAR), Speckle Reduc-
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. INTRODUCTION

Synthetic Aperture Radar (SAR) has become foundational in
modern remote sensing, offering unique imaging capabili-
ties that overcome the limitations of traditional optical sen-
sors. Unlike passive optical systems, SAR actively illumi-
nates the Earth’s surface with microwave pulses and records
the backscattered signals, enabling high-resolution image
acquisition regardless of daylight or weather conditions. By
synthesising a large virtual aperture from the motion of the
platform, SAR achieves fine spatial resolution that would
otherwise require physically impractical antenna sizes.
These characteristics make it highly useful in a wide range
of applications, including environmental monitoring, disas-
ter management, geology, agriculture, maritime sur-
veillance, and defence operations [7].

Despite these advantages, SAR imagery presents two major
challenges that limit its usefulness. The first arises from the

Chennai, India

presence of speckle noise, a derivative of the coherent imag-
ing process. Showing as a granular pattern caused by ran-
dom interference of backscattered radar waves, speckle sig-
nificantly degrades image quality and complicates both hu-
man interpretation and automated analysis. Its multiplicative
nature makes it particularly resistant to conventional denois-
ing methods designed for additive noise [9]. Recent work
has explored deep learning—based approaches for despeck-
ling, including convolutional autoencoders [17], which
demonstrate strong potential for improving SAR image
quality. The second issue is the monochromatic format of
SAR imagery. With pixel intensity reflecting only the
strength of radar backscatter, SAR images lack the spectral
richness of optical data. This absence of colour not only
reduces their interpretability for human analysts but also
restricts compatibility with the vast majority of computer
vision models, which are typically optimised for RGB in-
puts [1].

To address these issues, this work proposes a sequential
two-stage deep learning framework that holistically en-
hances SAR imagery. The first stage employs a Convolu-
tional Autoencoder (CAE) to reduce speckle noise by learn-
ing a compact representation of structural information and
reconstructing a clean image [2]. The second stage intro-
duces a pix2pix conditional Generative Adversarial Network
(cGAN) to colourise the despeckled images, translating
them into perceptually plausible RGB representations [3].
This decoupled approach ensures that the GAN operates on
stable, noise-free inputs, allowing it to focus solely on the
semantic task of assigning meaningful colour. By separating
the tasks of denoising and colourisation, the pipeline im-
proves robustness, training efficiency, and output quality.

The contributions of this work are threefold. First, it intro-
duces an end-to-end deep learning framework that systemat-
ically enhances SAR imagery through despeckling, followed
by colourisation. Second, it demonstrates the effectiveness
of this approach through rigorous evaluation, showing that
the CAE achieves high fidelity in speckle reduction while
the pix2pix GAN produces realistic and visually coherent
colourised outputs. Third, it presents a comprehensive per-
formance analysis that integrates both traditional metrics,
such as PSNR and SSIM, with modern perceptual measures,
including FID and LPIPS. Together, these contributions
highlight a pathway to making SAR data more interpretable

[JCRTBG02012

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 105


http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

and actionable for a wide range of geoscience, surveillance,
and monitoring applications [5].

1. LITERATURE REVIEW

A. Evolution of SAR Image Despeckling

The reduction of speckle noise has been a central research
theme in SAR image processing, with methodologies evolv-
ing from classical filtering techniques to advanced deep
learning architectures. Early approaches focused on classical
filtering methods applied in the spatial domain. Filters such
as the Lee, Frost, and Kuan filters operate by analysing local
statistical properties within a moving window to estimate
the noise-free pixel value. While computationally simple,
these methods often suffer from a significant drawback
where they tend to blur sharp edges, smooth out fine tex-
tures, and consequently lose important image details, repre-
senting a trade-off between noise suppression and feature
preservation [1].

To overcome these issues, advanced techniques were devel-
oped. Transform domain methods, such as those based on
the wavelet transform, attempt to separate the signal and
noise in the frequency domain [2]. Concurrently, non-local
methods emerged, based on the idea of using image self-
similarity. The Non-Local Means (NLM) algorithm and its
highly successful SAR-specific variant, SAR-BM3D, work
by averaging pixels from distant but structurally similar
patches across the image. These methods showed better per-
formance in preserving details compared to local filters, but
are often associated with high computational complexity

[3].

The advent of deep learning has revolutionised SAR de-
speckling, offering a more powerful, data-driven approach
that can learn complex image priors automatically. A variety
of neural network architectures have been explored for this
task. Directly relevant to the first stage of our proposed
framework is the use of Convolutional Denoising Autoen-
coders (C-DAE), trained to reconstruct clean images from
noisy inputs [4]. Other prominent deep learning paradigms
include self-supervised approaches, which use the statistical
properties of SAR data to train a network without requiring
perfectly clean ground-truth images, a significant advantage
given that such ground truth is often unavailable [5].

Generative Adversarial Networks (GANs) have also been
applied to image restoration, with models trained to generate
realistic denoised images that are indistinguishable from
clean ones [6]. More recently, the state-of-the-art has been
advanced by Denoising Diffusion Probabilistic Models
(DDPMs), a class of powerful generative models adapted
for despeckling, which have shown remarkable performance
in generating high-fidelity results [7]. Furthermore, prior-
driven networks have been explored, which explicitly incor-
porate physical or statistical models of SAR imaging into
the network architecture to guide the learning process and
improve structure preservation [8].

B. SAR Image Colourisation and SAR-to-Optical Transla-
tion

The task of converting monochromatic SAR images into a

visually intuitive colour format is most effectively framed as

an image-to-image translation problem. The goal is to learn

a mapping function that transforms an image from the

source domain (SAR) to a target domain (optical RGB).

Generative Adversarial Networks have become the go-to
tool for this challenging task [9].

Conditional GANs (cGANS) are particularly well-suited for
this problem when paired datasets, containing spatially co-
registered SAR and optical images of the same scene, are
available. The pix2pix model, a foundational cGAN archi-
tecture, has been widely adapted for this purpose [10]. Ex-
amples have demonstrated the feasibility of using cGANs
and other CNN-based architectures to generate high-quality
visible images from SAR inputs, showing the potential of
learning this complex cross-modal mapping [11].

In scenarios where perfectly aligned image pairs are difficult
or impossible to obtain, Cycle-Consistent GANs (Cycle-
GANSs) provide an elegant solution for unpaired image-to-
image translation. By enforcing a cycle-consistency loss,
ensuring that an image translated from domain A to B and
back to A recovers the original, models have been able to
learn the translation function without direct one-to-one su-
pervision [12], [13].

Recent research has also focused on developing specialised
network architectures tailored to the unique characteristics
of SAR data. The Sar2color model is a notable example,
integrating modules within its GAN architecture to handle
speckle noise and geometric distortions during the transla-
tion process, aiming to improve the textural and colourimet-
ric accuracy of the generated optical images [14]. The
progress in this field is further supported by comprehensive
surveys on image colourisation [15] and the creation of
large-scale, publicly available benchmark datasets that facil-
itate the training and evaluation of these data-hungry models
[16].

Most research efforts either focus exclusively on the prob-
lem of despeckling or on the problem of SAR-to-optical
translation. While some translation models, such as Sar2-
color, acknowledge speckle as a confounding factor and
attempt to mitigate it implicitly within a monolithic archi-
tecture, there is a notable gap in the literature regarding the
explicit design and validation of a sequential, two-stage
pipeline. The approach presented in this paper directly ad-
dresses this gap. It posits that by decoupling the two tasks
and. employing specialised, state-of-the-art networks for
each, a more robust and effective overall enhancement can
be achieved. Instead of burdening a single complex network
with the entangled objectives of denoising and colourisa-
tion, this work modularises the problem, allowing each net-
work to perform its designated function optimally.

1. METHODOLOGY

The proposed framework is a cascaded system com-
posed of two distinct deep learning models, each tailored for
a specific stage of the SAR image enhancement process.
This section provides a detailed technical exposition of the
system's architecture and training objectives. The input to
the system is a noisy, single-channel (grayscale) SAR im-
age, which is first processed by Stage 1, the Denoising Con-
volutional Autoencoder (CAE). The output of this stage is a
denoised grayscale SAR image. This clean image then
serves as the input to Stage 2, the Colourisation pix2pix
GAN. The GAN performs an image-to-image translation,
producing the final output, which is a colourised, three-
channel (RGB) image.
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Fig. 1. Architectural overview of the sequential denoising and colourisation
pipeline

A. Training Data and Preprocessing _ o
The models were trained and evaluated using a combination

of publicly available and synthetic datasets to ensure ro-
bustness and generalizability. For the denoising stage, the
Virtual SAR dataset was utilised, which provides synthetic
pairs of clean images and their corresponding versions with
artificially added speckle noise [13]. For the colourisation
stage, which requires paired SAR and optical data, datasets
such as the GRSS SAR/PolISAR DATABASE and the Ten-
GeoP-SARwv dataset, containing over 30,000 Sentinel-1
images, were used [20], [11]. All images across the datasets
were subjected to a uniform preprocessing pipeline. Each
image was resized to a standard dimension of 256x256 pix-
els. For Stage 1 (denoising), the pixel values of the
grayscale images were normalised to a floating-point range.
For Stage 2 (colourisation), the pixel values for both the
denoised grayscale input and the target RGB optical images
were normalised to the range [-1, 1], a standard practice that
aligns with the use of a Tanh activation function in the gen-
erator's final layer [1], [3].

B. Speckle Noise Reduction via Convolutional Denoising
Autoencoder (CAE)

The first stage of the framework is dedicated to reducing
the speckle noise common in SAR imagery. A Convolution-
al Autoencoder is chosen for this task due to its proven ef-
fectiveness in learning compressed representations for im-
age reconstruction and denoising [14]. The fundamental
principle is that the encoder learns to map the input image to
a lower-dimensional latent space that captures the important,
structural information of the scene, while the decoder learns
to reconstruct the image from this purified latent code, ef-
fectively filtering out the noise [5].

The CAE architecture follows a symmetric encoder-de-
coder structure designed for effective feature extraction and
image reconstruction.

Encoder: The encoder consists of a deep stack of Con-
v2D layers that progressively reduce the spatial dimensions
of the input while increasing the feature map depth. The
filter count increases hierarchically (e.g., 64, 128, 256, 512,
up to 1024), allowing the network to capture features at
multiple scales. To stabilise training and accelerate conver-
gence, each convolutional layer is followed by a Batch
Normalisation (BN) layer and a ReLU (Rectified Linear
Unit) activation function, which introduces non-linearity
[14].

Decoder: The decoder mirrors the encoder's structure,
employing a symmetric stack of TransposedConv2D layers
to perform upsampling and gradually restore the feature
maps to the original input dimensions. The number of filters
decreases in a mirrored fashion. Similar to the encoder, each
TransposedConv2D layer is followed by a BN layer and a
ReLU [17] activation.

Output Layer: The final layer of the decoder is a Con-
v2D layer with a single filter and a Sigmoid activation func-
tion. The sigmoid function is crucial as it squashes the out-
put pixel values to the normalised range of, matching the
preprocessed ground-truth images [14].

The CAE is trained in a supervised manner, using pairs of
noisy SAR images and their corresponding clean, speckle-
free ground-truth counterparts. The network’s objective is to
minimise the error between its output, the denoised image
and the clean ground truth [17]. This is achieved by using
the Mean Squared Error (MSE) as the loss function. The
MSE is defined as:

MSE = L 5) 2 1
o = NZ Yi—-») 1

where y; is the value of the i-th pixel in-the ground-truth
image, Vi is the value of the corresponding pixel in the
CAE's output, and N is the total number of pixels. MSE
penalises large errors more heavily and is a standard choice
for image reconstruction tasks where pixel-wise fidelity is
the primary goal.

C. Image Colourisation using a Conditional GAN (pix2pix)

The second stage addresses the challenge of interpretability
by translating the denoised grayscale SAR image into a pho-
torealistic colour image. The pix2pix framework is an ideal
choice for this task, as it is a conditional GAN specifically
designed for paired image-to-image translation problems
[1]. It learns a direct mapping from a source image domain
(denoised SAR) to a target image domain (optical RGB),
conditioned on the input image to ensure structural consis-
tency. The architecture consists of two competing networks,
a Generator and a Discriminator [12].

The generator's role is to produce the colourised image. Its
architecture is based on a U-Net, an encoder-decoder struc-
ture enhanced with skip connections, which has proven
highly effective for image translation tasks where fine-
grained detail must be preserved [3],[10].

Encoder-Decoder Path: The generator follows a classic U-
Net structure. The encoder path is composed of a series of
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Conv2D layers that progressively downsample the input
image, increasing the number of feature filters at each step
(e.g., 64, 128, 256, 512) to learn contextual features at vary-
ing levels of abstraction. Each convolutional layer is fol-
lowed by a BN layer and a LeakyReL U activation function.

The decoder path symmetrically upsamples the feature maps
using TransposedConv2D layers, aiming to reconstruct the
full-resolution colour image [1].

Skip Connections: The defining feature of the U-Net archi-
tecture is the presence of skip connections that link layers in
the encoder directly to their corresponding layers in the de-
coder. These connections create a shortcut for information
flow, allowing low-level spatial information (such as precise
edges and textures) captured in the early encoder layers to
be directly available to the decoder during image recon-
struction. This is critical for generating sharp, detailed out-
puts.

Regularisation and Output: To prevent overfitting, Dropout
layers are strategically placed in the deeper layers of the U-
Net. The final layer of the generator uses a Tanh activation
function, which maps the output pixel values to the range [-
1, 1], consistent with the preprocessed target images.

The discriminator's role is to distinguish between real opti-

cal images and the fake colourised images produced by the
generator. This framework employs a PatchGAN discrimi-
nator, which classifies small, overlapping patches of the
input image as real or fake. Its output is an NxN feature
map, where each element corresponds to the discriminator's
verdict on a specific patch. This architecture encourages the
generator to focus on producing realistic high-frequency
details and textures across the entire image by penalising
unrealistic structures at a local level.

The generator (G) and discriminator (D) are trained simul-
taneously in an adversarial minimax game.

 Adversarial Loss: The framework uses a conditional ad-
versarial loss. The discriminator is trained to correctly
classify real image pairs (denoised SAR input, real optical
target) and fake image pairs (denoised SAR input, gener-
ated colour image). The generator is trained to produce
outputs that fool the discriminator. The objective can be
expressed as:

min maxV (D, G) = Exepyy,9l108 D (9] + Ex-py[l0g(1 - D (G )

@

where x is the input denoised SAR image and y is the target

optical image.

« L1 Loss: To ensure the generated output is structurally
consistent with the input, an L1 loss (Mean Absolute Er-
ror) is added to the generator's objective function. This
loss measures the pixel-wise absolute difference between
the generated image and the ground-truth target image:

Ly = 2y S )

n i=1
The L1 loss encourages less blurring compared to the L2
loss (MSE) and helps the generator produce outputs that are
a plausible translation of the source.

» Combined Loss: The final objective for the generator is a
weighted combination of the adversarial loss and the L1
loss, balancing the need for realism with the need for
structural fidelity:

min maxV (D, G) = Ex.p,..c0llog D (X)] + Ez-p,»[log(1 - D (G (2)))]

G D
4)
where A is a hyperparameter that controls the relative impor-
tance of the L1 term.

V. RESULTS AND DISCUSSION

The performance of the proposed two-stage framework
was rigorously evaluated using both quantitative and quali-
tative metrics to assess the effectiveness of speckle reduc-
tion and colourisation

A. Evaluation Metrics

A variety of metrics were used to assess the performance
of both the denoising and colourisation stages, capturing
aspects of both pixel-level accuracy and perceptual quality.

For Denoising (Reconstruction Quality)

. Mean Squared Error (MSE): A fundamental metric
that calculates the average squared difference be-
tween the pixel values of the ground-truth image
(1) and the reconstructed image (K). A lower MSE
indicates a better reconftruction. It is defined as:

L . 2
. MSE N> (yi-7) ®)

where m and n are the dimensions of the image.

. Peak Signal-to-Noise Ratio (PSNR): A widely used

metric in image processing, PSNR measures the
ratio of the maximum possible power of a signal to
the power of the corrupting noise. It is expressed
on a logarithmic decibel (dB) scale, and a higher
value signifies better quality. PSNR is inversely
I\/lAXgelated to MSE and is calculated as:

PSNR =10 - logio (6)

|
( MSE )

where MAX; is the maximum possible pixel value of the
image (e.g., 255 for an 8-hit grayscale image).

. Structural Similarity Index Measure (SSIM): Un-
like PSNR and MSE, which are based on absolute
errors, SSIM is a perceptual metric that evaluates
image quality degradation based on changes in
structural information. It compares local patterns of
pixel intensities by incorporating luminance (1),
contrast (c), and structure (s). The SSIM index
ranges from -1 to 1, where 1 indicates perfect
structural similarity. The formula for two image
windows x and y is:

(Zuxpy + €1)(20xy + C2)
SSIM (x,y) = X il )
(6 + 2 + c1) (02 + 032 + C3)
where [ is the mean, o2 is the variance, o_xy is the covari-

ance, and c1,C2 are stabilisation constants.

For Colourisation (Generative Quality)

. Fréchet Inception Distance (FID): A standard met-
ric for evaluating the quality of generative models.
FID measures the distance between the feature dis-
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tributions of a set of real images and a set of gener-
ated images, as extracted by a pre-trained Incep-
tionV3 network. It captures both the fidelity and
diversity of the generated samples. A lower FID
score indicates that the two distributions are more
similar, signifying higher-quality results.

. Learned Perceptual Image Patch Similarity
(LPIPS): Also known as perceptual distance,
LPIPS measures the similarity between two images
by computing the distance between their feature
representations extracted from deep layers of a pre-
trained neural network. This metric has been shown
to align remarkably well with human perceptual
judgments of image similarity. A lower LPIPS
score indicates that two images are more perceptu-
ally similar.

B. Quantitative and Qualitative Results
Quantitative Analysis

The performance of the first stage, the Denoising CAE, is
presented in Table I. The model achieves a low training loss
and high PSNR and SSIM values, indicating its strong ca-
pability to remove speckle noise while faithfully preserving
the underlying image structure.

I TABLE 1: PERFORMANCE OF DENOISING CAE

Metric Value Range
Training Loss (MSE) 0.007 0.015
PSNR (dB) 25 32
SSIM 0.75 0.88

The performance of the pix2pix Colourisation GAN is
presented in Table Il. The table provides image quality met-
rics for the final output and the GAN's training losses,
which provide insight into the adversarial training dynam-
ics.

1. TABLE 2: PERFORMANCE OF PIX2P1X COLORIZA-

TION GAN
Image Quality Metrics
Metric Value
SSIM 0.42
PSNR (dB) 185
FID 723
LPIPS 0.28

GAN Training Loss Components

Loss Component Value
Generator Total Loss 78
GAN Adversarial Loss 0.95
L1 Loss 0.068
Discriminator Loss 0.88

Qualitative Analysis

To complement the quantitative metrics, a qualitative analy-
sis was performed by visually inspecting the outputs of the
framework. A series of figures would present side-by-side
comparisons for various scenes, showcasing the original
noisy SAR input, the intermediate denoised output from the
CAE, the final colourised output from the pix2pix GAN,
and the corresponding ground-truth optical image.

Clean Image Denoised Image

Noisy Image

100 200

These visual examples serve to illustrate the effectiveness of
each stage. The output of the CAE clearly shows a signifi-
cant reduction in the granular speckle pattern while retain-
ing sharp edges and structural details. The final colourised
output demonstrates the GAN's ability to generate realistic
colours and textures for different land cover types, such as
deep blues for water bodies, varied greens for vegetation,
and greys and browns for urban structures and bare earth.
These visual results provide compelling evidence of the
framework's ability to transform challenging, uninter-
pretable SAR data into visually intuitive and analytically
valuable imagery.

Input Image

Predicted Image

C. Discussion

The quantitative results presented in Table | provide strong
evidence for the efficacy of the Convolutional Autoencoder
in the speckle reduction task. The achieved PSNR values,
ranging from 25 dB to 32 dB, are indicative of a high-quali-
ty reconstruction with significantly reduced noise levels.
Similarly, the SSIM scores, which reach up to 0.88, confirm
that the structural integrity of the images is well-preserved
during the denoising process. The consistently low MSE
training loss further suggests that the network converged
successfully to a solution that accurately maps noisy inputs
to their clean counterparts. The success of this first stage is a
foundational enabler for the entire pipeline. By effectively
removing the stochastic and corrupting influence of speckle,
the CAE provides a normalised and stable input distribution
to the subsequent colourisation stage. This dramatically
simplifies the learning problem for the pix2pix GAN, which
can then dedicate its full capacity to the already challenging
task of cross-domain translation.

The performance of the colourisation stage, detailed in Ta-
ble 11, requires a nuanced interpretation. The pixel-based
metrics, PSNR (18.5 dB) and SSIM (0.42), are relatively
low. This is an expected outcome, as the goal of the GAN is
not to reproduce the ground-truth optical image pixel-for-
pixel, but to generate a colourisation consistent with the
input SAR structure. Since colourisation is an ill-posed,
one-to-many problem, the generated output may differ in
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fine details from the single ground-truth instance, leading to
poor scores on these strict fidelity metrics. The perceptual
metrics, FID (72.3) and LPIPS (0.28), offer a more mean-
ingful assessment. These scores indicate that the distribution
of generated images is perceptually and statistically close to
the distribution of real optical images. The model is success-
fully learning the complex, high-level features, textures, and
colour palettes that characterise natural scenes. The break-
down of the GAN losses further suggests that the adversarial
training process reached a healthy equilibrium, avoiding
common pitfalls like mode collapse.

Visual inspection of the output images corroborates the
quantitative findings. The framework consistently produces
colourised images with sharp edges, realistic textures, and
semantically appropriate colours. However, a critical evalu-
ation also reveals certain limitations. The colourisation task
is inherently ambiguous, and the model can sometimes pro-
duce colours that are plausible but not factually correct for a
specific location or time. For instance, it might colour a
field green when it was fallow (brown) at the time of the
optical image acquisition. This semantic leap is a fundamen-
tal challenge in any cross-domain translation task where one
domain (SAR) contains strictly less information than the
target domain (optical).

The proposed two-stage framework acts as a powerful do-
main normaliser, making raw SAR data from a challenging
domain (noisy, single-channel) into one that is more aligned
with human understanding and standard computer vision
tools. By making SAR data more intuitive and optical-like,
this framework dramatically lowers the barrier to entry for
SAR data analysis. It allows human experts not trained in
SAR interpretation to rapidly analyse scenes and unlocks
the potential to apply a vast ecosystem of pre-trained com-
puter vision models, for tasks like object detection and land-
cover classification, directly to the enhanced SAR output,
improving performance in a wide range of downstream ap-
plications.

V. FUTURE ScoPE

The main novelty of this work lies in the design and valida-
tion of a sequential, two-stage deep learning framework that
explicitly decouples the tasks of denoising and colourisation
[17]. Unlike singular approaches that attempt to solve both
problems simultaneously, this modular pipeline employs
specialised architectures for each stage: a Convolutional
Autoencoder for speckle reduction and a conditional GAN
for colourisation [9], [1]. This separation simplifies the
learning objective for each network, allowing the CAE to
focus on high-fidelity reconstruction and the GAN to dedi-
cate its full capacity to the complex semantic inference of
colour, resulting in a more robust and effective overall en-
hancement. The contributions of this research are sum-
marised by a novel two-stage pipeline, where the design and
implementation of an end-to-end framework systematically
enhances SAR imagery by first performing speckle reduc-
tion and then colourisation, with rigorous validation using a
hybrid suite of evaluation metrics. The denoising stage was
assessed with reconstruction metrics (PSNR, SSIM),
demonstrating high structural fidelity [14], while the
colourisation stage was evaluated with perceptual metrics
(FID, LPIPS), confirming the generation of realistic and
visually plausible images that align well with human per-
ception [3]. The framework successfully transforms noisy,

monochromatic SAR data into clean, colourised images that
are more intuitive for human analysts and compatible with
standard computer vision algorithms, thereby increasing the
accessibility and analytical value of SAR technology [1].

While the proposed framework demonstrates considerable
success, there exists significant room for future research and
improvement. The field of generative modelling is advanc-
ing rapidly [18]. Future work could explore replacing the
pix2pix GAN with more recent and powerful architectures,
such as denoising diffusion probabilistic models (DDPMs),
for the colourisation stage [16]. Diffusion models have
shown strong performance in image synthesis and may lead
to even higher-fidelity and more diverse colourisations. Ad-
ditionally, using attention mechanisms within the network
architectures could help the models better capture long-
range spatial dependencies, potentially improving the coher-
ence of large-scale structures [4]. The current framework
relies on a combination of adversarial and L1 loss. Future
iterations could investigate the integration of a perceptual
loss, such as LPIPS itself, directly into the generator's objec-
tive function [3], which would train the generator to min-
imise perceptual distance and may further improve visual
quality while reducing reliance on the pixel-wise L1 term. A
crucial next step is to quantitatively evaluate the impact of
this enhancement pipeline on downstream analytical tasks.
By using the colourised output as input for models trained
on tasks like land-cover classification, object detection, or
change detection, it would be possible to measure the con-
crete improvement in task-specific accuracy and demon-
strate the tangible benefits of the proposed preprocessing
[8]. This work focused on single-channel intensity SAR
data. Another direction for future research is to adapt and
extend the framework to handle more complex SAR modali-
ties, such as polarimetric SAR (PolSAR) [19]. PoISAR data
contains significantly richer information about the scattering
properties and physical structure of objects on the ground.

Using this additional information could enable more accu-

rate and detailed colourisations, further-closing the gap be-
tween SAR-derived products and true optical imagery [4].

VL. CONCLUSION

This paper has addressed the critical challenges of speckle
noise and poor interpretability in Synthetic Aperture Radar
imagery. A novel, two-stage deep learning framework was
proposed, designed to systematically enhance SAR data for
improved analysis. The first stage, a Convolutional Autoen-
coder, was shown to be highly effective at speckle reduc-
tion, achieving strong quantitative performance in terms of
PSNR and SSIM, thereby preserving essential structural
information. The second stage, a conditional GAN based on
the pix2pix architecture, successfully translated the denoised
grayscale images into realistic, full-colour representations.
The quality of this translation was validated using modern
perceptual metrics, FID and LPIPS, which demonstrated
that the generated images are statistically and perceptually
similar to real optical images. By decoupling the tasks of
denoising and colourisation, the proposed framework offers
a modular, robust, and effective solution that significantly
enhances the visual quality and intuitive value of SAR im-

agery.
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