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Abstract— Synthetic Aperture Radar (SAR) provides an 

invaluable remote sensing capability, operating independently 
of weather conditions and daylight. However, the usage of SAR 

imagery is constrained by two inherent characteristics: the 
presence of multiplicative speckle noise, which degrades image 
quality and obscures details, and its monochromatic nature, 

which complicates interpretation by humans and limits its di- 
rect use with standard computer vision algorithms. To address 

these issues, this paper introduces a sequential two-stage deep 
learning framework designed to holistically enhance SAR im- 
agery. The first stage employs a Convolutional Autoencoder 

(CAE), specifically designed for speckle reduction. This net- 
work learns a robust representation of the underlying scene 
structure, filtering the granular noise. The second stage uses a 

Pix2Pix architecture, a conditional GAN (cGAN) framework 
tailored for paired image-to-image translation tasks, to per- 
form SAR image colourisation. The CAE demonstrates strong 

denoising performance, achieving a Peak Signal-to-Noise Ratio 
(PSNR) of up to 32 dB and a Structural Similarity Index Mea- 

sure (SSIM) of up to 0.88. The subsequent colourisation stage 
generates visually plausible images, validated by a Fréchet 
Inception Distance (FID) of 72.3 and a Learned Perceptual 

Image Patch Similarity (LPIPS) of 0.28. This approach, by 
decoupling the complex tasks of denoising and colourisation, 
offers a robust and effective solution, significantly improving 

the interpretability and analytical value of SAR data for a wide 
range of geoscience and surveillance applications. 

Keywords—Synthetic Aperture Radar (SAR), Speckle Reduc- 
tion, Image Colourisation, Deep Learning 

I. INTRODUCTION 

Synthetic Aperture Radar (SAR) has become foundational in 
modern remote sensing, offering unique imaging capabili- 
ties that overcome the limitations of traditional optical sen- 
sors. Unlike passive optical systems, SAR actively illumi- 
nates the Earth’s surface with microwave pulses and records 
the backscattered signals, enabling high-resolution image 
acquisition regardless of daylight or weather conditions. By 
synthesising a large virtual aperture from the motion of the 
platform, SAR achieves fine spatial resolution that would 
otherwise require physically impractical antenna sizes. 
These characteristics make it highly useful in a wide range 
of applications, including environmental monitoring, disas- 
ter management, geology, agriculture, maritime sur- 
veillance, and defence operations [7]. 

Despite these advantages, SAR imagery presents two major 
challenges that limit its usefulness. The first arises from the 

presence of speckle noise, a derivative of the coherent imag- 
ing process. Showing as a granular pattern caused by ran- 
dom interference of backscattered radar waves, speckle sig- 
nificantly degrades image quality and complicates both hu- 
man interpretation and automated analysis. Its multiplicative 
nature makes it particularly resistant to conventional denois- 
ing methods designed for additive noise [9]. Recent work 
has explored deep learning–based approaches for despeck- 
ling, including convolutional autoencoders [17], which 
demonstrate strong potential for improving SAR image 
quality. The second issue is the monochromatic format of 
SAR imagery. With pixel intensity reflecting only the 
strength of radar backscatter, SAR images lack the spectral 
richness of optical data. This absence of colour not only 
reduces their interpretability for human analysts but also 
restricts compatibility with the vast majority of computer 
vision models, which are typically optimised for RGB in- 
puts [1]. 

To address these issues, this work proposes a sequential 
two-stage deep learning framework that holistically en- 
hances SAR imagery. The first stage employs a Convolu- 
tional Autoencoder (CAE) to reduce speckle noise by learn- 
ing a compact representation of structural information and 
reconstructing a clean image [2]. The second stage intro- 
duces a pix2pix conditional Generative Adversarial Network 
(cGAN) to colourise the despeckled images, translating 
them into perceptually plausible RGB representations [3]. 
This decoupled approach ensures that the GAN operates on 
stable, noise-free inputs, allowing it to focus solely on the 
semantic task of assigning meaningful colour. By separating 
the tasks of denoising and colourisation, the pipeline im- 
proves robustness, training efficiency, and output quality. 

The contributions of this work are threefold. First, it intro- 
duces an end-to-end deep learning framework that systemat- 
ically enhances SAR imagery through despeckling, followed 
by colourisation. Second, it demonstrates the effectiveness 
of this approach through rigorous evaluation, showing that 
the CAE achieves high fidelity in speckle reduction while 
the pix2pix GAN produces realistic and visually coherent 
colourised outputs. Third, it presents a comprehensive per- 
formance analysis that integrates both traditional metrics, 
such as PSNR and SSIM, with modern perceptual measures, 
including FID and LPIPS. Together, these contributions 
highlight a pathway to making SAR data more interpretable 
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and actionable for a wide range of geoscience, surveillance, 
and monitoring applications [5]. 

 

II. LITERATURE REVIEW 

A. Evolution of SAR Image Despeckling 

The reduction of speckle noise has been a central research 
theme in SAR image processing, with methodologies evolv- 
ing from classical filtering techniques to advanced deep 
learning architectures. Early approaches focused on classical 
filtering methods applied in the spatial domain. Filters such 
as the Lee, Frost, and Kuan filters operate by analysing local 
statistical properties within a moving window to estimate 
the noise-free pixel value. While computationally simple, 
these methods often suffer from a significant drawback 
where they tend to blur sharp edges, smooth out fine tex- 
tures, and consequently lose important image details, repre- 
senting a trade-off between noise suppression and feature 
preservation [1]. 

 
To overcome these issues, advanced techniques were devel- 
oped. Transform domain methods, such as those based on 
the wavelet transform, attempt to separate the signal and 
noise in the frequency domain [2]. Concurrently, non-local 
methods emerged, based on the idea of using image self- 
similarity. The Non-Local Means (NLM) algorithm and its 
highly successful SAR-specific variant, SAR-BM3D, work 
by averaging pixels from distant but structurally similar 
patches across the image. These methods showed better per- 
formance in preserving details compared to local filters, but 
are often associated with high computational complexity 
[3]. 

 
The advent of deep learning has revolutionised SAR de- 
speckling, offering a more powerful, data-driven approach 
that can learn complex image priors automatically. A variety 
of neural network architectures have been explored for this 
task. Directly relevant to the first stage of our proposed 
framework is the use of Convolutional Denoising Autoen- 
coders (C-DAE), trained to reconstruct clean images from 
noisy inputs [4]. Other prominent deep learning paradigms 
include self-supervised approaches, which use the statistical 
properties of SAR data to train a network without requiring 
perfectly clean ground-truth images, a significant advantage 
given that such ground truth is often unavailable [5]. 

 
Generative Adversarial Networks (GANs) have also been 
applied to image restoration, with models trained to generate 
realistic denoised images that are indistinguishable from 
clean ones [6]. More recently, the state-of-the-art has been 
advanced by Denoising Diffusion Probabilistic Models 
(DDPMs), a class of powerful generative models adapted 
for despeckling, which have shown remarkable performance 
in generating high-fidelity results [7]. Furthermore, prior- 
driven networks have been explored, which explicitly incor- 
porate physical or statistical models of SAR imaging into 
the network architecture to guide the learning process and 
improve structure preservation [8]. 

 
B.  SAR Image Colourisation and SAR-to-Optical Transla- 

tion 

The task of converting monochromatic SAR images into a 
visually intuitive colour format is most effectively framed as 
an image-to-image translation problem. The goal is to learn 
a mapping function that transforms an image from the 
source domain (SAR) to a target domain (optical RGB). 

Generative Adversarial Networks have become the go-to 
tool for this challenging task [9]. 

 
Conditional GANs (cGANs) are particularly well-suited for 
this problem when paired datasets, containing spatially co- 
registered SAR and optical images of the same scene, are 
available. The pix2pix model, a foundational cGAN archi- 
tecture, has been widely adapted for this purpose [10]. Ex- 
amples have demonstrated the feasibility of using cGANs 
and other CNN-based architectures to generate high-quality 
visible images from SAR inputs, showing the potential of 
learning this complex cross-modal mapping [11]. 

 
In scenarios where perfectly aligned image pairs are difficult 
or impossible to obtain, Cycle-Consistent GANs (Cycle- 
GANs) provide an elegant solution for unpaired image-to- 
image translation. By enforcing a cycle-consistency loss, 
ensuring that an image translated from domain A to B and 
back to A recovers the original, models have been able to 
learn the translation function without direct one-to-one su- 
pervision [12], [13]. 

 
Recent research has also focused on developing specialised 
network architectures tailored to the unique characteristics 
of SAR data. The Sar2color model is a notable example, 
integrating modules within its GAN architecture to handle 
speckle noise and geometric distortions during the transla- 
tion process, aiming to improve the textural and colourimet- 
ric accuracy of the generated optical images [14]. The 
progress in this field is further supported by comprehensive 
surveys on image colourisation [15] and the creation of 
large-scale, publicly available benchmark datasets that facil- 
itate the training and evaluation of these data-hungry models 
[16]. 

 
Most research efforts either focus exclusively on the prob- 
lem of despeckling or on the problem of SAR-to-optical 
translation. While some translation models, such as Sar2- 
color, acknowledge speckle as a confounding factor and 
attempt to mitigate it implicitly within a monolithic archi- 
tecture, there is a notable gap in the literature regarding the 
explicit design and validation of a sequential, two-stage 
pipeline. The approach presented in this paper directly ad- 
dresses this gap. It posits that by decoupling the two tasks 
and employing specialised, state-of-the-art networks for 
each, a more robust and effective overall enhancement can 
be achieved. Instead of burdening a single complex network 
with the entangled objectives of denoising and colourisa- 
tion, this work modularises the problem, allowing each net- 
work to perform its designated function optimally. 

III. METHODOLOGY 

 

The proposed framework is a cascaded system com- 
posed of two distinct deep learning models, each tailored for 
a specific stage of the SAR image enhancement process. 
This section provides a detailed technical exposition of the 
system's architecture and training objectives. The input to 
the system is a noisy, single-channel (grayscale) SAR im- 
age, which is first processed by Stage 1, the Denoising Con- 
volutional Autoencoder (CAE). The output of this stage is a 
denoised grayscale SAR image. This clean image then 
serves as the input to Stage 2, the Colourisation pix2pix 
GAN. The GAN performs an image-to-image translation, 
producing the final output, which is a colourised, three- 
channel (RGB) image. 
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Fig. 1. Architectural overview of the sequential denoising and colourisation 
pipeline 

A. Training Data and Preprocessing 
The models were trained and evaluated using a combination 

The CAE architecture follows a symmetric encoder-de- 
coder structure designed for effective feature extraction and 
image reconstruction. 

Encoder: The encoder consists of a deep stack of Con- 
v2D layers that progressively reduce the spatial dimensions 
of the input while increasing the feature map depth. The 
filter count increases hierarchically (e.g., 64, 128, 256, 512, 
up to 1024), allowing the network to capture features at 
multiple scales. To stabilise training and accelerate conver- 
gence, each convolutional layer is followed by a Batch 
Normalisation (BN) layer and a ReLU (Rectified Linear 
Unit) activation function, which introduces non-linearity 
[14]. 

Decoder: The decoder mirrors the encoder's structure, 
employing a symmetric stack of TransposedConv2D layers 
to perform upsampling and gradually restore the feature 
maps to the original input dimensions. The number of filters 
decreases in a mirrored fashion. Similar to the encoder, each 
TransposedConv2D layer is followed by a BN layer and a 
ReLU [17] activation. 

Output Layer: The final layer of the decoder is a Con- 
v2D layer with a single filter and a Sigmoid activation func- 
tion. The sigmoid function is crucial as it squashes the out- 
put pixel values to the normalised range of, matching the 
preprocessed ground-truth images [14]. 

The CAE is trained in a supervised manner, using pairs of 
noisy SAR images and their corresponding clean, speckle- 
free ground-truth counterparts. The network's objective is to 
minimise the error between its output, the denoised image 
and the clean ground truth [17]. This is achieved by using 
the Mean Squared Error (MSE) as the loss function. The 
MSE is defined as: 

1 N 
2 

of publicly available and synthetic datasets to ensure ro- 
bustness and generalizability. For the denoising stage, the 
Virtual SAR dataset was utilised, which provides synthetic 

MSE = 
∑ 

( yi − ŷi) 
i=1 

(1) 

pairs of clean images and their corresponding versions with 
artificially added speckle noise [13]. For the colourisation 
stage, which requires paired SAR and optical data, datasets 
such as the GRSS SAR/PolSAR DATABASE and the Ten- 
GeoP-SARwv dataset, containing over 30,000 Sentinel-1 
images, were used [20], [11]. All images across the datasets 
were subjected to a uniform preprocessing pipeline. Each 
image was resized to a standard dimension of 256×256 pix- 
els. For Stage 1 (denoising), the pixel values of the 
grayscale images were normalised to a floating-point range. 
For Stage 2 (colourisation), the pixel values for both the 
denoised grayscale input and the target RGB optical images 
were normalised to the range [-1, 1], a standard practice that 
aligns with the use of a Tanh activation function in the gen- 
erator's final layer [1], [3]. 

 
B. Speckle Noise Reduction via Convolutional Denoising 

Autoencoder (CAE) 

The first stage of the framework is dedicated to reducing 
the speckle noise common in SAR imagery. A Convolution- 
al Autoencoder is chosen for this task due to its proven ef- 
fectiveness in learning compressed representations for im- 
age reconstruction and denoising [14]. The fundamental 
principle is that the encoder learns to map the input image to 
a lower-dimensional latent space that captures the important, 
structural information of the scene, while the decoder learns 
to reconstruct the image from this purified latent code, ef- 
fectively filtering out the noise [5]. 

where yᵢ is the value of the i-th pixel in the ground-truth 
image, ŷᵢ is the value of the corresponding pixel in the 
CAE's output, and N is the total number of pixels. MSE 
penalises large errors more heavily and is a standard choice 
for image reconstruction tasks where pixel-wise fidelity is 
the primary goal. 

 

C. Image Colourisation using a Conditional GAN (pix2pix) 

The second stage addresses the challenge of interpretability 
by translating the denoised grayscale SAR image into a pho- 
torealistic colour image. The pix2pix framework is an ideal 
choice for this task, as it is a conditional GAN specifically 
designed for paired image-to-image translation problems 
[1]. It learns a direct mapping from a source image domain 
(denoised SAR) to a target image domain (optical RGB), 
conditioned on the input image to ensure structural consis- 
tency. The architecture consists of two competing networks, 
a Generator and a Discriminator [12]. 

 
The generator's role is to produce the colourised image. Its 
architecture is based on a U-Net, an encoder-decoder struc- 
ture enhanced with skip connections, which has proven 
highly effective for image translation tasks where fine- 
grained detail must be preserved [3],[10]. 

 
Encoder-Decoder Path: The generator follows a classic U- 
Net structure. The encoder path is composed of a series of 
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G D 

Conv2D layers that progressively downsample the input 
image, increasing the number of feature filters at each step 
(e.g., 64, 128, 256, 512) to learn contextual features at vary- 
ing levels of abstraction. Each convolutional layer is fol- 
lowed by a BN layer and a LeakyReLU activation function. 

• Combined Loss: The final objective for the generator is a 
weighted combination of the adversarial loss and the L1 
loss, balancing the need for realism with the need for 
structural fidelity: 

min max V (D, G ) = 𝔼x∼pdata(x)[log D (x)] + 𝔼z∼pz(z)[log(1 − D (G (z )))] 

The decoder path symmetrically upsamples the feature maps G D (4) 
using TransposedConv2D layers, aiming to reconstruct the 
full-resolution colour image [1]. 

 
Skip Connections: The defining feature of the U-Net archi- 
tecture is the presence of skip connections that link layers in 
the encoder directly to their corresponding layers in the de- 
coder. These connections create a shortcut for information 
flow, allowing low-level spatial information (such as precise 
edges and textures) captured in the early encoder layers to 
be directly available to the decoder during image recon- 
struction. This is critical for generating sharp, detailed out- 
puts. 

 
Regularisation and Output: To prevent overfitting, Dropout 
layers are strategically placed in the deeper layers of the U- 
Net. The final layer of the generator uses a Tanh activation 
function, which maps the output pixel values to the range [- 
1, 1], consistent with the preprocessed target images. 

 The discriminator's role is to distinguish between real opti- 

where λ is a hyperparameter that controls the relative impor- 
tance of the L1 term. 

IV. RESULTS AND DISCUSSION 

The performance of the proposed two-stage framework 
was rigorously evaluated using both quantitative and quali- 
tative metrics to assess the effectiveness of speckle reduc- 
tion and colourisation 

A. Evaluation Metrics 

A variety of metrics were used to assess the performance 
of both the denoising and colourisation stages, capturing 
aspects of both pixel-level accuracy and perceptual quality. 

For Denoising (Reconstruction Quality) 

• Mean Squared Error (MSE): A fundamental metric 
that calculates the average squared difference be- 
tween the pixel values of the ground-truth image 
(I) and the reconstructed image (K). A lower MSE 
indicates a better reconstruction. It is defined as: 

L 
1 2 

cal images and the fake colourised images produced by the 
generator. This framework employs a PatchGAN discrimi- 
nator, which classifies small, overlapping patches of the 
input image as real or fake. Its output is an N×N feature 

MSE = 
∑ 

( yi − ŷi) 
i=1 

where m and n are the dimensions of the image. 

(5) 

map, where each element corresponds to the discriminator's 
verdict on a specific patch. This architecture encourages the 
generator to focus on producing realistic high-frequency 
details and textures across the entire image by penalising 
unrealistic structures at a local level. 

 
The generator (G) and discriminator (D) are trained simul- 
taneously in an adversarial minimax game. 

• Peak Signal-to-Noise Ratio (PSNR): A widely used 
metric in image processing, PSNR measures the 
ratio of the maximum possible power of a signal to 
the power of the corrupting noise. It is expressed 
on a logarithmic decibel (dB) scale, and a higher 
value signifies better quality. PSNR is inversely 
related to MSE and is calculated as: 

M A X 2 

 
• Adversarial Loss: The framework uses a conditional ad- 

PSNR = 10 ⋅ log10  I  

( MSE ) 
(6) 

versarial loss. The discriminator is trained to correctly 
classify real image pairs (denoised SAR input, real optical 
target) and fake image pairs (denoised SAR input, gener- 
ated colour image). The generator is trained to produce 
outputs that fool the discriminator. The objective can be 
expressed as: 

 
min max V (D, G ) = 𝔼x∼pdata(x)[log D (x)] + 𝔼z∼pz(z)[log(1 − D (G (z)))] 

 

(2) 

where MAXI is the maximum possible pixel value of the 
image (e.g., 255 for an 8-bit grayscale image). 

• Structural Similarity Index Measure (SSIM): Un- 
like PSNR and MSE, which are based on absolute 
errors, SSIM is a perceptual metric that evaluates 
image quality degradation based on changes in 
structural information. It compares local patterns of 
pixel intensities by incorporating luminance (l), 
contrast (c), and structure (s). The SSIM index 

where x is the input denoised SAR image and y is the target 
optical image. 
• L1 Loss: To ensure the generated output is structurally 

consistent with the input, an L1 loss (Mean Absolute Er- 
ror) is added to the generator's objective function. This 
loss measures the pixel-wise absolute difference between 
the generated image and the ground-truth target image: 

ranges from -1 to 1, where 1 indicates perfect 
structural similarity. The formula for two image 
windows x and y is: 

SSIM (x , y) = 
(2μx μy + c1)(2σxy + c2) 

( μx
2 + μy

2 + c1)(σx
2 + σy

2 + c2) 

 
 
 

 
(7) 

L1 =  1 ∑n | yi − ŷi | (3) where µ is the mean, σ2 is the variance, σ_xy is the covari- 
n i=1 

The L1 loss encourages less blurring compared to the L2 
loss (MSE) and helps the generator produce outputs that are 
a plausible translation of the source. 

ance, and c1,c2 are stabilisation constants. 

For Colourisation (Generative Quality) 

• Fréchet Inception Distance (FID): A standard met- 
ric for evaluating the quality of generative models. 
FID measures the distance between the feature dis- 
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tributions of a set of real images and a set of gener- 
ated images, as extracted by a pre-trained Incep- 
tionV3 network. It captures both the fidelity and 
diversity of the generated samples. A lower FID 
score indicates that the two distributions are more 
similar, signifying higher-quality results. 

 
• Learned Perceptual Image Patch Similarity 

(LPIPS): Also known as perceptual distance, 
LPIPS measures the similarity between two images 
by computing the distance between their feature 
representations extracted from deep layers of a pre- 
trained neural network. This metric has been shown 
to align remarkably well with human perceptual 
judgments of image similarity. A lower LPIPS 
score indicates that two images are more perceptu- 
ally similar. 

 

B. Quantitative and Qualitative Results 

Quantitative Analysis 

The performance of the first stage, the Denoising CAE, is 
presented in Table I. The model achieves a low training loss 
and high PSNR and SSIM values, indicating its strong ca- 
pability to remove speckle noise while faithfully preserving 
the underlying image structure. 

 
I. TABLE 1: PERFORMANCE OF DENOISING CAE 

 

Metric Value Range 

Training Loss (MSE) 0.007 0.015 

PSNR (dB) 25 32 

SSIM 0.75 0.88 

The performance of the pix2pix Colourisation GAN is 
presented in Table II. The table provides image quality met- 
rics for the final output and the GAN's training losses, 
which provide insight into the adversarial training dynam- 
ics. 

 
II. TABLE 2: PERFORMANCE OF PIX2PIX COLORIZA- 

TION GAN 

 

Image Quality Metrics 

Metric Value 

SSIM 0.42 

PSNR (dB) 18.5 

FID 72.3 

LPIPS 0.28 

GAN Training Loss Components 

Loss Component Value 

Generator Total Loss 7.8 

GAN Adversarial Loss 0.95 

L1 Loss 0.068 

Discriminator Loss 0.88 

Qualitative Analysis 

To complement the quantitative metrics, a qualitative analy- 
sis was performed by visually inspecting the outputs of the 
framework. A series of figures would present side-by-side 
comparisons for various scenes, showcasing the original 
noisy SAR input, the intermediate denoised output from the 
CAE, the final colourised output from the pix2pix GAN, 
and the corresponding ground-truth optical image. 

 

 
These visual examples serve to illustrate the effectiveness of 
each stage. The output of the CAE clearly shows a signifi- 
cant reduction in the granular speckle pattern while retain- 
ing sharp edges and structural details. The final colourised 
output demonstrates the GAN's ability to generate realistic 
colours and textures for different land cover types, such as 
deep blues for water bodies, varied greens for vegetation, 
and greys and browns for urban structures and bare earth. 
These visual results provide compelling evidence of the 
framework's ability to transform challenging, uninter- 
pretable SAR data into visually intuitive and analytically 
valuable imagery. 

 

 

C. Discussion 

The quantitative results presented in Table I provide strong 
evidence for the efficacy of the Convolutional Autoencoder 
in the speckle reduction task. The achieved PSNR values, 
ranging from 25 dB to 32 dB, are indicative of a high-quali- 
ty reconstruction with significantly reduced noise levels. 
Similarly, the SSIM scores, which reach up to 0.88, confirm 
that the structural integrity of the images is well-preserved 
during the denoising process. The consistently low MSE 
training loss further suggests that the network converged 
successfully to a solution that accurately maps noisy inputs 
to their clean counterparts. The success of this first stage is a 
foundational enabler for the entire pipeline. By effectively 
removing the stochastic and corrupting influence of speckle, 
the CAE provides a normalised and stable input distribution 
to the subsequent colourisation stage. This dramatically 
simplifies the learning problem for the pix2pix GAN, which 
can then dedicate its full capacity to the already challenging 
task of cross-domain translation. 

The performance of the colourisation stage, detailed in Ta- 
ble II, requires a nuanced interpretation. The pixel-based 
metrics, PSNR (18.5 dB) and SSIM (0.42), are relatively 
low. This is an expected outcome, as the goal of the GAN is 
not to reproduce the ground-truth optical image pixel-for- 
pixel, but to generate a colourisation consistent with the 
input SAR structure. Since colourisation is an ill-posed, 
one-to-many problem, the generated output may differ in 
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fine details from the single ground-truth instance, leading to 
poor scores on these strict fidelity metrics. The perceptual 
metrics, FID (72.3) and LPIPS (0.28), offer a more mean- 
ingful assessment. These scores indicate that the distribution 
of generated images is perceptually and statistically close to 
the distribution of real optical images. The model is success- 
fully learning the complex, high-level features, textures, and 
colour palettes that characterise natural scenes. The break- 
down of the GAN losses further suggests that the adversarial 
training process reached a healthy equilibrium, avoiding 
common pitfalls like mode collapse. 

 
Visual inspection of the output images corroborates the 
quantitative findings. The framework consistently produces 
colourised images with sharp edges, realistic textures, and 
semantically appropriate colours. However, a critical evalu- 
ation also reveals certain limitations. The colourisation task 
is inherently ambiguous, and the model can sometimes pro- 
duce colours that are plausible but not factually correct for a 
specific location or time. For instance, it might colour a 
field green when it was fallow (brown) at the time of the 
optical image acquisition. This semantic leap is a fundamen- 
tal challenge in any cross-domain translation task where one 
domain (SAR) contains strictly less information than the 
target domain (optical). 

 
The proposed two-stage framework acts as a powerful do- 
main normaliser, making raw SAR data from a challenging 
domain (noisy, single-channel) into one that is more aligned 
with human understanding and standard computer vision 
tools. By making SAR data more intuitive and optical-like, 
this framework dramatically lowers the barrier to entry for 
SAR data analysis. It allows human experts not trained in 
SAR interpretation to rapidly analyse scenes and unlocks 
the potential to apply a vast ecosystem of pre-trained com- 
puter vision models, for tasks like object detection and land- 
cover classification, directly to the enhanced SAR output, 
improving performance in a wide range of downstream ap- 
plications. 

 

V. FUTURE SCOPE 

 

The main novelty of this work lies in the design and valida- 
tion of a sequential, two-stage deep learning framework that 
explicitly decouples the tasks of denoising and colourisation 
[17]. Unlike singular approaches that attempt to solve both 
problems simultaneously, this modular pipeline employs 
specialised architectures for each stage: a Convolutional 
Autoencoder for speckle reduction and a conditional GAN 
for colourisation [9], [1]. This separation simplifies the 
learning objective for each network, allowing the CAE to 
focus on high-fidelity reconstruction and the GAN to dedi- 
cate its full capacity to the complex semantic inference of 
colour, resulting in a more robust and effective overall en- 
hancement. The contributions of this research are sum- 
marised by a novel two-stage pipeline, where the design and 
implementation of an end-to-end framework systematically 
enhances SAR imagery by first performing speckle reduc- 
tion and then colourisation, with rigorous validation using a 
hybrid suite of evaluation metrics. The denoising stage was 
assessed with reconstruction metrics (PSNR, SSIM), 
demonstrating high structural fidelity [14], while the 
colourisation stage was evaluated with perceptual metrics 
(FID, LPIPS), confirming the generation of realistic and 
visually plausible images that align well with human per- 
ception [3]. The framework successfully transforms noisy, 

monochromatic SAR data into clean, colourised images that 
are more intuitive for human analysts and compatible with 
standard computer vision algorithms, thereby increasing the 
accessibility and analytical value of SAR technology [1]. 

 
While the proposed framework demonstrates considerable 
success, there exists significant room for future research and 
improvement. The field of generative modelling is advanc- 
ing rapidly [18]. Future work could explore replacing the 
pix2pix GAN with more recent and powerful architectures, 
such as denoising diffusion probabilistic models (DDPMs), 
for the colourisation stage [16]. Diffusion models have 
shown strong performance in image synthesis and may lead 
to even higher-fidelity and more diverse colourisations. Ad- 
ditionally, using attention mechanisms within the network 
architectures could help the models better capture long- 
range spatial dependencies, potentially improving the coher- 
ence of large-scale structures [4]. The current framework 
relies on a combination of adversarial and L1 loss. Future 
iterations could investigate the integration of a perceptual 
loss, such as LPIPS itself, directly into the generator's objec- 
tive function [3], which would train the generator to min- 
imise perceptual distance and may further improve visual 
quality while reducing reliance on the pixel-wise L1 term. A 
crucial next step is to quantitatively evaluate the impact of 
this enhancement pipeline on downstream analytical tasks. 
By using the colourised output as input for models trained 
on tasks like land-cover classification, object detection, or 
change detection, it would be possible to measure the con- 
crete improvement in task-specific accuracy and demon- 
strate the tangible benefits of the proposed preprocessing 
[8]. This work focused on single-channel intensity SAR 
data. Another direction for future research is to adapt and 
extend the framework to handle more complex SAR modali- 
ties, such as polarimetric SAR (PolSAR) [19]. PolSAR data 
contains significantly richer information about the scattering 
properties and physical structure of objects on the ground. 
Using this additional information could enable more accu- 
rate and detailed colourisations, further closing the gap be- 
tween SAR-derived products and true optical imagery [4]. 

 

 

 

VI. CONCLUSION 

This paper has addressed the critical challenges of speckle 
noise and poor interpretability in Synthetic Aperture Radar 
imagery. A novel, two-stage deep learning framework was 
proposed, designed to systematically enhance SAR data for 
improved analysis. The first stage, a Convolutional Autoen- 
coder, was shown to be highly effective at speckle reduc- 
tion, achieving strong quantitative performance in terms of 
PSNR and SSIM, thereby preserving essential structural 
information. The second stage, a conditional GAN based on 
the pix2pix architecture, successfully translated the denoised 
grayscale images into realistic, full-colour representations. 
The quality of this translation was validated using modern 
perceptual metrics, FID and LPIPS, which demonstrated 
that the generated images are statistically and perceptually 
similar to real optical images. By decoupling the tasks of 
denoising and colourisation, the proposed framework offers 
a modular, robust, and effective solution that significantly 
enhances the visual quality and intuitive value of SAR im- 
agery. 
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