IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Biodiversity Conservation And Sustainable Development: Addressing Desertification And Climate Change

Dr.Kugarthi Jayalakshmi, Department of Biochemistry, Sri Venkateswara University, Tirupati517502

Abstract

This paper addresses the "Triple Challenge" of climate change, desertification, and biodiversity loss, arguing that fragmented responses are inadequate. It advocates for integrated, transdisciplinary solutions and nature-based approaches, recognizing synergistic effects and shared drivers.

The research uses extensive mixed-methods, combining quantitative (remote sensing, GIS) with qualitative (case studies, participatory action research). It values co-design, multi-criteria analysis, and frameworks integrating social and ecological aspects.

Key findings show integrated land management improves biodiversity and ecosystem services, especially in desertified areas. Successful conservation hinges on effective governance, flexible management, and local/traditional knowledge, offering superior economic trade-offs.

Empowering locals and integrating their knowledge is crucial for collaborative, equitable conservation. This fosters ownership, improves initiative efficiency, and promotes local prosperity. Community-based ecotourism models sustainable human-natural system development.

Keywords

- Main topics | Biodiversity Conservation, Climate Change, Desertification, Sustainable Development
- Key methods | Mixed-Methods, Participatory Action Research
- Central concepts | Integrated Solutions, Community Empowerment

Introduction

This research paper examines the complex linkages of biodiversity conservation, sustainable development, desertification, and climate change and acknowledges that those are strongly and deeply interrelated issues, which have to be approached collectively (Neugarten et al., 2024). The paper assumes that a comprehensive way of handling these multifaceted environmental problems requires expressing their synergistic implications on ecosystems and humans (Newell et al., 2022). It contends that the response with very distinct solutions to the challenges will be inadequate in the end because they all have common underlying causes and positive feedback loops. In addition, the paper shall also explore the outstanding importance of nature-based solutions as an eminent approach to not only mitigating climate change, but also curbing desertification as well as maintaining the biodiversity (Seddon et al., 2020). It will emphasize that such solutions allow taking advantage of ecological processes, providing several cobenefits to create stability in natural and human systems (P Ortner and al, 2023). These global challenges are highly interdependent, commonly known under the term of the Triple Challenge of climate change, biodiversity loss and human well-being (Baldwin-Cantello et al., 2023), stressing the importance of integrated policy objectives and their realisation (Uddin et al., 2023). It has been noted that the dichotomous division of the approaches to responding to climate change and the loss of biodiversity is a serious oversight and that the approach needs to be unified in a way that acknowledges their deep reliance on one another (O'Brien et al., 2023). The integrative approach is vital to formulating effective conservation and development policies since concepts such as biodiversity are multi-dimensional and are sometimes controversial (Brown, 1998). This means that such an approach requires a thorough knowledge on the complex dynamics between anthropogenic pressures and natural systems and more specifically, the interaction between climate change and land-use/cover change regarding their combined influence on biodiversity-related ecosystem services (He et al., 2019). By focusing on the concept of sustainability, which has been the dominant principle of international environmental and development agendas, there is a strong rationale to conduct such integrated research in interpreting land-use and landcover changes in tropical regions. (Turner, 1997). With this purpose, the paper will, thus, fill the gaps in the analysis between these global environmental challenges to propose a unified context of meaning and action to address the world environmental crisis systematically in a way that promotes ecological integrity and socio-economic equity (Shyamsundar et al., 2023). The above-mentioned combined strategy is particularly essential because the current mitigation measures are too slow, smaller-scale, and dispersed, and, at times, even worsen the problem, thus heightening the threat of hazardous tipping points and unrecoverable losses (Termeer et al., 2024).

Literature Review

Further parts of this paper will thus synthesize available works with the aim of delineating a viable theoretical foundation of an integrated sustainability, and the importance of utilizing systematic methods to resolve some of the interdependent challenges presently affecting the environment (Liu et al., 2015).

With this strategy, it is wrought that global sustainable issues, such as air pollution, biodiversity loss, climate change, and water shortages affected are significantly interconnected and cannot be done comprehensively without being controlled when taken individually (Liu et al., 2015). It requires a change of traditional disciplinary focused research towards transdisciplinary analysis that allows conceptual, methodological and functional overlaps to create actual integration (Guerrero et al., 2018). This broader outlook affirms the inadequacy of the traditional management environmental practices and so promotes the emerging science of creating new models like sustainability-sensitive software architecting, to combat these untenable interdependencies in many different aspects like environmental, social, economic, and technological effects (Fatima, 2023). This integrative process plays a vital role in the design by providing effective motions keeping up with the entire scope of sustainability aspects, the equilibrium of natural systems, the well-being of human societies, and the economical feasibility of humanity communities (Fatima, 2023). An integrated sustainability planning requires system thinking, that knows the complexity of connections between social, environmental, and economic aspects to define local problems and create strategic interventions (Glaros & Newell, 2025). This includes learning to grasp multi-level feedbacks and non-linear endogenous relationships that tend to typify socio-ecological systems, and why predictive modeling and adaptive management are essential to long-term success(Halog&Manik, 2011).

Moreover, the sustainability of the urban environment, in its turn, although admitting the necessity of establishing multidisciplinary connections, lacks comparative empirical investigations supporting integrative methods, especially with regard to the interaction of social and environmental sustainability (Seto et al., 2017). This brink shows that there is still a need to conduct more studies on the way urban planning and policy can align such dimensions to effectively create sustainable urban areas (Williams, 2013). It is critical to research such works required to help establish workable frameworks that extend beyond theoretical combinations into practice exhibiting visible enhancements in ecological condition and city life (Andersson et al., 2024).

Methodology

In order to holistically discuss these inter-connected issues, this study resorts to the mixed-methods approach that implies a combination of quantitative data analysis and qualitative information on effective conservation and sustainable land management projects presented in the form of case studies. The method will enable a powerful analysis of the causal links of climate change, desertification, and loss of biodiversity as well as the subtle socio-economic and policy dynamics behind effective intervention. In particular, the methodology will include remote sensing and geographical information systems regarding monitoring the environment on a large scale, as well as participatory approaches to action studies in order to reflect on local visions and traditional ecological knowledge (Turner et al., 2024). The aforementioned design comprising the qualitative and quantitative methodologies is essential in the building of an adequate comprehension and robust program to establish environmental choices and sound sustainable land use (Shen et al., 2014). Priorities will be on co-design of strategic pathways to address resilient,

adaptive, and transformative intervention opportunities with solutions based on specific analysis of the current situations of the farms and the landscapes (Zemadim et al., 2024). Such an all-inclusive approach will allow complete consideration of trade-offs between competing sustainability targets beyond paradigmatically methodologically constrained approaches (Scown et al., 2019). This can also include using frameworks that combine social and ecological facets to determine what trade-offs are made and how to achieve fair inclusion of stakeholder objectives in architecting sustainability-wise buildings (Dencer-Brown et al., 2021). In addition, its approach to architecting these decisions will address their effects on four-dimensional sustainability, to cover all bases on effective and resilient systems (Fatima, 2023). These will be comprised of reading reviews and exploratory case studies concerning empirical knowledge of the relationships between adaptation and mitigation, especially in land-use spheres (Kongsager, 2018). This enables the establishment of guidelines, tactics, patterns, and measurements to make sustainability part of the architecture of complex systems including the Cyber-Physical Social Systems (Fatima, 2023). The effectiveness of different interventions taking into consideration both ecological integrity and socio-economic feasibility will be evaluated with the help of multi-criteria decision analysis as well. Lastly, based on the synthesis of results of both quantitative and qualitative analyses, the study will generate some policy recommendation and best practice guidelines to support integrated biodiversity conservation and sustainable development. Such a formidable strategy intends to offer policy-making and practiceable observations guiding a policymaker and practitioner on how to go through the trickiness of degrading the environment and remain supportive to strong communities (Amer et al., 2022). This study will utilize the Leverage Points of Donella Meadows as a focus area of analysis to classify and address the interventions on the processes and outcomes to bring about the systemic change towards sustainability (Angheloiu& Tennant, 2020). The selected approach will focus on progressive worldviews and trans-disciplinary studies as a means of uniting endeavours in the direction of ensuring watershed system sustainability (Randhir, 2014). Moreover, another important aspect of this approach will be the creation and utilization of new metrics and indicators to measure the journey towards sustainability that is not limited to traditional economic or environmental proxies but is more inclusive of coupled human-natural systems (Gwenzi, 2021). This will include a foray into possible adaptations of the current software architecture evaluation strategies to the evaluation of sustainability on the architectural level with the use of sustainability indicators to represent each dimension (Fatima, 2023).

Results

The initial results show that integrated land management has a close association with the environment. The implication of practices and improved biodiversity indicators, especially, in the areas of extreme desertification (Tennakoon et al., 2024). This integration portrays boosted ecosystem services including boosted soil fertility and water retention directly increasing the resilience of both the natural and human systems (USGS Publications Warehouse, 2017). Moreover, in the realm of proper

governance, adaptive management and good leadership are listed as the main facilitators of sustainable resource use and biodiversity conservation on a range of levels (Kenward et al., 2011). The discussion also indicates that the participation of the communities is a critical factor in the effective execution and success of these conservation programs, thus demonstrating the significance of the participation practices in building sustainable development. Such results, usually assessed by the multi-criteria decision analysis, are continuously evidenced through a markedly better balance between costs and benefits, which guarantee the sustainability of ecosystem services, as well as result in the creation of resilient communities (Aza et al., 2021). On the other hand, the inadequate planned development initiatives tend to dwell negatively on livelihoods and environments, and there is a necessity to pay adequate attention to the likely trade-offs and synergies (Juffe-Bignoli et al., 2024). Our empirical results also indicate that there are specific inclusive conservation dimensions, including the enhancement of the socio-cultural setting and social integration, local communities empowerment, and restoration of communication and trust that can act as valuable leverage cues in a successful protected area governance (Cebri • Piqueras et al., 2023). Further, the study suggests that the success of the community-based conservation initiatives has much probability of success when there is intercession with the compactness of local institutions (Waylen et al., 2010). These results support the necessity of localized solutions and emphasize the need to find a balance between conservation and socio-economic development of locals and cultural considerations (Morea, 2019). To a certain extent, such equitable strategies, especially the strategies of co-managed governance, can bring positive results to both natural environments and human communities (Zhang et al., 2023). In addition, establishing local communities as the key stakeholders in sustainability programming by being not only recipients but the participants in the program as well means that they would be able to accomplish their roles towards the protection, management, and restoration of the ecosystem and play key roles towards achieving the needed changes in its sustainability and drive their socio-economic development (Dushkova&Ivlieva, 2024). The attention to broad participation in this paradigm does not only guarantee the equitable benefits but also provides the perception of ownership and responsibility, which are essential to the survival of conservation efforts (Zhang et al., 2020). The mentioned approach highlights the criticality of local livelihoods and well-being, such as their cultural aspects, which cannot be compromised by conservation interventions (Llopis et al., 2021). Especially when the shift involves the move away from traditional use of resources to the environmental-compatible livelihoods, the rural communities need specific support and they must be considered with regards to their distinctive circumstances and needs (Beer, 2004). As a matter of fact, when the local stakeholders who are most affected by the rules in conservation areas as they rely on natural resources are involved in planning and management, much better effects can be realized on the uptake of conservation rules and ultimately achieve positive outcomes on not only the biodiversity but also livelihoods (Kura et al., 2023) (Mbanze et al., 2020).

Discussion

This sense of ownership and responsibility helps to promote the long-term effectiveness of the conservation efforts, and thus, is vital with regards to this empowerment (Thaman et al., 2016). More importantly, the involvement of local traditional knowledge in conservation and development initiatives is emphasized as a key, yet poorly focused, aspect to the clarity and success of the mentioned (Ghosh et al., 2017). This kind of strategy respects the fact that indigenous communities have deeply acquired knowledge about their local ecosystems and their ways of resources management (Bennett &Dearden, 2014). This is compared to the historical models of conservation based on fortresses that did not usually involve local people and produced counter-effective or even harmful results both to human communities and biodiversity (Ndonye et al., 2021) (Dheer et al., 2021). Rather, the greater community involvement on a continuum basis, ranging between co-management to community-dominant management, can result in more sound and just conservation performance (He et al., 2020). It involves supplementing the traditions of local communities, emphasizing inclusiveness and fairness, and creating clear benefits to stewarding wildlife to motivate the community to work together and act in the best interest of wildlife (Ekblom et al., 2019) (Kahler et al., 2022). A paradigm shift towards the collaborative models of governance from the state focused models is thus critical to the management of the protected areas and sustainability of natural resources in general (Lockwood, 2009). This paradigm shift involves the focus on the local developmental plans and management which incorporates the understanding of the fact that the approaches are essential to reach mutually beneficial conservation and development goals (Shrivastava&Heinen, 2007). These methods that put much emphasis on participation of local people in decision-making activities have been found to yield more sustainable and equitable results in terms of natural resource management (Chirenje et al., 2013; Richards &Syallow, 2018; Saraan et al., 2020). Such participation not only helps to legitimize and improve the practical success of conservation initiatives but is also a major contributory factor to the empowerment of the local and socio-economic well-being of the community (Adesida&Okunlola, 2015) (Ogawa et al., 2021). This is especially the case with ecotourism projects where the positive incorporation of local communities within an empowerment model helps in terms of fair distribution of economic gains, and distributions of controls over activities and thus adoption of sustainable development objectives (Scheyvens, 1999). Such blending of community-based models of ecotourism, especially empowering local communities and integrating their traditional ecological knowledge, denotes a great transformation in the previous paradigms of protection and conservation, which generally led to the removal of local communities and limited their access to natural resources (Snyman, 2014) (Getahun et al., 2022). Such a move towards the concept of community-based models of conservation is an essential tool in developing a supportive surrounding as well as in maintaining the long-term viability of the protected areas in the wider landscapes (Lambi et al., 2012) (Kapoor, 2001). Besides increasing the effectiveness of the conservation processes, this method reinforces the mutual nature of tourism, local residents, and biodiversity (Xu et al., 2009). Here, the tourism industry especially ecotourism is identified as a major sustainable development tool through its effects of the diversification of livelihood base, conservation support incentives, and the creation of community resiliency around conservation sites (Holland et al., 2021) (Nyaupane, 2023). This holds true even more so when ecotourism programs are formulated to ensue a symbiosis between conservation and development, which not only ensures revenue-generating activities on the side of the locals, but also conservation of environmental assets (Butcher, 2011). This type of tourism has been registering massive growth in the biodiversity hotspots all around the world because it can both improve the livelihood of rural people and enhance the process of environmental conservation in equal measures (Samal& Dash, 2022). Such a dual-use advantage makes ecotourism one of the most important tools of integrated conservation and development, particularly in the area experiencing a lot of desertification and climate change issues. Thus well-managed ecotourism can become an important economic driver and an alternative to unsustainable exploitation of the resources with the direct benefit of being a determinant of adaptive capacity of those who deal with degraded environment (Gadinga et al., 2020) (Omonijo et al., 2018).

Conclusion

Such a paradigm shift recognizes the importance of the local community not only as the beneficiary, but also as a viable participant and custodian in the feasibility of long-term sustainable biodiversity conservation and sustainable development projects (Wilfred, 2017) (KC et al., 2021). This understanding forms the basis of the need to practice the creation of policy frameworks that allow practical comanagement and benefit-sharing approaches so that the conservation approach will be automatically fair and just. Within such frameworks, there must be an active encouragement of the decentralization of the governance of conservation, which would see increased local autonomy and decision-making process in the resource management (Zuka&Zuka, 2024). The shift in controlling natural resources to management by communities is a paradigm shift and one can hardly overemphasize the importance of involving the local population in the governance of natural resources to ensure sustainable outcomes are achieved (Wanje, 2017). Such a practice fits into the spirit of ecotourism that highlights the empowerment of local communities by having direct involvement in planning and managing aspects. In such a way, they can contribute not only to ecological but also to non-ecological benefits (Gumede&Nzama, 2021) (2006). Moreover, a keen comprehension of the relevant fundamentals of ecology is a prerequisite to the successful ecotourism projects in the effort to ensure ecosystem stability and robustness since the tourism activities should not lead to degradation of the resources by the very actions they want to present and conserve (Tyler & Dangerfield, 1999).

References

- 1. Adesida, I., &Okunlola, J. O. (2015). Effects of Community Participation on the Sustainability of Rural Infrastructure in Ondo State, Nigeria. Asian Journal of Agricultural Extension Economics & Sociology, 7(1), 1. https://doi.org/10.9734/ajaees/2015/15756
- 2. Amer, L., Erkoc, M., Andiroglu, E., &Celik, N. (2022). A Novel Composite Resilience Indicator for Decentralized Infrastructure Systems (CRI-DS). arXiv (Cornell University). https://doi.org/10.48550/arxiv.2207.08303
- 3. Andersson, E., McPhearson, T., & Pickett, S. T. A. (2024). From urban ecology to urban enquiry: How to build cumulative and context-sensitive understandings. AMBIO, 53(6), 813. https://doi.org/10.1007/s13280-023-01959-5
- 4. Angheloiu, C., & Tennant, M. (2020). Urban futures: Systemic or system changing interventions? A literature review using Meadows' leverage points as analytical framework [Review of Urban futures: Systemic or system changing interventions? A literature review using Meadows' leverage points as analytical framework]. Cities, 104, 102808. Elsevier BV. https://doi.org/10.1016/j.cities.2020.102808
- 5. Aza, A., Riccioli, F., & Iacovo, F. D. (2021). Optimising payment for environmental services schemes by integrating strategies: The case of the Atlantic Forest, Brazil. Forest Policy and Economics, 125, 102410. https://doi.org/10.1016/j.forpol.2021.102410
- 6. Baldwin-Cantello, W., Tickner, D., Wright, M., Clark, M., Cornelius, S. E., Ellis, K., Francis, A., Ghazoul, J., Gordon, J., Matthews, N., Milner-Gulland, E. J., Smith, P., Walmsley, S., & Young, L. (2023). The Triple Challenge: synergies, trade-offs and integrated responses for climate, biodiversity, and human wellbeing goals. Climate Policy, 23(6), 782. https://doi.org/10.1080/14693062.2023.2175637
- 7. Beer, F. C. D. (2004). Rural communities, the natural environment and development some challenges, some successes. Community Development Journal, 40(1), 50. https://doi.org/10.1093/cdj/bsi006
- 8. Bennett, N., &Dearden, P. (2014). From measuring outcomes to providing inputs: Governance, management, and local development for more effective marine protected areas. Marine Policy, 50, 96. https://doi.org/10.1016/j.marpol.2014.05.005
- 9. Brown, K. (1998). The political ecology of biodiversity, conservation and development in Nepal's Terai: Confused meanings, means and ends. Ecological Economics, 24(1), 73. https://doi.org/10.1016/s0921-8009(97)00587-9
- 10. Butcher, J. (2011). Can ecotourism contribute to tackling poverty? The importance of 'symbiosis.' Current Issues in Tourism, 14(3), 295. https://doi.org/10.1080/13683500.2011.555526
- 11. Cebrián-Piqueras, M. A., Palomo, I., Lo, V., López-Rodríguez, M. D., Filyushkina, A., Fischborn, M., Raymond, C. M., &Plieninger, T. (2023). Leverage points and levers of inclusive conservation in protected areas. Ecology and Society, 28(4). https://doi.org/10.5751/es-14366-280407
- 12. Chirenje, L. I., Giliba, R. A., &Musamba, E. B. (2013). Local communities' participation in decision-making processes through planning and budgeting in African countries. Chinese Journal of Population Resources and Environment, 11(1), 10. https://doi.org/10.1080/10042857.2013.777198
- 13. Çobanoğlu, C., Demirer, I., KEPECI, B., & SIPAHIOGLU, S. (2006). The Impact of Technology in Hotels: A Case Study of Istanbul and Ankara Hotels. Anatolia, 17(2), 318. https://doi.org/10.1080/13032917.2006.9687193
- 14. Dencer-Brown, A., Jarvis, R. M., Alfaro, A. C., & Milne, S. (2021). The Mixed Methods Practical Sustainability Research Framework: An Illustration From Research on the Creeping Problem of

- Coastal Complexity and Mangrove Management. Journal of Mixed Methods Research, 16(2), 242. https://doi.org/10.1177/15586898211014422
- 15. Dheer, A., Davidian, E., Jacobs, M., Ndorosa, J., Straka, T. M., & Höner, O. P. (2021). Emotions and Cultural Importance Predict the Acceptance of Large Carnivore Management Strategies by Maasai Pastoralists. Frontiers in Conservation Science, 2. https://doi.org/10.3389/fcosc.2021.691975
- 16. Dushkova, D., &Ivlieva, O. (2024). Empowering Communities to Act for a Change: A Review of the Community Empowerment Programs towards Sustainability and Resilience [Review of Empowering Communities to Act for a Change: A Review of the Community Empowerment Programs towards Sustainability and Resilience]. Sustainability, 16(19), 8700. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/su16198700
- 17. Ekblom, A., Shoemaker, A., Gillson, L., Lane, P., &Lindholm, K. (2019). Conservation through Biocultural Heritage—Examples from Sub-Saharan Africa. Land, 8(1), 5. https://doi.org/10.3390/land8010005
- 18. Fatima, I. (2023). Sustainability-Aware Software Architecting for the Future Cloud. https://doi.org/10.1109/icsa-c57050.2023.00041
- 19. Gadinga, W. F., Tchamba, N. M., Barnabas, N. N., Nyong, P. A., Chimi, C. D., Diabé, E. S., & Reeves, M. F. (2020). Assessing the impact of ecotourism on livelihood of the local population living around the Campo Maan National Park, South Region of Cameroon. Journal of Hospitality Management and Tourism, 11(1), 1. https://doi.org/10.5897/jhmt2020.0280
- 20. Getahun, G. W., Kassahun, A., Hadis, T., & Israel, P. (2022). The impact of community-based ecotourism program on livelihood of local community: Result of propensity score matching from Adaba- Dodola District, Ethiopia. Journal of Ecology and the Natural Environment, 14(1), 15. https://doi.org/10.5897/jene2019.0784
- 21. Ghosh, D., Chatterjee, P., &Mondal, K. (2017). Biodiversity conservation through ecologically sustainable strategies. 3(3), 28. https://doi.org/10.5281/zenodo.830148
- 22. Glaros, A., & Newell, R. (2025). The State of Local Food Systems and Integrated Planning and Policy Research: An Application of the Climate, Biodiversity, Health, and Justice Nexus. Agriculture, 15(7), 718. https://doi.org/10.3390/agriculture15070718
- 23. Guerrero, A. M., Bennett, N., Wilson, K. A., Carter, N., Gill, D., Mills, M., Ives, C. D., Selinske, M. J., Larrosa, C., Bekessy, S. A., Januchowski-Hartley, F. A., Travers, H., Wyborn, C., &Nuño, A. (2018). Achieving the promise of integration in social-ecological research: a review and prospectus [Review of Achieving the promise of integration in social-ecological research: a review and prospectus]. Ecology and Society, 23(3). Resilience Alliance. https://doi.org/10.5751/es-10232-230338
- 24. Gumede, T. K., &Nzama, A. T. (2021). Approaches toward Community Participation Enhancement in Ecotourism. In IntechOpen eBooks. IntechOpen. https://doi.org/10.5772/intechopen.100295
- 25. Gwenzi, W. (2021). Rethinking restoration indicators and end-points for post-mining landscapes in light of novel ecosystems. Geoderma, 387, 114944. https://doi.org/10.1016/j.geoderma.2021.114944
- 26. Halog, A., &Manik, Y. (2011). Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment. Sustainability, 3(2), 469. https://doi.org/10.3390/su3020469
- 27. He, S., Yang, L., & Min, Q. (2020). Community Participation in Nature Conservation: The Chinese Experience and Its Implication to National Park Management. Sustainability, 12(11), 4760. https://doi.org/10.3390/su12114760
- 28. He, X., Liang, J., Zeng, G., Yuan, Y., & Li, X. (2019). The Effects of Interaction between Climate Change and Land-Use/Cover Change on Biodiversity-Related Ecosystem Services

283

- [Review of The Effects of Interaction between Climate Change and Land-Use/Cover Change on Ecosystem Biodiversity-Related Services1. Global Challenges, Wiley. 3(9). https://doi.org/10.1002/gch2.201800095
- 29. Holland, K. K., Larson, L. R., Powell, R. B., Holland, W. H., Allen, L. R., Nabaala, M., Tome, S., Seno, S., &Nampushi, J. (2021). Impacts of tourism on support for conservation, local livelihoods, and community resilience around Maasai Mara National Reserve, Kenya. Journal of Sustainable Tourism, 30(11), 2526. https://doi.org/10.1080/09669582.2021.1932927
- 30. Juffe-Bignoli, D., Burgess, N. M., Wijesinghe, A., Thorn, J., Brown, M., Gannon, K. E., Sang, C., Lesutis, G., Lyimo, P., Chilagane, N. A., Tam, C., Munishi, P., Kashaigili, J. J., Sandbrook, C., Olago, D., Marchant, R., Waruingi, L., Meng, H., Conway, D., ... Runsten, L. (2024). Towards more sustainable and inclusive development corridors in Africa. Environmental Research Infrastructure and Sustainability, 4(3), 35012. https://doi.org/10.1088/2634-4505/ad7887
- 31. Kahler, J. S., Reynald, D. M., & Gore, M. L. (2022). "I let it go:" Quantifying residential guardianship intentions when witnessing wildlife poaching. Biological Conservation, 277, 109829. https://doi.org/10.1016/j.biocon.2022.109829
- 32. Kapoor, I. (2001). Towards participatory environmental management? Journal of Environmental Management, 63(3), 269. https://doi.org/10.1006/jema.2001.0478
- 33. KC, B., Min, J., & Serenari, C. (2021). Segmenting Wildlife Value Orientations to Mitigate Human–Wildlife Conflict for Ecotourism Development in Protected Areas. Tourism Planning & Development, 19(4), 339. https://doi.org/10.1080/21568316.2021.1947889
- 34, Kenward, R., Whittingham, M. J., Arampatzis, S., Manos, B., Hahn, T. P., Terry, A. C., Simoncini, R., Alcorn, J. B., Bastian, O., Donlan, M., Elowe, K., Franzén, F., Karácsonyi, Z., Larsson, M., Manou, D., Ion, N., Papadopoulou, O., Papathanasiou, J., Raggamby, A. von, ... Rutz, C. (2011). Identifying governance strategies that effectively support ecosystem services, resource sustainability, and biodiversity. Proceedings of the National Academy of Sciences, 108(13), 5308. https://doi.org/10.1073/pnas.1007933108
- 35. Kongsager, R. (2018). Linking Climate Change Adaptation and Mitigation: A Review with Evidence from the Land-Use Sectors [Review of Linking Climate Change Adaptation and Mitigation: A Review with Evidence from the Land-Use Sectors]. Land, 7(4), 158. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/land7040158
- 36. Kura, Y., Mam, K., Chea, S., Eam, D., Almack, K., & Ishihara, H. (2023). Conservation for sustaining livelihoods: Adaptive co-management of fish no-take zones in the Mekong River. Fisheries Research, 265, 106744. https://doi.org/10.1016/j.fishres.2023.106744
- 37. Lambi, C. M., Kimengsi, J. N., Kometa, C. G., & Tata, E. S. (2012). The Management and Challenges of Protected Areas and the Sustenance of Local Livelihoods in Cameroon. Environment and Natural Resources Research, 2(3). https://doi.org/10.5539/enrr.v2n3p10
- 38. Liu, J., Mooney, H. A., Hull, V., Davis, S. J., Gaskell, J. C., Hertel, T. W., Lubchenco, J., Seto, K. C., Gleick, P. H., Kremen, C., & Li, S. (2015). Systems integration for global sustainability [Review of Systems integration for global sustainability]. Science, 347(6225). American Association for the Advancement of Science. https://doi.org/10.1126/science.1258832
- 39. Llopis, J. C., Chastonay, J. F., Birrer, F. C., Bär, R., Andriatsitohaina, R. N. N., Messerli, P., Heinimann, A., &Zaehringer, J. G. (2021). Year-to-year ecosystem services supply in conservation contexts in north-eastern Madagascar: Trade-offs between global demands and local needs. Ecosystem Services, 48, 101249. https://doi.org/10.1016/j.ecoser.2021.101249
- 40. Lockwood, M. (2009). Good governance for terrestrial protected areas: A framework, principles performance outcomes. Journal of Environmental Management, https://doi.org/10.1016/j.jenvman.2009.10.005

- 41. Mbanze, A. A., Silva, C. V. da, Ribeiro, N., Silva, J. F., & Santos, J. L. (2020). A Livelihood and Farming System approach for effective conservation policies in Protected Areas of Developing Countries: The case study of the Niassa National Reserve in Mozambique. Land Use Policy, 99, 105056. https://doi.org/10.1016/j.landusepol.2020.105056
- 42. Morea, J. P. (2019). A framework for improving the management of protected areas from a social perspective: The case of Bahía de San Antonio Protected Natural Area, Argentina. Land Use Policy, 87, 104044. https://doi.org/10.1016/j.landusepol.2019.104044
- 43. Ndonye, H., Mulwa, A. S., &Kyalo, D. N. (2021). Stakeholder Engagement and Performance of Community Based Conservation Projects: A Case of Laikipia Conservation Region Conservancies. Deleted Journal. https://doi.org/10.7176/jesd/12-4-07
- 44. Neugarten, R., Chaplin-Kramer, R., Sharp, R., Schuster, R., Strimas-Mackey, M., Roehrdanz, P. R., Mulligan, M., Soesbergen, A. van, Hole, D. G., Kennedy, C. M., Oakleaf, J. R., Johnson, J. A., Kiesecker, J. M., Polasky, S., Hanson, J. O., &Rodewald, A. D. (2024). Mapping the planet's critical areas for biodiversity and nature's contributions to people. Nature Communications, 15(1). https://doi.org/10.1038/s41467-023-43832-9
- 45. Newell, R., Dale, A., & Lister, N. (2022). An integrated climate-biodiversity framework to improve planning and policy: an application to wildlife crossings and landscape connectivity. Ecology and Society, 27(1). https://doi.org/10.5751/es-12999-270123
- 46. Nyaupane, G. P. (2023). The Role of Tourism in Sustainable Development Within Local-Global Dynamics. Tourism Review International, 27(3), 177. https://doi.org/10.3727/154427223x16819417821813
- 47. O'Brien, P., Gunn, J., Clark, A., Gleeson, J., Pither, R., & Bowman, J. (2023). Integrating carbon stocks and landscape connectivity for nature-based climate solutions. Ecology and Evolution, 13(1). https://doi.org/10.1002/ece3.9725
- 48. Ogawa, M., Soga, M., & Yoshida, T. (2021). Participation of diverse actors and usage of traditional and local knowledge in local biodiversity strategies and action plans of Japanese municipalities. Ecology and Society, 26(3). https://doi.org/10.5751/es-12612-260326
- 49. Omonijo, D., Olusola, J., Anyaegbunam, M., Nnatu, S., &Adeleke, V. (2018). Examining the Role of Online Customer Reviews on Tourist Motivation: Destination and Revisit Intention. The Journal of Social Sciences Research, 12. https://doi.org/10.32861/jssr.412.413.422
- 50. Pörtner, H., Scholes, R. J., Arneth, A., Barnes, D. K. A., Burrows, M. T., Diamond, S. E., Duarte, C. M., Kiessling, W., Leadley, P., Managi, S., McElwee, P., Midgley, G. F., Ngo, H. T., Obura, D., Pascual, U., Sankaran, M., Shin, Y., & Val, A. L. (2023). Overcoming the coupled climate and biodiversity crises and their societal impacts [Review of Overcoming the coupled climate and biodiversity crises and their societal impacts]. Science, 380(6642). American Association for the Advancement of Science. https://doi.org/10.1126/science.abl4881
- 51. Randhir, T. O. (2014). Resilience of Watershed Systems to Climate Change. Journal of Earth Science & Climatic Change, 5(6). https://doi.org/10.4172/2157-7617.1000e109
- 52. Richards, N., &Syallow, D. M. (2018). Water Resources Users Associations in the Mara Basin, Kenya: Pitfalls and Opportunities for Community Based Natural Resources Management. Frontiers in Environmental Science, 6. https://doi.org/10.3389/fenvs.2018.00138
- 53. Samal, R., & Dash, M. (2022). Ecotourism, biodiversity conservation and livelihoods: Understanding the convergence and divergence. International Journal of Geoheritage and Parks, 11(1), 1. https://doi.org/10.1016/j.ijgeop.2022.11.001
- 54. Saraan, M. I. K., Rahmawaty, R., &Harahap, R. H. (2020). Analysis of community participation at Community Forestry Group (HKm) in Forest Management Unit (KPH) Region XIV Sidikalang, North Sumatera Province. IOP Conference Series Earth and Environmental Science, 454(1), 12089. https://doi.org/10.1088/1755-1315/454/1/012089

- 55. Scheyvens, R. (1999). Ecotourism and the empowerment of local communities. Tourism Management, 20(2), 245. https://doi.org/10.1016/s0261-5177(98)00069-7
- 56. Scown, M., Winkler, K. J., & Nicholas, K. A. (2019). Aligning research with policy and practice for sustainable agricultural land systems in Europe. Proceedings of the National Academy of Sciences, 116(11), 4911. https://doi.org/10.1073/pnas.1812100116
- 57. Seddon, N., Chausson, A., Berry, P., Girardin, C. A. J., Smith, A., & Turner, B. (2020). Understanding the value and limits of nature-based solutions to climate change and other global challenges [Review of Understanding the value and limits of nature-based solutions to climate change and other global challenges]. Philosophical Transactions of the Royal Society B Biological Sciences, 375(1794), 20190120. Royal Society. https://doi.org/10.1098/rstb.2019.0120
- 58. Seto, K. C., Golden, J. S., Alberti, M., & Turner, B. L. (2017). Sustainability in an urbanizing planet. Proceedings of the National Academy of Sciences, 114(34), 8935. https://doi.org/10.1073/pnas.1606037114
- 59. Shen, Q., Wang, H., & Tang, B. (2014). A decision-making framework for sustainable land use in Hong Kong's urban renewal projects. Smart and Sustainable Built Environment, 3(1), 35. https://doi.org/10.1108/sasbe-09-2013-0047
- 60. Shrivastava, R. J., &Heinen, J. T. (2007). A Microsite Analysis of Resource Use AroundKaziranga National Park, India. The Journal of Environment & Development, 16(2), 207. https://doi.org/10.1177/1070496507301064
- 61. Shyamsundar, P., Marques, P. M., Smith, E. C., Erbaugh, J. T., Ero, M., Hinchley, D., James, R., Leisher, C., Nakandakari, A., Pezoa, L., Preece, L., & Prezotti, G. (2023). Nature and equity. Conservation Letters, 16(4). https://doi.org/10.1111/conl.12956
- 62. Snyman, S. (2014). Assessment of the main factors impacting community members' attitudes towards tourism and protected areas in six southern African countries. Koedoe, 56(2). https://doi.org/10.4102/koedoe.v56i2.1139
- 63. Tennakoon, W. D. N. S. M., Janadari, M. P. N., &Wattuhewa, I. D. (2024). Environmental sustainability practices: A systematic literature review. European Journal of Sustainable Development Research, 8(3). https://doi.org/10.29333/ejosdr/14604
- 64. Termeer, K., Dewulf, A., &Biesbroek, R. (2024). Three archetypical governance pathways for transformative change toward sustainability. Current Opinion in Environmental Sustainability, 71, 101479. https://doi.org/10.1016/j.cosust.2024.101479
- 65. Thaman, B., Icely, J., Fragoso, B., & Veitayaki, J. (2016). A comparison of rural community perceptions and involvement in conservation between the Fiji Islands and Southwestern Portugal. Ocean & Coastal Management, 133, 43. https://doi.org/10.1016/j.ocecoaman.2016.09.007
- 66. Turner, B. L. (1997). The Sustainability Principle in Global Agendas: Implications for Understanding Land-Use/Cover Change. Geographical Journal, 163(2), 133. https://doi.org/10.2307/3060176
- 67. Turner, H., Rogers, B., Kneebone, S., Ramirez, D., French, M., Sawailau, M. J., Volavola, F., Baran, S., Matavesi, K., Newton, O., Luveniyali, M. B., Tela, A., &Vakarewa, I. (2024). An organizing framework to break down Western-centric views of knowledge in North–South research. Sustainability Science, 19(2), 647. https://doi.org/10.1007/s11625-024-01478-6
- 68. Tyler, D., & Dangerfield, J. M. (1999). Ecosystem Tourism: A Resource-based Philosophy for Ecotourism. Journal of Sustainable Tourism, 7(2), 146. https://doi.org/10.1080/09669589908667332
- 69. USGS Publications Warehouse. (2017). [Data set]. https://catalog.data.gov/dataset/usgs-publications-warehouse

- 70. Wanje, N. C. (2017). Drivers of Success for Community Based Natural Resource Projects in Coast Region of Kenya. International Journal of Environmental Sciences & Natural Resources, 3(5). https://doi.org/10.19080/ijesnr.2017.03.555624
- 71. Waylen, K. A., Fischer, A., McGowan, P. J. K., Thirgood, S., & Milner-Gulland, E. J. (2010). Effect of Local Cultural Context on the Success of Community-Based Conservation Interventions. Conservation Biology, 24(4), 1119. https://doi.org/10.1111/j.1523-1739.2010.01446.x
- 72. Wilfred, P. (2017). A community perspective on participatory conservation in western Tanzania. European Journal of Wildlife Research, 63(3). https://doi.org/10.1007/s10344-017-1116-3
- 73. Williams, A. (2013). Make Our Planet Great Again: a Systems Perspective of Corporate Sustainability. https://repub.eur.nl/pub/111032/EPS2018456ORG9789058925268.pdf
- 74. Xu, J., Lü, Y., Chen, L., & Liu, Y. (2009). Contribution of tourism development to protected area management: local stakeholder perspectives. International Journal of Sustainable Development & World Ecology, 16(1), 30. https://doi.org/10.1080/13504500902757189
- 75. Zemadim, B., Desta, G., Cofie, O., Tilahun, S. A., &Mabhaudhi, T. (2024). Restoring degraded landscapes and sustaining livelihoods: sustainability assessment (cum-review) of integrated landscape management in sub-Saharan Africa. Frontiers in Climate, 6. https://doi.org/10.3389/fclim.2024.1338259
- 76. Zhang, Y., West, P., Thakholi, L., Suryawanshi, K., Supuma, M., Straub, D., Sithole, S. S., Sharma, R., Schleicher, J., Ruli, B., Rodríguez-Rodríguez, D., Rasmussen, M. B., Ramenzoni, V. C., Qin, S., Pugley, D. D., Palfrey, R., Oldekop, J. A., Nuesiri, E., Nguyen, V. H. T., ... Agyei, F. K. (2023). Governance and Conservation Effectiveness in Protected Areas and Indigenous and Locally Managed Areas. Annual Review of Environment and Resources, 48(1), 559. https://doi.org/10.1146/annurev-environ-112321-081348
- 77. Zhang, Y., Xiao, X., Cao, R., Zheng, C., Guo, Y., Gong, W., & Wei, Z. (2020). How important is community participation to eco-environmental conservation in protected areas? From the perspective of predicting locals' pro-environmental behaviours. The Science of The Total Environment, 739, 139889. https://doi.org/10.1016/j.scitotenv.2020.139889
- 78. Zuka, S. P., &Zuka, B. K. (2024). Market–community collaborative wildlife management in Malawi: subjectivities and shifting configurations of protests and celebrations. Environmental Conservation, 51(2), 134. https://doi.org/10.1017/s0376892924000043