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Abstract: The rapid advancement of deepfake generation techniques has created significant challenges in
preserving the authenticity of digital media. This comprehensive survey examines the state-of-the- art in
deepfake video detection, with a particular focus on hybrid Long Short-Term Memory (LSTM) models that
combine spatial and temporal analysis capabilities. We analyze over 50 recent studies (2019-2024) to evaluate
the effectiveness of various architectural approaches, including Convolutional Neural Network- Long Short-
Term Memory (CNN-LSTM), Three Dimensional Convolutional Neural Network- Long Short-Term Memory
(3DCNN-LSTM), and attention-enhanced variants. The paper provides a detailed comparison of model
performance across benchmark datasets such as FaceForensics++ and Celeb-DF, while discussing key
evaluation metrics like AUC-ROC and F1-score that are critical for assessing detection reliability. We
systematically identify current limitations in generalization capability, computational “efficiency, and
adversarial robustness that hinder real-world deployment. The survey concludes by outlining promising
research directions, including multimodal fusion techniques, lightweight model architectures for edge
deployment, and explainable Al approaches to enhance forensic credibility.

Keywords: Hybrid Long Short-Term Memory (LSTM), Convolutional Neural Network- Long Short-Term
Memory (CNN-LSTM), Three Dimensional Convolutional Neural Network- Long Short-Term Memory
(3DCNN-LSTM), multimodal fusion techniques.

|.INTRODUCTION

1.1 Background and Motivation
The rapid evolution of deepfake generation techniques has ushered in an era of unprecedented challenges to
digital media authenticity. Powered by advancements in deep generative models particularly Generative
Adversarial Networks (GANSs), diffusion models, and neural rendering —modern deepfakes can
synthesize hyper-realistic videos that are virtually indistinguishable from genuine recordings to human
observers.[1][2][3]
The Growing Threat Landscape
e Political Disinformation: Deepfake videos of political figures have been weaponized to manipulate
public[4]opinion, with documented cases influencing elections in at least 18 countries since 2020.
e Financial Fraud: The FBI reported a 500% increase in synthetic identity fraud cases from 2020—
2023[5], many involving Al-generated video impersonations.
e Personal Privacy Violations: Non- consensual deepfake pornography now.
A 2023 study by CyberSecurity Malaysia found hybrid LSTM detectors reduced false negatives by
63% compared to legacy systems when analyzing real-world affects 1 in 3 adult internet users, with 96%
of victims[6] being women .
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Early detection approaches relied on:

e Facial [7]landmarks

e Heart rate[8] estimation

e Compression[9] artifacts

Hybrid models (different capabilities) address these gaps through: impact in terms of effectiveness.

Table 1.1 Addressing the hybrid models

Capability Example Impact

Spatial- Temporal | CNN extracts eye blink | Catches 37%

Fusion features—LSTM tracks timing | more fakes than
irregularities CNNs

alone [12]

Cross-Dataset Transfer  learning  from Reduces accuracy drop

Generalization FaceForensics++ to from 40% to 12% [13]
WildDeepfake

Adversarial Defense Attention mechanisms ignore Improves  robustness
perturbed pixels by 28% [14]

deepfakes on social media [15]. However, critical challenges remain in computational efficiency and

explainability—key focus areas for this survey.

1.2 The Role of Hybrid LSTM Models in Deepfake Detection

Fundamental Architecture Advantages:

Hybrid LSTM models have emerged as the gold standard for deepfake detection due to their unique

ability to simultaneously analyze both spatial and temporal dimensions of video data. These architectures

typically combine:

1.Spatial Feature Extractors

e CNN Backbones: Pretrained networks (EfficientNet, Xception) achieve 89-93% accuracy in frame-
level[16] artifact detection

e 3D Convolutions: Capture micro-expressions across adjacent frames with 15% higher precision[17]
than 2D CNNs

2.Temporal Modeling Components

e Bidirectional LSTMs: Detect inconsistencies in facial dynamics [18](e.g., unnatural smile
transitions) with 0.92 AUC

e Attention Mechanisms: Focus on suspicious temporal regions, improving detection of sophisticated
face-swaps[19] by 31%

Performance Benchmarks:

Recent evaluations demonstrate hybrid models' superiority:

Table 1.2 Performance Benchmarks

Model Dataset Accur F1- Advantage
acy Score
CNN- LSTM (Basic) FaceForencs++ 94.2% 0.93 Base line performance
3DCNN-Bi LSTM Celeb- DF v2 96.8% 0.95 Better temporal
modeling
EfficientNetV2- LSTM- | DFDC 98.1% 0.97 Optimized for real-
Att world videos
Transformer-LSTM WildDeepfake 95.4% 0.94 Cross
Hybrid dataset generalization
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Critical Innovations

1.Multi-Scale Analysis

e Combines macro-level facial features with micro-level texture analysis

e Reduces false positives[24] on low- quality videos by 42%

2.Adaptive Thresholding

e Dynamically adjusts detection sensitivity based on video quality metrics

e Maintains 89% accuracy[25] even on heavily compressed videos (CRF > 28)

3.Biological Signal Integration

e Correlates visual artifacts with pulse rate variability (PRV)

e Detects 87% of "perfect” deepfakes missed by visual- only [26]systems

Real-World Deployment Challenges Despite theoretical advantages, practical implementation
faces hurdles:

» Computational Overhead: LSTM layers increase inference time by 3-5x [27]compared to pure CNNs
» Memory Requirements: Processing 1 minute of 1080p video requires 8- 12GB GPU[28] memory

« Adversarial Vulnerabilities: 73% of hybrid models[29] fail against gradient- based attacks

Recent work by Zhou et al.[30] proposes lightweight LSTM variants that reduce parameters by 60%
while maintaining 94% accuracy, suggesting promising directions for mobile deployment.

Emerging Hybrid Architectures

1.Graph-LSTM Networks

e Model facial muscle dynamics as spatiotemporal graphs
e Achieve 97.3% accuracy on high-quality deepfakes.[31]
2.Neuromorphic Vision Integration

e Combine event cameras with LSTM processing

e Reduce power consumption [32]by 8x for edge devices

This section demonstrates how hybrid LSTM models address core challenges in deepfake detection
while highlighting remaining limitations that motivate ongoing research.

1.3 Our Contributions
This survey makes four key contributions:
1. Systematic comparison of 12 hybrid LSTM variants

2. Novel taxonomy of temporal feature extraction methods
3. First comprehensive evaluation on the new Deepfake TIMIT v2 dataset

Practical framework for real-time deployment

ILRELATED WORK

2.1 Deep Learning in Video Authentication

Early deepfake detection relied on handcrafted features, such as:
e Facial landmarks [3] (inconsistent jawline movements)
e Heart rate estimation [10] (PPG signal anomalies)
e Compression artifacts [11] (double quantization traces)

However, these methods struggled with modern generative models (e.g.,StyleGAN3, Diffusion
Models), achieving <65% accuracy on newer datasets [12] like Celeb- DF v2.

Breakthrough: CNNs automated feature extraction, improving detection:

e XceptionNet: 93% accuracy [13] on FaceForensics++

e EfficientNet: Reduced false positives [14] by 22% via multi-scale analysis

e Limitation: Pure CNNs [15] ignore temporal inconsistencies (e.g., unnatural blinking patterns)
RNNs/LSTMs addressed this by modeling sequential dependencies:

¢ Vanilla RNNs: Failed beyond [16]50 frames (vanishing gradients)

e Bidirectional LSTMs: 92% AUC[17] on 300-frame videos

« Transformer-LSTM: Improved cross- dataset [18]generalization by 19%
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2.2 CNN-LSTM Models

Hybrid architectures combine spatial (CNN) and temporal (LSTM) analysis:

Key Innovations

Table 2.1 Hybrid Models Innovations

Feature CNN Role LSTM Role Impact
Eye Blink Extracts per-frame Tracks timing +37% recall vs.
Detection eyelid features irregularities CNNs alone [19]
Lip Sync Analysis | Identifies mouth Models audio- 89% Precision on
shapes visual delays DFDC [20]
Micro- Captures texture Detects unnatural 95% F1-
Expression anomaly emotion score
transitions [21]
Table 2.2 Performance Comparison
Model Dataset Accurac F1 Limitation
y Score
CNN-Only 93% 0.91 Misses 42%
(Xception) FaceForensics+ of temporal
+ fakes [22]
LSM- Celeb-DF 88% 0.86 High
Only computationa
| cost [23]
Hybrid DFDC 97% 0.95 Requires 5x
CNN- more data
LSTM [24]
I11. Methodology

3.1 Hybrid LSTM Architectures for Deepfake Detection

3.1.1 Xception-LSTM Architecture

Architecture Breakdown:

o Spatial Stream: XceptionNet backbone extracts frame-level features Depthwise separable
convolutions reduce parameters by 28% vs. Inception-v3. Achieves 94.3% single-frame accuracy on[31][32]

FaceForensics++

o Temporal Stream: Bidirectional LSTM analyzes[33][34] 32-frame sequences Tracks eye blink rate

(normal: 0.25+0.1Hz vs. deepfake: 0.07+£0.04Hz). Detects lip-sync errors with 89ms precision

Performance Highlights:

3.1.1.1 98.5% precision on DFDC[10] (vs. 91.2% for Xception-only)

3.1.1.2 Processes 720p video at 18 FPS[35] on NVIDIA V100
3.1.1.3 Limitation: 43% slower inference than pure CNNs [36]

3.1.2 3DCNN-LSTM Variants

Key Innovations:

3.1.2.1 Volumetric Processing: 3D kernels (3x3x3) capture spatiotemporal features
3.1.2.2 detects frame interpolation artifacts with 0.94 AUC
3.1.2.3 Identifies 92% of Deepfake TIMIT's[37]temporal splicing
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Table 3.1 Hierarchical Fusion

Level Feature Detection
Target
Low Pixel-level Copy-move
inconsistencies forgeries
Mid Facial muscle Expression
dynamics manipulation
High Whole-face temporal Face swaps
coherence

Table 3.2 Comparative Performance

Model Params Accuracy Speed
3DCNN- 48M 89.1% 32
only FPS
3DCNN- 63M 93.7% 22
LSTM FPS
Efficient3D- 29M 91.8% 28
LSTM FPS

3.2 Attention-Enhanced Architectures
3.2.1 Transformer-LSTM Hybrid Mechanism:
+ Spatial Attention:
ViT patches identify manipulated regions (e.g., blurred chin lines)
72% reduction in false positives [41]on forehead/chin edits
Temporal Attention:
o Scores frame importance[42] (e.g., weights blinking frames 3.2x higher)
o Achieves 0.96 AUC [43]on variable-length videos (5-300 frames)
3.2.2 Cross-Modal Attention
Audio-Visual Integration:
3.2.2.1 Lip Motion Attention:
Aligns viseme (visual phoneme) sequences with audio spectrograms

o Catches 89% of audio-visual [44]mismatches missed by CNNs
3.2.2.2 Pulse-Sensitive Attention:

o Magnifies facial regions with PPG signals (cheeks, forehead)
o Improves detection of high- quality fakes[45]by 27%

® O O

Table 3.3 Performance Gains

Attention Type  Precision A RecallA  Memory

Overhead
Spatial-only +9.2% +6.1% 18%
Temporal-only +11.7% +8.3% 23%
Cross-modal +15.4% +12.8%  31%
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3.2.3 Computational Optimizations
e Sparse Attention:
o Processes only top 20% salient frames
Maintains 95% accuracy while reducing[46] compute by 4.2x
e Quantized LSTMs:
o 8-bit weights decrease model size by 75%
o <2% accuracy drop on edge devices [47]
IV. DATASET AND EVALUATION MATRIX
4.1 Benchmark Datasets
4.1.1 FaceForensics++
e Content:
o 1,000 real videos (YouTube- sourced)
o Manipulated with four methods: Deepfakes, Face2Face, FaceSwap, Neural Textures [13]
o Includes three compression levels (raw, HQ, LQ) to simulate real-world conditions
eUsage:
o Standard benchmark for spatial artifact detection
o Trains models to identify blurring
o artifacts (94% detection rate) and color inconsistencies (88% accuracy) [49]

e Limitations:
o Limited diversity (mostly Caucasian subjects)
o Does not include audio deepfakes
4.1.2 Celeb-DF:
e Content
o 590 real celebrity interviews +5,639 high-quality deepfakes [14]
o Generated using improved autoencoders for seamless face swaps

e Usage:

Tests generalization[50] (models trained on FaceForensics++ drop 25-30% accuracy)

Effective for evaluating temporal coherence [51](unnatural head movements detected at 91% AUC)
e Advantages Over FaceForensics++:

Higher resolution (1080p vs. 720p)

Includes diverse ethnicities and lighting conditions

o O

o O

Table 4.1 Emerging Datasets (2023-2024)

Dataset Key Deepfake Size
Feature Type

DeeperForensics-1.0  Real- world GAN-based 60,000
perturbations videos
(motion blur,
occlusions)

WildDeepfake Unconstrained  Hybrid 7,000
web-Sourced (GAN+Diffusion
clips )

FakeAVCeleb Includes Lip-sync 500
audio- visual  manipulation hours
deepfakes
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4.2 Evaluation Metrics
4.2.1 Accuracy
Definition: (TP + TN) / (TP + TN + FP+ FN)
o Pitfalls:
o Misleading for imbalanced datasets (e.g., 95% real vs. 5% fake)
o Example: A model predicting "real” always achieves 95% accuracy but fails completely
4.2.2 AUC-ROC (Area Under ROC Curve)
e Why Preferred?
o Measures model robustness across all classification thresholds
o Unaffected by dataset imbalance
e Interpretation:
o 0.90-1.00: Excellent
o 0.80-0.89: Good
o <0.70: Unreliable
e State-of-the-Art Performance:
o 0.99: CNN-LSTM[15] on FaceForensics++

o 0.91: Cross-dataset[52] (FaceForensics++ — Celeb- DF)
Table 4.2 Complementary Metrics

Metric Formula Use
Case
F1-Score  2x(PrecisionxRecall)/ Balances
(Precision+Recall) FP/EN

trade
off
EER FP = FN threshold Biometric
(Equal systems
Error
Rate)
TPR@FP  True Positive Rateat  High-
R=1% 1% False Positives stakes
scenarios

4.2.3 Temporal Metrics (Video-Specific)
1. Frame-Level Consistency:
o Measures prediction stability across frames
(| false flickering)

o Top models[53] achieve >90% consistency
2. Detection Latency:
o Timeto first correct detection[54] (critical for live verification)
o SOTA:<0.5sec for 720p videos
V. CHALLENGES AND FUTURE DIRECTIONS
5.1 Critical Limitations
5.5.1 Adversarial Attacks
e Attack Types:
o White-box: [55]Gradient-based (FGSM, PGD) reduce model accuracy to <50%
o Black-box:[56] Generative adversarial perturbations evade 67% of detectors
o Physical-world:[57] Adversarial patches (5% frame area) fool models in 83% of cases
o Defense Strategies:
o Adversarial Training: Improves robustness [58]to 78% accuracy under attack
o Randomized Smoothing: Certifiably robust against [59]£2- bounded perturbations
o Limitation:[60] Defense methods increase inference time by 2-3x
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5.1.1 Generalization Gaps
Table 5.1 Cross-Dataset Performance Drop
TrainingDataset — Test Accuracy
Dataset Drop
FaceForensics++—Celeb-DF  25-30%
Celeb-DF—DeepfakeTIMIT  38-42%
DFDC — WildDeepfake 47-51%
e Root Causes:
o Overfitting to dataset-specific artifacts [61]
o Lack of diversity in training data[62] (ethnicity, lighting, compression)
5.1.2 Computational Barriers
Table 5.2 Resource Requirements:

Model GPU Inference
VRAM Speed

3DCNN-LSTM 18GB 14 FPS (1080p)

Transformer- 24GB 9 FPS

LSTM

e Mobile deployment requires <4GB VRAM and >25 FPS [63]
5.2 Emerging Solutions & Future Trends
5.2.1 Multimodal Fusion
5.2.1.1 Audio-Visual Detection:
o Lip-sync error detection[64] (89% precision)
o Vocal tract biometrics[65] (95% AUC)

Table 5.3 Physiological Signals

Modality Detection Cue  Accuracy
PPG (Pulse) Heart rate  87%
Inconsistency

EEG Neural response  91%
(Brainwaves)  Mismatch

Thermal Blood flow 84%
Imaging Patterns

522 Lightweight Architectures

Table 5.4 Model Compression Techniques

Method Compression  Accuracy
Rate Loss

Quantization 4x smaller 1-2%

(8-bit)

Knowledge 3x faster 3-5%

Distillation

Neural Auto- <4%

Architecture optimized for
Search (NAS)  edge devices

e Hardware-Aware Designs:
o Neuromorphic Chips:[66] IBM TrueNorth reduces power use by 89%
o FPGA Accelerators:[67] Xilinx Vitis achieves 32 FPS at 5W
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5.2.3 Explainable Al (XAl) for Forensics
e Interpretability Methods:
o Attention Maps: [68]Highlight manipulated facial regions (e.g., blurred chin)
o Counterfactual Explanations: [69]"This video is fake because the left eyebrow doesn’t move naturally"
e Legal Admissibility:
o FAT Framework[70] (Fairness, Accountability, Transparency) meets EU Al Act standards
o Current SOTA[71] models achieve only 41% compliance
7. CONCLUSION
Deepfake technology is advancing rapidly, making it harder to distinguish real videos from Al-generated

fakes. This survey explored how hybrid LSTM models, which combine CNNs for spatial analysis and
LSTMs for temporal patterns, offer a powerful solution.

These models can detect subtle flaws in deepfakes, such as unnatural facial movements or inconsistent
lighting, achieving over 95% accuracy on benchmark datasets like FaceForensics++ and Celeb-DF.
However, challenges remain. Deepfake detectors struggle with adversarial attacks, where small,
intentional changes fool the model, and generalization, as performance drops on unseen datasets.
Additionally, many models are too slow or resource-heavy for real-world use on smartphones or security
cameras.

Looking ahead, the future of deepfake detection lies in:
1. Multimodal systems that analyze not just video but also audio, text, and even physiological signals
like heart rate.

2. Lightweight models optimized for phones and edge devices, ensuring fast and efficient detection.

3. Explainable Al that provides clear reasons for why a video is flagged as fake—crucial for legal

and forensic use.
As deepfakes become more realistic, the development of robust, adaptable, and transparent detection
tools will be essential to maintaining trust in digital media. This survey highlights both the progress made
and the work still needed to stay ahead in this ongoing battle against synthetic deception
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