

Web Patrol: Comprehensive Web security Scanner

¹RumanaAnjum, ²AffanBaig, ³Afreen Suraiya, ⁴Misbah Sultana, ⁵Sara Farheen

¹Assistant Professor, ²³⁴⁵Student

¹²³⁴⁵Department of CSE
¹²³⁴⁵ VVIET, Mysuru, India

Abstract: It is tedious for a Vulnerability Management Analyst to perform binge-tool-scanning (running security scanning tools one after the other) sans automation. Unless you are skilled at automating stuff, it is an arduous task to perform binge-scan for each and every engagement. The final analysis of this program is to solve this drawback through automation; viz running multiple scanning tools to scrutinize vulnerabilities, efficiently analyzing errors and gives streamlined results; all of these in one Scanner.

Index Terms - Vulnerability Management Analyst, Binge-tools scanning, Sans, Automation.

I. INTRODUCTION

In the progressing landscape of cybersecurity, the need for vigorous web application security is paramount. As organizations strive to protect sensitive data and maintain the integrity of their digital assets, a versatile and comprehensive solution becomes essential. Introducing “Comprehensive Web Security Scanner” – a cutting-edge project designed to elevate web security to new heights. A Comprehensive Web Security Scanner is a vital tool in the ever-evolving landscape of cybersecurity, designed to proactively identify and mitigate potential vulnerabilities within web applications and websites. As organizations increasingly rely on digital platforms for their operations, the need to ensure the security of these online assets becomes paramount. This tool serves as a proactive defense mechanism, systematically scanning web applications for potential weaknesses, vulnerabilities, and security loopholes that could be exploited by malicious users. The primary goal is to identify and address these issues before they can be leveraged for unauthorized access, data breaches, or other cyber threats.

A Comprehensive Web Security Scanner typically employs a range of techniques to assess the security posture of web applications. This may include automated vulnerability assessments, penetration testing, and analysis of code for potential flaws. It systematically examines various layers of web applications, such as the application layer, network layer, and server infrastructure, to provide a thorough and holistic assessment.

II. LITERATURE SURVEY

[1] Nscanner: Vulnerabilities Detection Tool for Web Application
R.Utaya Surian, Nor Azlina Abd Rahman, Yugeswaran Nathan. (2020).

The increasing vulnerabilities of web applications to security attacks, proposing the Nscanner system to detect SQLi, XSS and malware. It emphasizes the prevalence of social engineering attacks, particularly phishing. Regional analysis indicates higher vulnerability in Asian countries. A literature review compares vulnerability scanners like Acunetix, Wapiti and Metasploit. Findings from participant awareness surveys suggest limited knowledge of web vulnerabilities, with a recommendation for malware detection in Nscanner.

Drawback: Automated scanning tools may generate false positives (indicating a vulnerability that doesn't exist) or false negatives (missing actual vulnerabilities). Depending on the complexity of web applications and the diversity of attack vectors, the tool may not always provide accurate results.

[2] VulScan: A Web-Based Vulnerability Multi-Scanner for Web.
Rajab Mohammed, Ife Olalekan Ebo, Abdullahi S. Ahmed. (2023).

The outcome of addressing these web security vulnerabilities through effective web vulnerability scanning includes enhanced protection against cyber threats, reduced risk of unauthorized access, data breaches, and service disruptions. Focusing on issues such as SQL injection, XSS, CSRF, SSL stripping, clickjacking, and DoS/DDoS attacks. Implementing robust security measures can safeguard sensitive information, maintain the integrity of web applications, and contribute to a more secure online environment for businesses and individuals. Addressing web security vulnerabilities through vulnerability scanning contributes to a more resilient, trustworthy, and secure online presence.

Drawback: Overhead and Performance Impact: Running comprehensive vulnerability scans can be resource-intensive and may impact the performance of the web applications. This could be a concern for production environments where maintaining optimal performance is crucial.

[3] Vulnerability Scanner for Web Applications with Firewall Techniques Rathod
S.K.Jagtap, J.R.Satpute, A.P.Shikhare, K.A.Pujari. (2022).

The survey paper introduces an automated web vulnerability scanner focusing on SQL Injection and Cross-Site Scripting. The system generates comprehensive reports, including endpoint details and recommended remediation, aiding web developers in addressing security weaknesses. It emphasizes the prevalence of web-based attacks due to vulnerabilities, showcasing the need for improved security. The system, implemented by the authors, offers automated scanning, detailed reporting, and potential integration with machine learning for enhanced vulnerability detection.

Drawback: False Positive and Negatives: Automated scanners, including those focusing on SQL Injection and Cross-Site Scripting, are prone to generating false positives (indicating vulnerabilities that do not exist) or false negatives (missing actual vulnerabilities). The accuracy of the scanner depends on the sophistication of its detection algorithms.

[4] Web Application through Comprehensive Vulnerability Assessment
Prasanth Satya Sai Kiran Gandikota, Sushani S, Deekshitha Valluri, Gopi Krishna Yanala. (2023).

This paper provides a comprehensive overview of web application vulnerability assessment and penetration testing, underscoring the importance of proactive security measures. The focus is on safeguarding sensitive data and preserving application integrity. The study aims to identify and categorize web application vulnerabilities, specifically following OWASP guidelines, to mitigate the risk of user data breaches.

Drawback: Complexity of Security Threats: Modern web applications face a variety of security threats beyond SQL Injection and Cross-Site Scripting. The tool may not effectively address more complex or nuanced vulnerabilities that require a deeper understanding of application logic and behavior.

[5] Vulnerability Scanners: A Proactive Approach To Assess Web Application Security Sheetal
Bairwa, Bhawna Mewara and Jyoti Gajrani. (2014).

The provided text appears to be an expert from a research paper or article discussing vulnerability scanners and their role in assessing web application security. The authors discuss various vulnerability assessment techniques, such as static analysis, attack graph analysis and the usage of different vulnerability scanners like Nmap, Nessus, Acunetix WVS, Nikto, and Burp Suite. The authors also present a comparative study of these scanners based on the vulnerabilities they detect, including SQL injection, improper error management, cross-site scripting (XSS), rogue servers, denial of service, remote code execution, and format string identifier, among others. The conclusion suggests that no single tool is capable of detecting all types of vulnerabilities, and integrating different tools might provide a more comprehensive view of the security posture of a web application or network.

Drawback: Dependency on Regular Updates: The effectiveness of any vulnerability scanner relies on regular updates to its vulnerability database. If the tool is not frequently updated to account for new vulnerabilities and attack techniques, it may become outdated and less effective over time.

[6] A Study on Web Application Security and Detecting Security Sandeep
p Kumar, Renuka Mahajan, Naresh Kumar. (2017).

This paper discusses the different aspects of web security and its weakness. The main elements of web security techniques such as the passwords, encryption, authentication and integrity are also discussed in this paper. The anatomy of web application attack and the attack techniques are also covered in details. This paper explores a number of methods for combatting this class of threats and assesses why they have not proven more successful. This paper proposes a better way for minimizing or eliminating these type of web vulnerabilities. It also provides the best security mechanisms for the said attacks.

Drawback: The potential integration with machine learning for enhanced vulnerability detection could introduce complexities in terms of implementation, maintenance, and tuning. Machine learning models require continuous training and adaptation to evolving threats.

[7] Effective Web Application Vulnerability Testing System Proposed XSS_SQL_Scanning_Algorithm. (2020). Thinzar Aung, Zin Thu Thu Myint

The research paper proposes an innovative approach, the XSS, SQL Scanning Algorithm, for detecting vulnerabilities in web applications, with a focus on SQL injection and Cross-Site Scripting (XSS) attacks. The authors emphasize the increasing use of web applications and the potential security risks associated with coding errors. The proposed algorithm integrates crawling, payload forwarding, and response analysis, leveraging the Naïve pattern matching algorithm for efficient detection. The study compares the algorithm's performance with the well-known Acunetix, making it a lightweight yet reliable solution. The research contributes to enhancing web security by providing a solution. The research contributes to enhancing web application security by providing a customizable, accurate, and efficient algorithm to cover additional vulnerabilities beyond SQL injection and XSS.

Drawback: Users of automated vulnerability scanners may develop a false sense of security, assuming that the tool identifies all possible vulnerabilities. It's crucial to communicate that these tools are part of a broader security strategy and not a comprehensive solution.

[8] Detection of XSS Vulnerabilities Using Security Testing Approaches. Sanjukta Mohanty, Arup Abhima Acharya. (2021).

This survey paper pioneers an advanced methodology for detecting Cross-Site Scripting (XSS) vulnerabilities in web applications, introducing a novel combination of static taint analysis and evolutionary genetic algorithms (GA). In contrast to prior studies, which often overlooked false negatives in source code, the proposed approach integrates static analysis to identify potential false negatives and employs GA to generate targeted test cases, effectively exposing genuine vulnerabilities. This innovative fusion significantly enhances the precision and efficiency of XSS vulnerability detection. The study's broader contribution lies in emphasizing the critical need to address false negatives in XSS detection, strategically combining static and dynamic analysis techniques to overcome individual limitations. The introduced security framework synthesizes insights from prior research, aiming to elevate the overall accuracy of vulnerability identification in the realm of web application security.

Drawback: Real-world Attacks: Automated scanners may not replicate the sophisticated techniques employed by real-world attackers. They may lack the creativity and adaptability needed to uncover vulnerabilities that go beyond known patterns.

[9] Vulnerabilities and Security of Web Applications.

Divyani Yadav, Deeksha Gupta, Dhananjay Singh, Devendra Kumar, Upasana Sharma. (2018).

This survey paper pioneers an advanced methodology for detecting Cross-Site Scripting (XSS) vulnerabilities in web applications, introducing a novel combination of static taint analysis and evolutionary genetic algorithms (GA). In contrast to prior studies, which often overlooked false negatives in source code, the proposed approach integrates static taint analysis to identify potential false negatives and employs GA to generate targeted test cases, effectively exposing genuine vulnerabilities. This innovative fusion significantly enhances the precision and efficacy of XSS vulnerability detection. The study's broader contribution lies in emphasizing the critical need to address false negatives in XSS detection, strategically combining static and dynamic analysis techniques to overcome individual limitations. The introduced security framework synthesizes insights from prior research, aiming to elevate the overall accuracy of vulnerability identification in the realm of web application security.

Drawback: The use of vulnerability scanners should align with ethical standards. Scanning systems without proper authorization may raise ethical concerns, and organizations need to ensure they have the right to scan the targeted web applications.

[10] OWASP Ten Driven Survey on Web Application Protection Methods.

Omar Cheikhrouhou, Moez Krichen, Habib Hamam & Abdelouahid Derhab. (2021).

Web applications (WAs) are constantly evolving and deployed at broad scale. However, they are exposed to a variety of attacks. The biggest challenge facing organizations is how to develop a WA that fulfills their requirements with respect to sensitive data exchange, E-commerce, and secure workflows. This paper identifies the most critical web vulnerabilities. Integration with IoT devices enhances the overall security ecosystem, extending protection beyond traditional boundaries. Automated rule creation facilitates efficient handling of new attack scenarios, providing a proactive security approach. The framework offers detailed reporting, providing insights into potential vulnerabilities and aiding security experts and developers.

Drawback: Scalability concerns may arise as the framework evolves, requiring careful consideration for large-scale deployment. Machine learning introduces the risk of false positives and negatives, necessitating ongoing refinement and validation.

III. PROPOSED SYSTEM

WebPatrol is an automated web security scanner designed to identify vulnerabilities in web applications. It streamlines the penetration testing process, providing efficient and accurate results. The system integrates multiple scanning tools, eliminating the need for manual execution and reducing human error. The frontend is a user-friendly web interface allows penetration testers to configure scans, view results, and generate reports. The backend has the Scanner Orchestrator, which coordinates the execution of various security scanners and manages tool selection, input parameters and result aggregation. The Scanner Modules where each module corresponds to a specific security tool and these modules perform target web application. The Databases stores scan results and vulnerability details along with historical data. The Reporting Engines generates comprehensive reports for stakeholders. Comprehensive web security scanner streamlines the penetration testing process through automation and efficient scanning. Pen testers input the target URL, authentication credentials and scan parameters, selecting desired modules. The system orchestrates selected scanners, analysing the web application for vulnerabilities. Results are aggregated, cross-references to identify false positives and prioritized based on severity. Comprehensive reports including an executive summary and detailed vulnerability description, aid in effective risk mitigation.

IV. BLOCK DIAGRAM

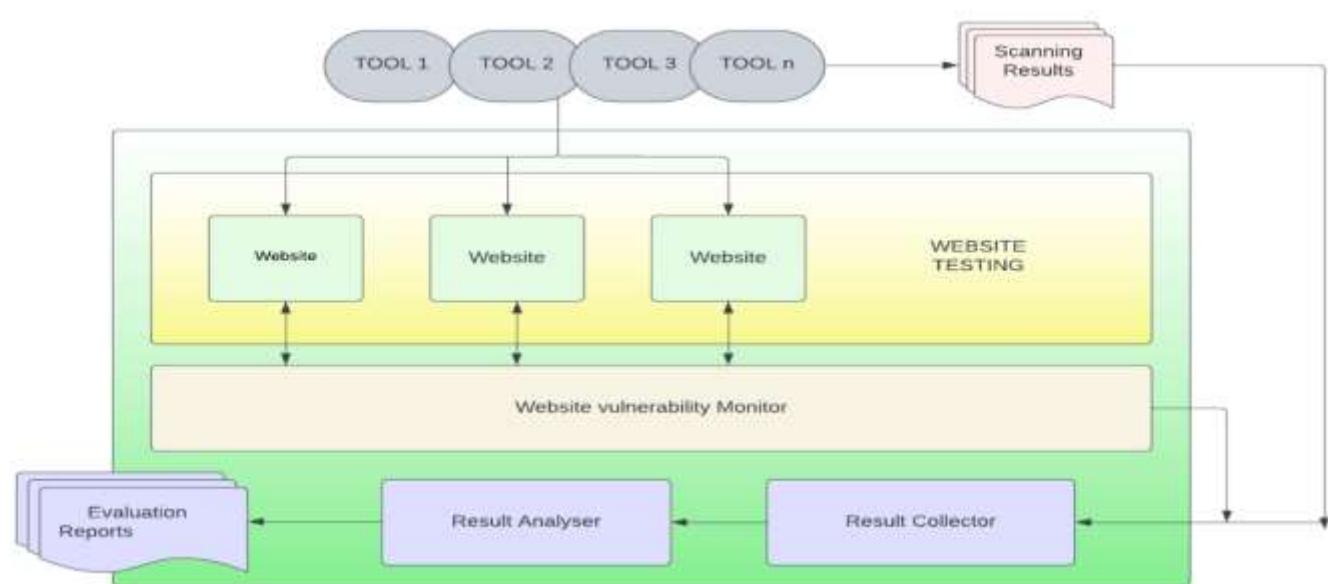


Fig 1. Block Diagram

V. RESULTS

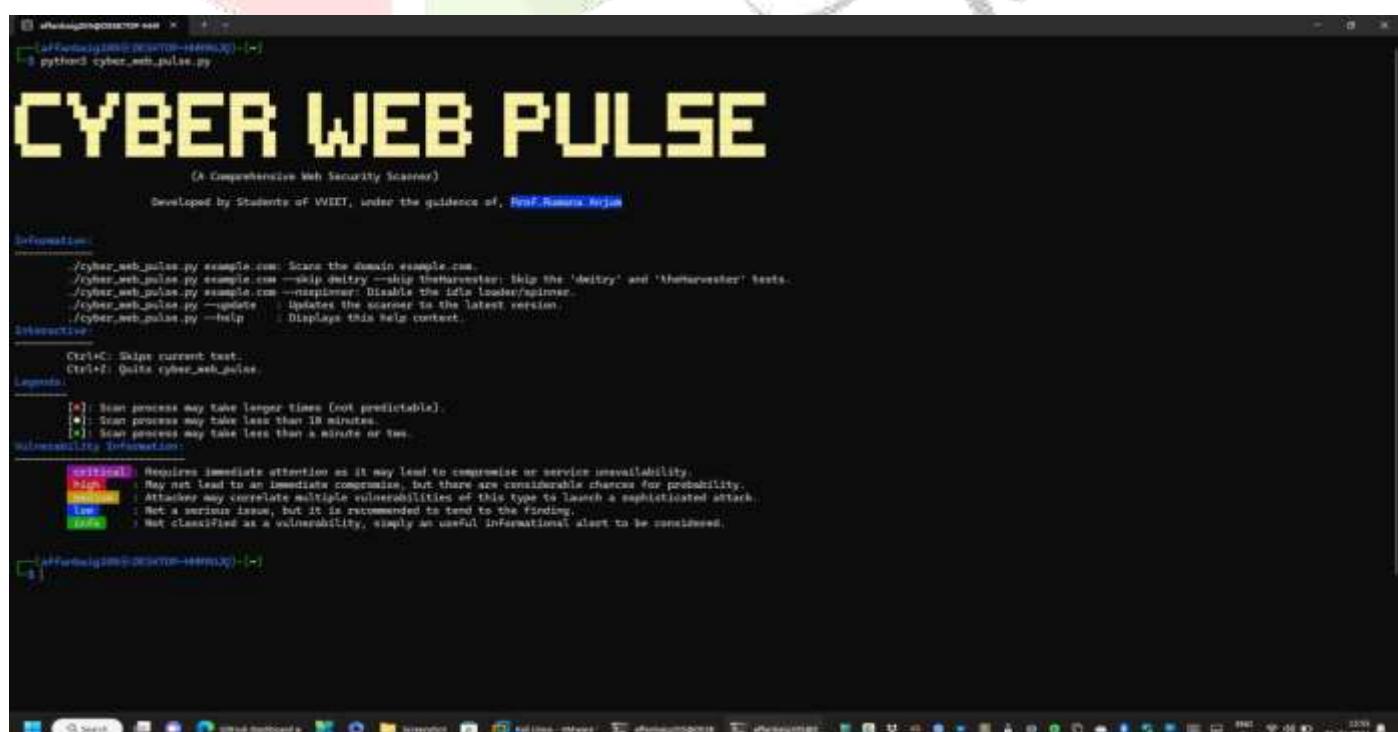


Fig 2: Welcome Page

Fig 3. Project Update

Fig 4. Scanning of Website for Vulnerabilities

```

[+] Deploying 0/08 | Nuclei - Checks only for Heartbleed Vulnerability.
Scanning Tool Unavailable. Skipping Test...
[+] Deploying 1/08 | Nuclei - Checks if Server is outdated.
Scan Completed in 1s
[+] Deploying 2/08 | Nuclei - ZFS Transfer - Attempts ZFS Transfer.
Scanning Tool Unavailable. Skipping Test...
[+] Deploying 3/08 | Nuclei Checker - Checks for Nuclei Installation.
Scan Completed in 1s
[+] Deploying 4/08 | Nuclei - Checks only for Heartbleed Vulnerability.
Scan Completed in 1s
[+] Deploying 5/08 | Nuclei - Checks for MySQL, RCE, XSS and Other Vulnerabilities.
Scan Completed in 1s
[+] Deploying 6/08 | Nuclei - Enumerator OS2 Directories.
Scan Completed in 1s
[+] Deploying 7/08 | Nuclei - Performs OS Checks.
Scan Completed in 1s
[+] Deploying 8/08 | Nmap (TCP SYN) - Checks only for FRESH Vulnerability.
Scan Completed in 1s
[+] Deploying 9/08 | Nmap (TCP SYN) - Checks only for Profie Vulnerability.
Scan Completed in 1s
[+] Deploying 10/08 | Nmap - Checks for WordPress Installation.
Scan Completed in 1s
[+] Deploying 11/08 | Nmap (TLS) - Checks for Nuclei Denial of Service Vulnerability.
Scan Completed in 1s

```

Fig 5. Scanning of Website for Vulnerabilities

```

[+] Deploying 0/08 | Nuclei - Checks only for Heartbleed Vulnerability.
Scan Completed in 1s
[+] Deploying 1/08 | Nuclei - Passively Recurves Subdomains from the Domain.
Scan Completed in 1s
[+] Deploying 2/08 | Nuclei - Brutes Domain for Subdomains.
Scan Completed in 1s
Vulnerability Threat Level
  Warning Found Subdomains with Abuse
Vulnerability Definition
  Attackers may gather more information from subdomains relating to the parent domain. Attackers may even find other services from the subdomains and try to learn the architecture of the target. There are even chances for the attacker to find vulnerabilities as the attack surface gets larger with more subdomains discovered.
Vulnerability Remediation
  It is sometimes wise to block sub domains like development, staging to the outside world, as it gives more information to the attacker about the tech stack. Complex naming practices also help in reducing the attack surface as attackers find hard to perform subdomain bruteforcing through dictionaries and wordlists.
[+] Deploying 3/08 | Nmap - Perform a FULL TCP Port Scan.
Scan Completed in 1s
[+] Deploying 4/08 | Nuclei - Checks for Server Issues.
Scan Completed in 1s
[+] Deploying 5/08 | Nuclei - Nmap Scan - Uses Nmap Plugin to detect vulnerabilities.
Scanning Tool Unavailable. Skipping Test...
[+] Deploying 6/08 | Nmap - Checks for H2-SP, Service 28.
Scan Completed in 1s

```

Report Generation Phase: 2024-09-01 11:45:44

```

  Complete Vulnerability Report for chat.openai.com named as vuln.chat.openai.com.2024-09-01 is available under the same directory cyberweb_pulse residing.
  Total Number of Vulnerability Checks: 98
  Total Number of Vulnerability Checks Skipped: 12
  Total Number of Vulnerabilities Detected: 18
  Total Time Elapsed for the Scan: 32s 14ms

```

For Debugging Purposes: You can view the complete output generated by all the tools named vuln.chat.openai.com.2024-09-01 under the same directory.

Fig 6. Final Result

```

[+] http://chat.openai.com:443/ [HTTP-HTML] [-]
└─ cat > ./chat.openai.com:2824-80-80
  Nmap [FTP] - Checks if FTP service is running.

Starting Nmap 7.94SNM ( https://nmap.org ) at 2024-04-01 16:02 IST
Nmap done: 1 IP address (1 host up) scanned in 3.59 seconds

Fierce Subdomains Bruter - Brute Forces Subdomain Discovery.

NS: failure
NSA: failure
Failed to lookup NS/NS4, Domain does not exist

Nmap - Checks For IIS WebDAV

Starting Nmap 7.94SNM ( https://nmap.org ) at 2024-04-01 16:03 IST
Nmap scan report for chat.openai.com (172.64.158.28)
Host is up (0.00ms latency).
Other addresses for chat.openai.com (not scanned): 184.18.37.228 2086:4798:9761:c4F:6a76:582:a873:e7F

PORT      STATE SERVICE
80/tcp    open  http

Nmap done: 1 IP address (1 host up) scanned in 1.79 seconds.

Nmap [Slowloris Det] - Checks For Slowloris Denial of Service Vulnerability.

Starting Nmap 7.94SNM ( https://nmap.org ) at 2024-04-01 16:03 IST

Uniscan - Brutes Directories on the Domain.

print() on closed FileHandle $fh1 at /usr/share/uniscan/Uniscan/Functions.pm line 436.
Permission denied

Nikto - Checks for MS10-076 Vulnerability.

- Nikto v2.1.4
+ Multiple IPs found: 172.64.158.28, 184.18.37.228, 2086:4798:9761:c4F:6a76:582:a873:e7F

```

Fig 7. Report of Website under Scan

```

[+] http://chat.openai.com:443/ [HTTP-HTML] [-]
  Nmap [Slowloris Det] - Checks for Slowloris Denial of Service Vulnerability.

Starting Nmap 7.94SNM ( https://nmap.org ) at 2024-04-01 16:03 IST
Nmap scan report for chat.openai.com (172.64.158.28)
Host is up (0.00ms latency).
Other addresses for chat.openai.com (not scanned): 184.18.37.228 2086:4798:9761:c4F:6a76:582:a873:e7F

PORT      STATE SERVICE
80/tcp    open  http

Nikto - Checks for MS10-076 Vulnerability.

- Nikto v2.1.4
+ Multiple IPs found: 172.64.158.28, 184.18.37.228, 2086:4798:9761:c4F:6a76:582:a873:e7F
+ Target IP: 172.64.158.28
+ Target Hostname: chat.openai.com
+ Target Port: 80
+ Start Time: 2024-04-01 16:03:32 (GMT+5.5)

+ Server: classPlane
+ Root page / redirected to: https://chat.openai.com/
+ 259 requests: 0 errors(s) and 9 item(s) reported on remote host
+ End Time: 2024-04-01 16:03:58 (GMT+5.5) (18 seconds)
+ 1 host(s) tested

Nmap [Heartbleed] - Checks only for Heartbleed Vulnerability.

Starting Nmap 7.94SNM ( https://nmap.org ) at 2024-04-01 16:03 IST
Nmap scan report for chat.openai.com (172.64.158.28)
Host is up (0.00ms latency).
Other addresses for chat.openai.com (not scanned): 184.18.37.228 2086:4798:9761:c4F:6a76:582:a873:e7F

PORT      STATE SERVICE
80/tcp    open  http

Nmap done: 1 IP address (1 host up) scanned in 2.18 seconds

[+] http://chat.openai.com:443/ [HTTP-HTML] [-]

```

Fig 8. Report of the Website under Scan

VI. CONCLUSION

Project offer a powerful approach to enhance web application security. It's a robust method to boost web application. Security having diverse tools and techniques for a thorough and effective vulnerability identification, with a streamlined and accurate process for addressing vulnerabilities efficiently. Valuable for organizations dedicated to safeguarding their web applications and data.

VII. ACKNOWLEDGEMENT

We wish to thank everyone who anonymously participated in the user studies.

VIII. REFERENCES

- [1]. R.UtayaSurian, Nor Azlina Abd Rahman, Yogeswaran Nathan. (2020). Nscanner: Vulnerabilities Detection Tool for Web Application
- [2]. Rajab Mohammed imam, Ife Olalekan Ebo, Abdullahi isa Ahmed. (2023). VulScan: A Web-Based Vulnerability Multi-Scanner for Web.
- [3]. Rathod S.K, Japtap J. R., Satpute A.P., Shikhare K.A, Pujari A.S, & Pandit A. (2022). An Automatic VulnerabilityScanner for Web Applications with Firewall Techniques.
- [4]. Prashanth Satya Sai Kiran Gandikota, Sushani S, DeekshithaValluri, Gopi Krishna Yanala. (2023). Web Application through Comprehensive Vulnerability Assessment.
- [5]. Sheetal Bairwa, Bhawna Mewara and Jyoti Gajrani. (2014). Vulnerability Scanners: A Proactive Approach To Assess Web Application Security.
- [6]. Sandeep Kumar, Renuka Mahajan, Naresh Kumar, Sunil Kumar Khatri. (2017). A study on Web Application Security and Detecting Security.
- [7]. Thinazar Aung, Zin Thu ThuMyint. (2020). Effective Web Application Vulnerability Testing System Using ProposedXSS_SQL_Scanning_Algorithm.

- [8]. Sanjukta Mohanty, Arup Abhinna Acharya. (2021). Detection of XSS Vulnerabilities Using Security Testing Approaches.
- [9]. Divyani Yadav, Deeksha Gupta, Dhananjay Singh, Devendra Kumar, Upansana Sharma. (2018). Vulnerabilities and Security of Web Applications.
- [10]. Omar Cheikhrouhou, Moez Krichen, Habib Hamam &AbdelouahidDerhab. (2021). OWASP Ten Driven Survey on Web Application Protection Methods.

