

IOT-BASED PATIENT HEALTH MONITORING SYSTEM

¹.PRASHANTHKK²RAKSHITHAP³PRAJWALG⁴PRAMODDR⁵DHARSHANBG

STUDENT¹²³⁴ ASSISTANT PROFESSOR⁵

¹VIDYAVIKAS INSTITUTE OF ENGINEERING AND TECHNOLOGY, MYSURU – 570028, INDIA

Abstract: The IoT-based patient health monitoring system aims to provide a reliable and real-time health monitoring solution using modern technology. The system leverages an ESP8266EX microcontroller, an I2C LCD display, a humidity sensor, the MAX30100 sensor for measuring heart rate and oxygen saturation (SpO2), and a buzzer for alerts. This project integrates these components to continuously monitor and display vital health parameters, facilitating timely intervention and management of patient health. With the increasing demand for remote health monitoring solutions, this project addresses the need for a cost-effective and efficient system that can provide real-time data to caregivers and medical professionals. The primary objective is to develop a system that monitors key health parameters, namely humidity, heart rate, and SpO2 levels, and alerts the user through a buzzer and a mobile application using the Blynk IoT platform. The implemented system successfully monitors the patient's health parameters and provides real-time updates on the I2C LCD display and the Blynk mobile application. The buzzer effectively alerts users to any anomalies, ensuring prompt attention and action. The project demonstrates the feasibility and effectiveness of using IoT technology for patient health monitoring, offering a scalable solution that can be expanded with additional sensors and functionalities. This system provides a significant contribution towards improving patient care and health management in both home and clinical settings.

Index Terms-IOT, Sensors, Health Monitoring .

I. INTRODUCTION

Monitoring patients, especially elderly ones, has become increasingly challenging in modern times. Keeping track of a patient's health status at home is particularly difficult, and caregivers often need timely updates on the patient's condition while they are at work. To address these challenges, we propose an innovative system that simplifies and automates the task of health monitoring. This project aims to design, develop, and implement an IoT-based patient health monitoring system. The system will continuously monitor vital health parameters such as heart rate, oxygen saturation (SpO2), and humidity levels around the patient. The data collected by the system will be transmitted in real-time to healthcare providers, ensuring continuous supervision and prompt intervention when needed. The project integrates both hardware and software components. The hardware includes the ESP8266EX microcontroller, MAX30100 sensor for heart rate and SpO2 measurement, a humidity sensor, an I2C LCD display for showing real-time data, and a buzzer for alerting. The software component involves data processing, user interfaces, and an alert system via the Blynk IoT mobile application. When any abnormalities are detected in the monitored parameters, the buzzer will sound, prompting users to check the detailed information through the Blynk mobile app. This system provides a reliable and efficient way to continuously monitor a patient's health, reducing the need for frequent hospital visits and ensuring timely medical intervention. It enhances patient care and optimizes healthcare resources, making it a valuable tool for both home and clinical environments.

II. LITERATURE SURVEY

The literature survey indicates that existing IoT-based patient health monitoring systems are proficient in continuous real-time monitoring and data collection but generally lack immediate alert mechanisms for abnormal health conditions. These systems successfully track vital signs such as ECG, heart rate, and temperature, storing data on cloud platforms for remote access and long-term analysis. However, they do not include real-time alerts to notify users of deviations from normal ranges. This project addresses this gap by incorporating a buzzer that sounds when abnormalities are detected. Users can then check the Blynk IoT mobile app for detailed information. This approach enhances patient safety by providing immediate alerts through a buzzer.

III. RESEARCH METHODOLOGY

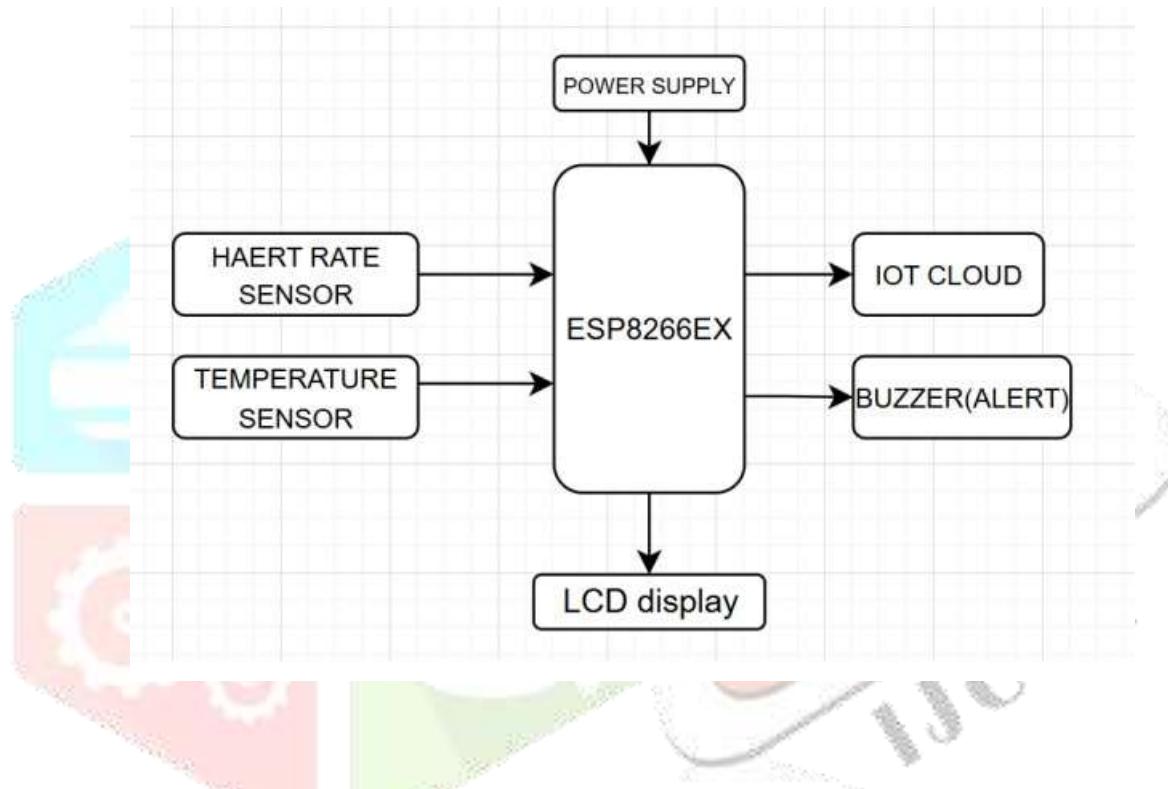


Fig1.:Block Diagram Of IoT Based Patient Health Monitoring System

This project aims to create a system that continuously monitors a patient's vital signs and provides real-time alerts when there are abnormalities. **How It Works:** The sensors continuously measure the patient's vital signs. The MAX30100 sensor records heart rate and SpO₂ levels, while the humidity sensor monitors the surrounding environmental conditions. The ESP8266EX microcontroller collects the data from these sensors. It then processes the data to determine if the readings are within normal ranges. Predefined thresholds are set for each parameter (e.g., normal heart rate range). If the sensor readings are within normal ranges, the system continues to monitor without any alerts. If any parameter goes beyond the safe limits, the ESP8266EX triggers the buzzer. The buzzer makes a sound to alert the user that something is wrong and needs attention. Simultaneously, the ESP8266EX sends the health data to the Blynk IoT platform using WiFi. The Blynk mobile app displays this data in real-time, allowing remote monitoring. When the buzzer sounds, the caregiver or medical professional can open the Blynk app on their mobile device to see which parameter is abnormal and take appropriate action. This ensures that the patient gets timely help when needed.

IV. RESULTS AND DISCUSSION

needed. In summary, the system continuously monitors vital signs using sensors and the ESP8266EX microcontroller. It provides immediate alerts through a buzzer if any health parameters become abnormal and allows remote monitoring through the Blynk mobile app. This setup ensures continuous, real-time health monitoring and quick responses to potential health issues.

The IoT-based patient health monitoring system with MAX30100, ESP8266EX, buzzer, and I2C LCD monitors heart rate, SpO₂, and temperature. Real-time data is displayed on the LCD and sent to the Blynk IoT app for remote access.

If the temperature exceeds a set threshold, the buzzer sounds, and a "HIGHTEMPALERT!" is shown on the LCD. The BlinkIoT app continuously receives data, but only the buzzer and LCD handle temperature alerts locally. The system ensures efficient health monitoring with immediate local alerts and remote data access.

V. CONCLUSION

The IoT-based patient health monitoring system successfully integrates modern technology to provide continuous and efficient monitoring of vital signs. By leveraging the ESP8266EX microcontroller, MAX30100 sensor, humidity sensor, I2C LCD display, and buzzer, the system ensures real-time tracking of heart rate, oxygen saturation, and environmental conditions. The buzzer provides immediate alerts when abnormalities are detected, prompting users to check the Blynk IoT mobile app for detailed information. This feature enhances patient safety by facilitating timely medical intervention. The remote monitoring capability of the Blynk app allows caregivers and healthcare professionals to oversee patient health from anywhere, improving the overall efficiency of patient management. This system offers a valuable tool for home healthcare, chronic disease management, and hospital settings, showcasing the potential of IoT in advancing patient care and health monitoring.

VI. ACKNOWLEDGMENT

We owe our gratitude to our beloved Chairman late Sri. Vasu and Secretary Sri. Kaveesh Gowda V for their encouragement and support in all our endeavors. We are thankful to our Principal In Charge Dr Bindu Thomas for his constant encouragement in every needed sphere. We would like to express our deep indebtedness to Dr. Shamala N, Professor and Head, Department of Electrical & Electronics Engineering for her valuable suggestions and support throughout the course.

VII. REFERENCES

1. Satija, U., Ramkumar, Barathram., & Manikandan, M. Sabarimalai. (2017). Real-Time Signal Quality-Aware ECG Telemetry System for IoT-Based Health Care Monitoring. *IEEE Internet of Things Journal*, 4. <http://doi.org/10.1109/JIOT.2017.2670022815-823>
2. Internet of Things (IoT) Based Healthcare Monitoring System using NodeMCU and Arduino UNO Khin Thet Wai, Nyan Phyo Aung, Lwin Lwin Htay <https://doi.org/10.31142/ijtsrd26482>
3. Health Monitoring system using IoT Shivleela Patil, Dr. Sanjay Pardeshi 2e-ISSN:2395-0056
4. F. Shanin et al., "Portable and Centralised E-Health Record System for Patient Monitoring Using Internet of Things (IoT)," 2018 International CET Conference on Control, Communication, and Computing (IC4), Thiruvananthapuram, India, 2018, pp. 165-170, doi: 10.1109/CETIC4.2018.8530891.