

“WHISPERINGHOPE” SMARTFANTOAVOID SUICIDE USING LOGIC GATES

¹DHARSHANBG,²BHOOMIKAR,³BABHAY,⁴HRUSHIKESHSR,⁵MAHADEVA M

¹Assistant Professor, ²Student, ³Student, ⁴Student, ⁵S
tudent, ¹Electrical And Electronic Engineering
Department, ¹Vidya Vikas Institute of
Engineering, Mysuru, India.

Abstract: This project aims to design, develop, and implement a ceiling fan safety system using logic gate technology to prevent suicides by hanging. Recognizing the risk posed by ceiling fans in such tragic events, this project focuses on enhancing household safety through technological innovation. The system integrates weight and motion sensors into the fan, enabling it to detect abnormal conditions indicative of potential suicide attempts. These sensors feed data into a logic gate circuit, which processes the inputs to make real-time decisions regarding the fan's operation. The development process involved creating a robust logic gate circuit using AND, OR, and NOT gates to ensure accurate decision-making. A control unit was designed to interpret the logic gate outputs, triggering safety mechanisms such as deactivating the fan or sounding alarms when dangerous conditions are detected. To ensure the system's reliability and effectiveness, multiple fail-safes and redundancies were implemented. Additionally, a user-friendly interface was developed for monitoring and managing the system, providing timely alerts and notifications. Extensive testing and validation were conducted to ensure the system's performance under various conditions and environments, ensuring it meets all relevant safety standards and regulations. The project also involved planning for the deployment and maintenance of the system in residential and commercial settings, ensuring ease of installation and long-term reliability. In conclusion, the ceiling fan safety system effectively enhances household safety by preventing its misuse for suicide attempts. The comprehensive design, rigorous testing, and user-centric interface make it a viable solution for reducing such risks, underscoring the critical role of technology in promoting safety and well-being in domestic environments. The project's scope covers not only the immediate implementation but also long-term maintenance and regulatory compliance, ensuring sustainable and widespread application.

Index Terms – Logic Gates, Safety, Sensors.

I. INTRODUCTION

Suicide prevention is a critical issue, and technology can play a significant role in saving lives. A fan system aims to reduce the risk of suicide by hanging, particularly in settings where such incidents may occur, like hospitals, psychiatric facilities, and schools. The increasing prevalence of suicide, particularly through hanging, has necessitated innovative preventive measures. One such measure is the development of a fan system designed to avert suicide attempts by hanging. This system integrates technology, including weight sensors, motion detectors, and logic gates, to detect and respond to potential threats. By automatically shutting down the fan and alerting authorities when unusual weight or activity is detected, the fan system offers a proactive solution to a critical issue. This technology not only enhances safety but also provides peace of mind to caregivers and administrators, making environments like hospitals, psychiatric facilities, and schools safer for vulnerable individuals. In recent years, the focus on enhancing safety features in household appliances has intensified, driven by the need to prevent accidental or intentional harm. Among these appliances, ceiling fans have become a significant concern.

ngfansposea particular risk, especially concerning potential suicides by hanging. To address this issue, a novel approach involves integrating logic gate-based control systems into fan operations. This innovative solution leverages weight and motion sensors combined with logic gate circuitry to monitor and control the fan's functionality, ensuring it operates only under safe conditions. By preventing misuse and enabling timely intervention, this system aims to significantly reduce the risk of suicide attempts involving ceiling fans, highlighting the crucial role of technology in promoting safety and well-being in domestic environments. However, the implementation of such systems also presents challenges, such as maintaining privacy and managing costs. Despite these hurdles, the fan system represents a significant step forward in suicide prevention efforts.

II. LITERATURE SURVEY

S. Sankaranarayanan et al. [1] proposed a system for preventing suicide on ceiling fan. The proposed project system includes a PIC 16f877a microcontroller, a PIR sensor, a flex sensor, a GSM module, a buzzer, and an actuator. MPLAB IDE have been used for the programming purpose and Proteus simulation software is used for the simulation purpose. The PIR sensor detects the presence of a human, the flex sensor detects the presence of additional weight on the ceiling fan, the GSM module is used to send a message to the registered mobile number, and the motor or actuator which is linked to the ceiling fan to safeguard the hanging. Abinash Mishra et. al. [2] have proposed a new safety design of a ceiling fan to avoid suicide attempts. Prior to designing a new model, they performed a stress analysis on all of the existing general model fans to determine the force the fan's weight exerted on the down rod. The down rod is replaced in the new design by a spring that is attached to a home's ceiling fan. For a spring to be connected to a fan, they have designed a spring connector which is mechanically connected to the disc of a fan. The design of a spring is done in such a way that it should carry a minimum weight so that when someone tries to hang themselves, the fan will be activated and come down, making a person's feet touch the ground. Raghavendra SNarsapur et al. [3] have proposed a system consisting of a ceiling fan with hardware components of RENESAS microcontroller, PIR and force sensor, Buzzer, GSM module, switch and DC motor. And software used are Cubesuite+ and RENESAS flash programmer. The microcontroller is located at the center of the block diagram for the control unit of the entire project. They have used a DC motor to control the movement of the fan and to control the motor, they have used an L293D motor driver. Whenever the person tries to hang, the force sensor senses the set weight, if it's more than the set point weight, the beam gets elongated and comes down, and an alarm is activated and a GSM module will send an alert message to the respective guardian. Prabha Sundaravadi et al. [4] have proposed an IoT-based Edge intelligent Framework for Suicidal Ideation Detection. This system has concentrated on creating an IoT-based framework that can assist in continually monitoring a person's behavioural and physiological data. The suggested M-SID framework encourages the development of a special suicidal ideation elicitation technique for its users. The first goal was to cheer up the user and divert them from making a decision to harm themselves. The computer work is concentrated on tracking a person's overall movement, heart rate, and environment. The custom wearable is created with the aid of "generic" commercially available sensors that have been tailored to the required parameters in order to validate the hypothesis. The M-SID wearable uses a temperature and humidity sensor to track the user's environment over a specified time. The device will display the results as "vulnerable event," "critical event," and "normal event" in accordance after receiving these all parameters from the pulse oximeter, a medical-grade sensor that assists in daily heart rate collection. Wassim Bouachir et al. [5] proposed an intelligent video surveillance system for automated detection of suicide attempts by hanging. By utilising the depth data obtained from an RGB-D camera, this proposed system is capable of simulating suicidal behaviour well. The use of RGB-D cameras opened up a new avenue for solving pose estimation problems in real time. They provide innovative solutions for dealing with the identification of activities based on eyesight. This approach is based on making use of the 3D visual data captured by an affordable RGB-D camera. This specifically involves using human joint relative positions in the 3D space to calculate position

and motion attributes during movement in order to grasp the activity of interest. Each ongoing observation is processed by their recognition system, which then does a binary ranking to identify any suicidal behaviour. If the percentage of positive observations exceeds a specific threshold over the course of a sliding brief window, the activity of interest is eventually discovered.

III. RESEARCH METHODOLOGY

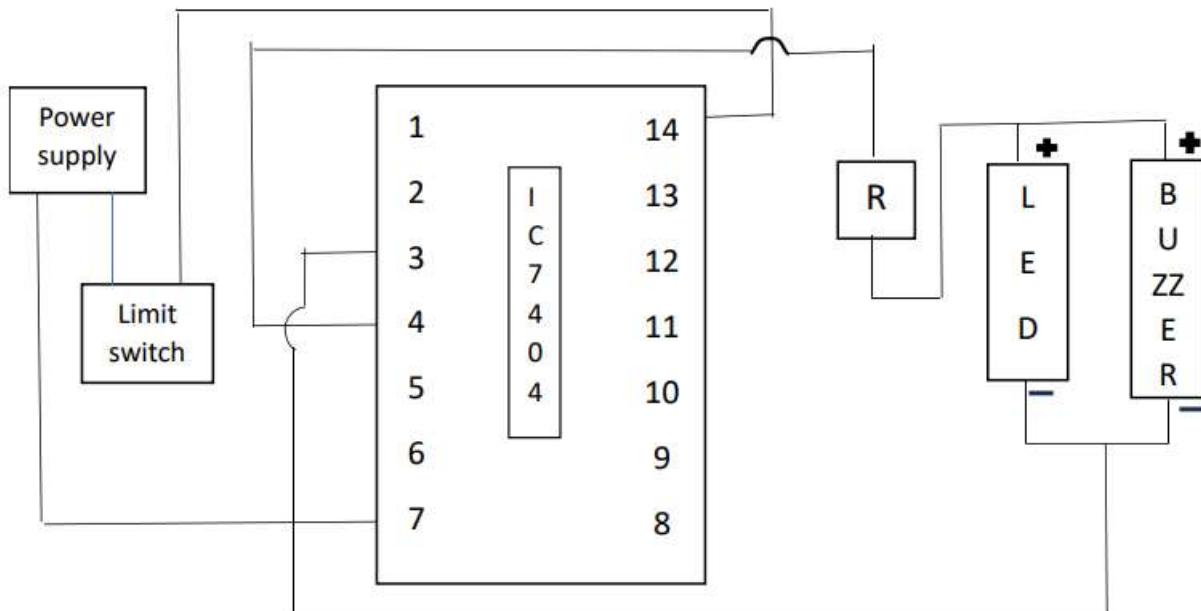


Figure.1 Block Diagram

The development process involved creating a robust logic gate circuit using AND, OR, and NOT gates to ensure accurate decision-making. A control unit was designed to interpret the logic gate outputs, triggering safety mechanisms such as deactivating the fan or sounding alarms when dangerous conditions are detected. To ensure the system's reliability and effectiveness, multiple fail-safes

and redundancies were implemented. Additionally, a user-friendly interface was developed for monitoring and managing the system, providing timely alerts and notifications. When the limit switch is pressed, it completes the circuit, allowing current to flow from the power supply to the integrated circuit (IC). The IC, with its 14 pins, processes the input from the limit switch. Pins 1 and 14 of the IC are likely connected to the power supply (Vcc) and GND. The signal from the limit switch is received by the IC through its input pins (possibly pins 2, 3, and 4). The IC then processes this input and produces an output signal through pin 8. This output signal is routed through a resistor to limit the current before reaching the LED and the buzzer. Consequently, the LED lights up and the buzzer emits a sound, indicating that the limit switch has been triggered. The resistor ensures that the current to the LED is appropriate, preventing it from burning out. When the limit switch is activated, it sends a signal to the IC. The IC then processes this input and outputs a signal to light up the LED and sound the buzzer, indicating the limit switch has been triggered. The resistor ensures the LED receives an appropriate current to function without damage.

III. RESULTS AND DISCUSSION

The results demonstrate that a logic gate-based approach can effectively enhance the safety of a smart fan by preventing its operation under dangerous conditions. The logic gate configuration ensures quick and accurate response to potential risks. By focusing on simplified logic gate design, and user experience, this smart fan system offers an effective, scalable, and ethical solution for preventing suicide attempts.

Figure 2: Project model

IV. CONCLUSION

In conclusion, the ceiling fan safety system effectively enhances household safety by preventing its misuse for suicide attempts. The comprehensive design, rigorous testing, and user-centric interface make it a viable solution for reducing such risks, underscoring the critical role of technology in promoting safety and well-being in domestic environments. The project's scope covers not only the immediate implementation but also long-term maintenance and regulatory compliance, ensuring sustainable and widespread application. Integrating logic gates into ceiling fan technology presents a promising approach to suicide prevention. While there are challenges to address, particularly regarding sensor accuracy and privacy concerns, the potential benefits in saving lives make this a valuable area of research and development. Continued innovation and ethical considerations will be key to the successful implementation of such technologies.

V. ACKNOWLEDGMENT

We owe our gratitude to our beloved Chairman late Sri. Vasu and Secretary Sri. Kaveesh Gowda V for their encouragement and support in all our endeavors. We are thankful to our Principal In charge Dr Bindu Thomas for his constant encouragement in every needed sphere. We would like to express our deep indebtedness to Dr. Shamala N, Professor and Head, Department of Electrical & Electronics Engineering for her valuable suggestions and support throughout the course.

VI. REFERENCES

1. S. Sankaranarayanan and A. Periasamy, "Approach for Preventing Suicide on Ceiling Fan", IJRMT, vol. 2, no. 4, pp. 74–76, Apr.
2. Mishra A., Gunji B., Deepak B.B.V.L. "A New Safety Design of the Ceiling Fan to Avoid Suicidal Cases". In: Chakrabarti A. (eds) Research into Design for a Connected World. Smart Innovation, Systems and Technologies, vol 134, 2019.
3. Raghavendra S Narsapur, Basavaraj P Hiremath, Dr. B. M. Jayadevappa, "A Novel Approach on Ceiling Fan Based System to Avoid Suicide by Hanging", INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) NCRACES (Volume 7, Issue 10), 2019
4. Prabha Sundaravadivel Paola Salvatore Premananda Indic, "MSID: An IoT-based Edge-intelligent Framework for Suicidal Ideation Detection", The University of Texas at Tyler, TX, USA. Belmont. November 05, 2020. IEEE