

Ai Assistant Iot Safety Jacket For Rescue Mission (Defence)

¹Dr. V. Muthupriya, ² Fatheen Khan B, ³ Mohamed Shihan Khader M

¹Assistant Professor, ^{2,3}Students,

Department of Computer Science and Engineering (IoT)

B.S Abdur Rahman Crescent Institute Of Science and Technology, Chennai, India

Abstract: The project introduces an advanced safety jacket tailored explicitly for defense and rescue missions. It incorporates cutting-edge features to enhance safety, communication, and situational awareness during operations. Central to its functionality is the seamless integration with an AI assistant, providing real-time support to soldiers and establishing connectivity with their environment. Key components include a precision GPS sensor for accurate location tracking, ensuring effective coordination in emergencies. The AI assistant acts as a crucial bridge in communication, relaying vital information like location, heart rate and voice recordings to command centers and team members. Going beyond traditional distress signals, the AI assistant offers navigational support by interpreting voice commands, assisting soldiers in unfamiliar terrain, and dynamically adjusting routes based on live data. This comprehensive system not only improves the safety and efficiency of individual soldiers but also equips commanders with valuable insights from soldiers' status and environmental conditions, facilitating informed decision-making. In essence, this adaptable safety jacket represents a significant advancement in military gear, leveraging state-of-the-art technology to safeguard and enhance the success of military personnel in diverse operational landscapes.

Index Terms - Advanced safety jacket, Defense and rescue missions, Cutting-edge features, Safety enhancement, Situational awareness, AI assistant integration.

I. INTRODUCTION

The project focuses on the development of an advanced safety jacket customized for rescue operations, aiming to fortify safety, communication, and situational awareness during these missions. In the challenging and hazardous environments encountered by military members, ensuring their safety and enabling effective communication and coordination are top priorities. Thus, the advanced safety jacket endeavors to meet these requirements by integrating state-of-the-art technologies and functionalities.

The AI assistant acts as a pivotal communication nexus, transmitting critical data such as location, heart rate, and voice recordings to command centers and fellow soldiers. Additionally, soldiers can interact with the AI assistant using voice commands, facilitating hands-free operation in the field. In emergency situations or when assistance is needed, the jacket autonomously sends distress signals to notify team members, providing them with the soldier's location and vital signs. Moreover, the AI assistant offers navigational assistance, leveraging a built-in GPS sensor for precise location tracking. This feature ensures seamless coordination and swift response during emergencies, dynamically adjusting routes based on real-time data to ensure soldiers reach their destinations safely. Commanders can remotely monitor soldiers' status and environmental conditions through data transmitted by the jacket, aiding in decision-making during missions.

The jacket's integrated sensor suite, encompassing sensors for heart rate, body temperature, and environmental conditions, further enhances its capabilities. Soldiers remain connected to the AI assistant via an earpiece, granting access to all sensors and enabling real-time situation analysis. Data collected by the jacket is accessible through a dedicated mobile application, allowing commanders to track soldiers' status and plan interventions accordingly. Overall, the advanced safety jacket represents a significant technological leap in military gear, offering comprehensive protection and support to personnel across diverse operational landscapes.

II. LITERATURE REVIEW

Hyunseung Lee et al. [1] developed a multifunctional outdoor jacket equipped with wearable sensing technology to enhance user health and safety. The innovative jacket features a user-friendly interface and incorporates remote communication capabilities, improving its effectiveness in outdoor environments. Real-time health monitoring is enabled through wearable sensors, providing valuable insights into the wearer's well-being. Additionally, environmental sensors enhance the jacket's ability to detect and respond to changing conditions, further augmenting user safety. Challenges such as low battery life, extended data processing times, communication issues, and limited applicability in defense scenarios need to be addressed for sustained performance.

Mazin Alshamrani, et al. [2] explored the integration of IoT and AI technologies in remote healthcare monitoring systems. Their project emphasizes close monitoring capabilities to enhance healthcare efficiency, particularly in underserved areas. AI algorithms improve data analysis, leading to precise health data interpretation and personalized treatment plans. Challenges include data quality, energy efficiency, interoperability, and data privacy and security concerns, which must be overcome for scalability and optimization of remote healthcare monitoring systems.

Abdul Hannan, et al. [3] presented a machine learning-based smart wearable system for cardiac arrest monitoring, showcasing robust performance evaluation and comparative analysis. Leveraging machine learning algorithms and cloud-based storage, the system enhances the accuracy and timeliness of cardiac arrest detection. Challenges such as the lack of specific data values and data privacy and security concerns need to be addressed for further refinement and reliability of machine learning-based wearable systems.

Bhuvaneshwari, et al. [4] introduced the Smart Army Jacket, emphasizing safety enhancement decision-making improvement, and versatile applications for military personnel. The jacket's robust design and advanced features make it suitable for various military operations, with real-time analysis of environmental data facilitated by machine learning algorithms. Challenges include technical issues, dependency on futuristic technologies, and data privacy and security concerns, highlighting areas for refinement and optimization. Keerthana, et al. [5] introduced a smart lifeguarding vest tailored for military applications, emphasizing real-time monitoring and comprehensive situational awareness. Challenges such as technological dependency, power consumption issues, and scalability limitations need to be addressed to ensure widespread adoption and sustained use of the vest.

Vasanthakumar, Ravishankar, et al. [6] introduced an innovative solution aimed at enhancing safety and rescue operations during emergencies. Challenges include technical issues, futuristic tech dependencies, power consumption, and concerns about durability and ruggedness, which must be addressed for optimal performance.

Kaixuan Wang et al. [7] integrated immediate fall detection, audible and visual alarms, and real-time GPS positioning to enhance emergency response effectiveness. Challenges include water sensor accuracy, environmental impact, and dependency on external networks, requiring refinement for optimal performance.

Balaji et al. [8] underscored the necessity for improved safety protocols within coal mining environments, exploring wearable IoT devices for real-time monitoring. Challenges such as data quality, energy efficiency, and interoperability need to be addressed for effective risk mitigation in high-risk industrial settings.

Jasvinder Singh Chhabra et al. [9] explored the integration of GPS technology with IoT devices to monitor soldiers' locations and health parameters in real-time, emphasizing improved communication and situational awareness in military operations.

Dr. Anita K. Patil's et al. [10] literature review highlighted the convergence of IoT and AI, emphasizing the transformative potential of AI-powered IoT in revolutionizing technology and enhancing daily life. Challenges and opportunities associated with integrating AI and IoT across industries were discussed, underscoring the importance of efficient communication and intelligent decision-making.

III. EXISTING SYSTEM

Various smart life jacket and vest systems have been introduced globally, showcasing advancements in safety and monitoring. India, for instance, has launched smart life jackets for fishermen equipped with GPS, environmental sensors, and distress signals, enhancing safety at sea. Similarly, GPS- equipped life jackets worldwide enable quick location of individuals in distress, improving response times for search and rescue operations. Military personnel benefit from smart vests with sensors and LiFi technology, enhancing situational awareness and safety in operational scenarios. Additionally, wearable smart vests monitor physiological parameters, offering continuous health data and seamless connectivity to central monitoring systems. Ongoing innovations include IoT- enabled life-saving systems that connect wearable devices like smart life jackets to central monitoring, improving coordination and response during emergencies.

However, these systems are not without challenges. Dependency on technology, affordability issues, the need for comprehensive user training, privacy concerns related to health monitoring, and the importance of consistent maintenance collectively pose potential drawbacks. The reliance on technology, such as GPS and sensors, makes these systems susceptible to malfunctions and technical glitches. The cost of implementing and maintaining advanced life-saving technologies may limit their adoption, especially in regions with limited resources. Users may require thorough training to effectively operate and benefit from these high-tech vests, and privacy concerns may arise due to continuous data collection. Moreover, ensuring regular maintenance and timely updates is crucial for reliable performance during emergencies, emphasizing the need for a balanced approach to the implementation of these sophisticated life-saving systems.

IV. PROPOSED SYSTEM

The AI-Assisted Smart Safety Jacket is a revolutionary solution designed to address the challenges faced by military and rescue personnel in harsh and unpredictable environments.

Unlike conventional safety gear, our proposed system incorporates cutting-edge features and integrated communication systems to enhance safety, communication, and situational awareness during operations. Key features of our proposed system include immediate distress signal detection, real-time monitoring of vital signs such as heart rate and body temperature, and accurate GPS positioning for precise location tracking. These features enable rapid response and coordination during emergencies, significantly improving the safety and effectiveness of military and rescue personnel in the field.

To overcome the limitations of existing safety gear, our proposed system leverages advanced AI technology and wireless communication protocols. By integrating our AI assistant, the system can interpret voice commands, provide navigational guidance, and relay vital information to command centers and team members in real time. Additionally, the AI assistant's ability to analyze environmental data allows for proactive decision-making and enhanced situational awareness, ultimately improving the overall effectiveness of military and rescue operations.

FIG 1.0 proposed AI smart jacket

Furthermore, In this device we have used an ESP32 microcontroller in which the Wi-Fi module has been inbuilt. So, there is no need for an external Wi-Fi module which reduces the weight and complexity of the device. The sensors that have been used for detecting the atmosphere situations are DHT11 temperature sensor, MQ2 gas sensor, MPU6050 accelerometer sensor, NEO 6M GPS module. All the sensors are interfaced with the ESP32 module, the real time values read by the sensors are stored in the Firebase. A self locking push button has been interfaced that acts as a panic button. For the power source for the device, a power bank of 10000mAh has been used. The main advantage of our system is that PCB has been used for fabricating our device so that the probability for short circuiting in the connections of the device will be very less.

V. METHODOLOGY

The methodology for the Smart Safety Jacket project follows a systematic approach encompassing design, implementation, and testing phases to ensure the development of a robust and functional solution. It begins with gathering inputs, including sensor data, AI commands, GPS coordinates, and vital signs, defining critical functionalities required for operation. Moving to the output phase, desired outcomes such as immediate alerts, GPS location data, and seamless communication with AI assistants are identified. Hardware components like the ESP32 microcontroller and sensors, along with software tools such as Arduino IDE and Google Firebase, are utilized for development and implementation.

At the heart of the Smart Safety Jacket lies a sophisticated sensor network continuously monitoring the wearer's health, location, and surroundings. Utilizing edge computing facilitated by microcontrollers with TinyML technology, the jacket analyzes real-time data to detect potential risks or emergencies. Machine learning algorithms enable tasks like anomaly detection and gesture recognition, triggering immediate alerts to nearby teammates or command centers. Cloud connectivity allows seamless transmission of sensor data for further processing by a cloud-based AI Assistant, offering personalized guidance and real-time updates tailored to the wearer's needs and situational context. Overall, by integrating edge computing, machine learning, and cloud connectivity, the Smart Safety Jacket provides proactive safety measures and decision support crucial for success in challenging military and rescue operations.

Fig 1.1 Architecture Diagram

B. COMPONENTS

The Smart Safety Jacket is driven by the **ESP32microcontroller**, known for its cost-effectiveness and energy efficiency. Its dual-core processing capability efficiently handles tasks while conserving power for extended field use. Integrated Wi-Fi and Bluetooth enable seamless IoT connectivity, facilitating real-time data transmission and device communication, while its ample GPIO pins and analog-to-digital converter allow versatile interfacing with sensors and peripherals for enhanced functionality.

FIG 1.2 ESP 32 Microcontroller

The **DHT11 temperature sensor** in the Smart Safety Jacket vigilantly monitors ambient temperature and humidity levels, offering reliable and accurate readings despite its affordability. With low power consumption and wide voltage range compatibility, it ensures efficient energy usage in battery-powered applications. Its cost-effective nature makes it an ideal solution for climate monitoring in various environments, providing invaluable insights for enhanced safety.

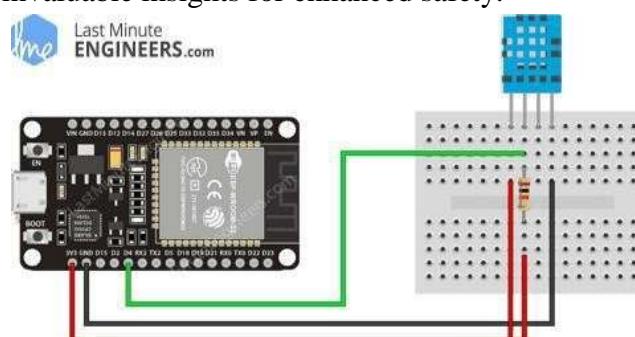
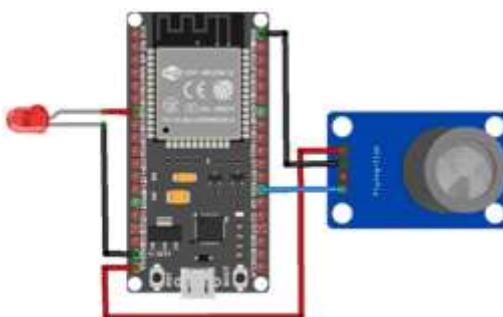



FIG 1.3 DHT11 Sensor

MQ-2 GAS SENSOR: DETECTING COMBUSTIBLE THREATS

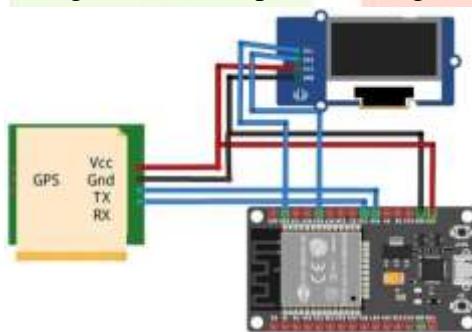

As a guardian against invisible threats, the **MQ-2 gas sensor** within the Smart Safety Jacket stands vigilant, detecting an array of combustible gases with unwavering sensitivity. From smoke to propane, methane, and alcohol, this sensor's broad detection range and high sensitivity ensure early identification of potential hazards in the environment. Its role extends beyond mere gas leakage detection, as it becomes a frontline defense against unseen dangers during military and rescue operations. By interfacing seamlessly with the ESP32 microcontroller, it delivers real-time data on gas concentrations, empowering soldiers with timely information to mitigate risks and ensure mission success

FIG 1.4 MQ2 Sensor

NEO-6M GPS MODULE: PRECISION GLOBAL POSITIONING

At the heart of the Smart Safety Jacket lies the **NEO-6M GPS module**, a beacon of precision in the tumultuous seas of uncertainty. With support for multiple GNSS constellations and unparalleled sensitivity, this module delivers location data with unfaltering accuracy, even in the most challenging environments. Its compact form factor and frugal power consumption render it an ideal companion for wearable devices like the safety jacket, enabling seamless integration without compromising performance. Leveraging its capabilities, the jacket augments situational awareness and facilitates seamless coordination among team members, ensuring precise positioning and swift response during military and rescue operations.

Fig 1.5 Neom 6m Gps Module Heart Rate Sensor Sen-11574

Heart rate sensors monitor and measure a person's heart rate by detecting electrical signals generated by the heart during each heartbeat. The SEN-11574 heart rate sensor utilizes photoplethysmography (PPG) to measure changes in blood volume, providing accurate readings. Worn around the chest, it uses electrodes to detect signals, transmitting data to devices like smartwatches for real-time monitoring.

Fig 1.6 SEN-11574 Heart Rate Sensor

VI. INTEGRATION

Integration of the Smart Safety Jacket involves combining its hardware and software components seamlessly to ensure optimal functionality and performance. This process encompasses several key steps, starting with assembling and connecting hardware components such as the ESP32 microcontroller, sensors (e.g., DHT11 temperature sensor, MQ2 gas sensor, MPU-6050 accelerometer sensor), GPS module, and self-locking push button within the jacket's design. Software integration focuses on programming the microcontroller to interface with sensors, process data, and trigger actions using tools like Arduino IDE and Embedded C. Communication integration establishes seamless connectivity with Bluetooth and Wi-Fi for interaction with smartphones, IoT devices, and cloud services. The Firebase API enables real-time data storage and synchronization, facilitating efficient transmission of sensor data to the cloud. Rigorous testing ensures all components function harmoniously, while refining the mobile application interface and implementing user-friendly features like voice commands and gesture recognition enhances usability in military and rescue operations. Through meticulous integration of hardware, software, communication protocols, and user experience elements, the Smart Safety Jacket delivers a cohesive solution for enhancing soldier safety and efficiency in dynamic environments. The Smart Safety Jacket's application integrates artificial intelligence (AI) to provide personalized guidance, real-time updates, and decision support tailored to the wearer's needs. This includes interpreting voice commands effectively, detecting anomalies, and responding promptly to environmental conditions. The application serves as a crucial interface for seamless communication with the AI assistant, enhancing proactive safety measures and decision support for users in dynamic environments.

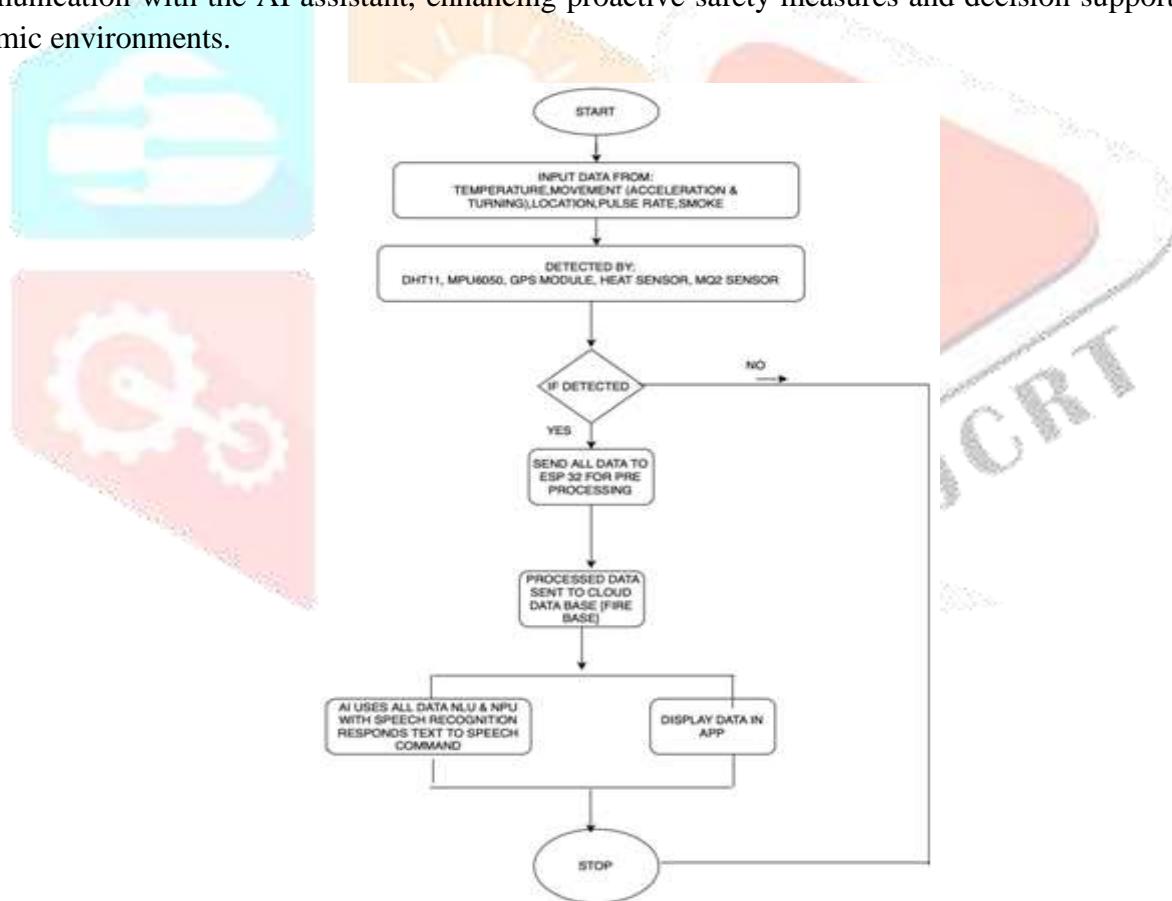


fig1.7 smart jacket flow chart

The integration of AI into the Smart Safety Jacket involves leveraging advanced technologies like TinyML, Bluetooth connectivity, and Firebase for real-time data exchange and processing. Machine learning models are optimized using TinyML techniques to efficiently run on the microcontroller embedded within the jacket, ensuring high performance with minimal resource consumption. These optimized models enable on-device inference, allowing the jacket to process sensor data locally and provide real-time AI-driven responses to the wearer without relying on external servers or internet connectivity. Firebase integration facilitates accessing sensory data in real-time and processing it on the cloud for improved decision-making. This

integration provides a scalable and reliable platform for storing, syncing, and querying data, enabling seamless communication between the jacket and the cloud. Furthermore, TinyML algorithms are designed for low-power operation, ensuring prolonged battery life for extended use in resource-constrained environments. The microcontroller equipped with TinyML capabilities can analyze sensor data from various sources and extract valuable insights, such as gesture recognition and predictive

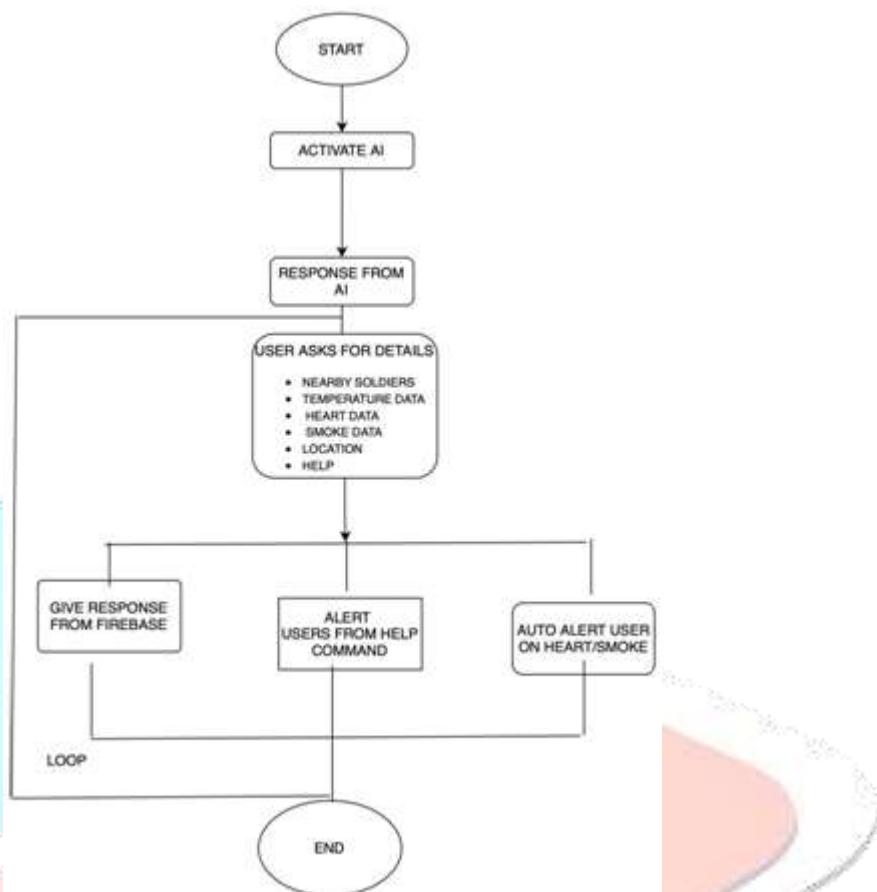


fig1.8 AI flow chart

VII. CONCLUSION

In conclusion, the Smart Safety Jacket revolutionizes safety and communication in military and rescue operations. By integrating advanced hardware and software, it enhances situational awareness, enables real-time monitoring, and facilitates seamless interaction. Its modular design and low power consumption ensure versatility and long-term usability. Overall, the Smart Safety Jacket represents a significant advancement in safeguarding and empowering military personnel in challenging environments.

VIII. FUTURE ENHANCEMENTS

The future development of the AI-Assisted Smart Safety Jacket encompasses a range of advancements aimed at further elevating its capabilities in defense and rescue missions. Combining the previously outlined enhancements with the newly proposed ones, the Smart Safety Jacket will undergo a transformative evolution to meet the evolving needs of military personnel and rescue teams.

Integration of TinyML: The incorporation of TinyML technology alongside efficient algorithms will revolutionize the Smart Safety Jacket's processing capabilities. By enabling AI to run directly within the ESP32 microcontroller and across all sensors, TinyML empowers the device to perform complex tasks locally. This enhancement not only enhances real-time decision-making capabilities but also reduces reliance on external processing resources, ensuring optimal performance even in resource-constrained environments.

Enhanced Intelligence: With the integration of TinyML, the Smart Safety Jacket will evolve into an intelligent device equipped with advanced AI capabilities. This enhancement enables the device to analyze sensor data, detect patterns, and make intelligent decisions autonomously. Consequently, soldiers and rescue personnel benefit from improved situational awareness, quicker response times, and enhanced overall performance across diverse operational scenarios.

Optimized Sensor Functionality: Future iterations of the Smart Safety Jacket will feature optimized sensor functionality through the embedding of AI within sensors. Intelligent sensors will process data locally, filtering out irrelevant information and transmitting only critical

insights to the central processing unit. This approach minimizes latency, conserves power, and maximizes effectiveness in dynamic environments, ensuring that soldiers and rescue teams receive timely and accurate information to facilitate informed decision-making.

By integrating these future enhancements with the existing capabilities of the Smart Safety Jacket, the device will continue to serve as a pivotal tool for safeguarding and empowering military and rescue personnel in challenging and unpredictable environments. From enhanced processing capabilities to optimized sensor functionality, these advancements underscore the commitment to leveraging cutting-edge technology to enhance safety, communication, and situational awareness in defense and rescue missions.

REFERENCES:

- [1] Hyunseung Lee & Kyungsoon Baek: Developing a smart multifunctional outdoor jacket with wearable sensing technology for user health and safety, *Research gate,Multimed Tools Appl* 80, 32273–32310 (2021).
- [2] Mazin Alshamrani: IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey. *Science direct,Journal of King Saud University – Computer and Information Sciences* 34 (2022) 4687–4701
- [3] Abdul Hannan A , Sehrish Munawar Cheema B, Ivan Miguel Pires: Machine learning-based smart wearable system for cardiac arrest monitoring using hybrid computing, *Science direct,elsevier*, 30 September 2023 1746-80941
- [4] Engr. Ghulam E Mustafa Abr and Kundan Kumar : Prototyping IOT Based Smart Wearable Jacket Design for Securing the life of Coal Miners, *IEEE 978-1-5386-4904-6/18,2018*
- [5] K Keerthana,R Yamini,N Dhesigan,Sp.Angeline kirubha:Smart Lifeguarding Vest for Military Purpose Published in: 2020 International Conference on Communication and Signal Processing (ICCP) Date of Conference: 28-30 July 2020 Publisher: IEEE
- [6] Kaixuan Wang, Kexuan Zhao, Mingyi Su, Jin Qi, Yuqing Hou, Sheng Tang:An Intelligent Life Jacket System Based on OneNET 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP) Date of Conference: 09-11 April 2021 Publisher: IEEE
- [7] [7]Vasanthakumar.M1Ravishankar.N2,MouliDharan.R3, Gopikrishnan .V. B4,:Smart Life Saver Jacket ISSN : 2248-9622, Vol. 10, Issue 4, (Series -V) April 2020, pp. 06-09
- [8] Mr.M.Balaji, S.Monika, N.Akshaya, R.Soorya Priya, A.Swathi Smart wearable safety jacket design for coal miners International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 10 Issue: 05 | May 2023
- [9] Rakshitha ,Shreyas R, Yeshas C Balaji, Rakshitha Urs s.Smart Soldier Jacket Using Internet of Things (IoT) International Research Journal of Engineering and Technology(IRJET)e-ISSN: 2395-0056 Volume: 06 Issue: 08 | Aug 2019
- [10] Dr.Anita K.Patil IoT and Artificial Intelligence International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 07 | July 2021
- [11] Dr.Anita K.Patil IoT and Artificial Intelligence International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 07 | July 2021