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Abstract: A detailed and accurate evaluation of brain tumors from medical images is a requirement in modern 

medical care because early detection has a powerful impact on treatment outcomes. Magnetic Resonance 

Imaging (MRI) is common for the investigation of brain disorders, but it is labour intensive and reliant on 

interpretive experience to read scans with expert observers. This paper develops NeuroAI, an automated system 

for detecting brain tumor anomalies that makes use of deep learning-based object detection to analyse MRI 

scans. The proposed model utilizes YOLOv8 to localize tumor sites and subcategorize tumor types such as 

meningioma, glioma, pituitary tumors and non-tumor cases. ARG, or Retrieval Augmented Generation, 

provides contextual medical explanations for the types of tumors that were observed and makes the system 

more readable. The model is trained and assessed using MRI scans from The Cancer Imaging Archive (TCIA). 

It also includes confidence levels and IoU values to balance the sensitivity and detection accuracy. 

Observations have shown that the system reliably detects and classifies brain tumors, which indicates that this 

system can function as a conduit for clinical decision-making and medical education. 
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I. INTRODUCTION 

It is suggested that brain tumors occur due to uncontrolled cell growth in the brain and can be broadly 

classified as malignant. Brain tumors pose risks as they may interfere with essential neurological functions as 

a: cognition, vision, speech, and motor control. Early and accurate detection plays a critical role in determining 

appropriate treatment strategies and improving patient outcomes. Magnetic Resonance Imaging (MRI)is the 

most preferred procedure for brain tumor diagnostic because it provides high resolution images and excellent 

soft tissue contrast without exposure to ionizing radiation. MRI scans allow clinicians to visualize tumor size, 

location, and structure. The diagnosis but remains significantly dependent on the manual inspection performed 

by radiologists and therefore processing is time-consuming and subjective. The ever-larger quantity of 

medical imaging data combined with the growing number of qualified radiologists in the entire world calls 

for the development of automated diagnostic systems. Improvements in AI, particularly deep learning, have 

demonstrated remarkably successful image analysis tasks. The added benefit of localizing regions of interest, 

which is vital for clinical interpretation, is provided by object detection models, in contrast to simple 

classifiers. This research introduces NeuroAI and has an end-to-end deep learning framework for detecting 

and defining tumours in MRIs. By merging YOLOv8-basedobjectdetection with explainable AI via a RAG 
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module and a user-friendly interface, the system hopes to assist physicians, improve diagnostic efficacy, and 

make available to advanced medical imaging analysis. 

 

II. BACKGROUND AND MOTIVATION 

A. Challenges in Manual Brain Tumor Diagnosis 

 Manual MRI interpretation requires extensive training and experience. Radiologists must analyze multiple 

slices across different imaging planes, making the process cognitively demanding. Subtle variations in tumor 

appearance, overlapping intensity patterns, and irregular tumor boundaries often complicate diagnosis. In 

resource-limited or rural healthcare settings, the lack of specialized radiologists can lead to delayed diagnosis 

and treatment. 

 

B. Need for Automated and Explainable Systems 

 

Automated systems have a potential for detection, but clinical use requires trust and interpretation. The 

medical community is skeptical of black-box models without explanations. This is why it is important to 

incorporate automated detection with easily observable results to increase acceptance and usability in practice 

in healthcare. 

 

 

III.  RELATED WORK 

 

Traditional imaging protocols, such as thresholding, edge detection, and region-based segmentation, were 

employed in the early brain tumor detection models. These techniques required hand-crafted features and 

were sensitive to noise and imaging conditions. Machine learning increased, and classifiers like Support 

Vector Machines and Random Forests were developed. But their performance relied largely on manual feature 

engineering. Deep learning, and particularly CNNs, revolutionized medical imaging in that they extract 

feature automatically from raw images. CNNs were also effective in MRI-based brain tumor classification in 

several studies. A few more recent studies focus on object detection models, which enable precise localization 

of tumor regions. The popularity of YOLO-based architectures was due to the detectability in real time. But 

many of the existing systems rely on detection accuracy and lack of understanding or user interaction. The 

proposed NeuroAI system addresses these deficiencies by combining object detection, multi-class 

classification, threshold tuning, and medical explanation generation into a single system. 

 

IV. SYSTEM OVERVIEW 

The NeuroAI framework is designed as a modular and scalable system consisting of four major components:  

 MRI Image Acquisition and Preprocessing 

 YOLOv8-Based Tumor Detection and Classification 

 RAG-Based Medical Explanation Module 

 Web-Based User Interface and Deployment 

 

The overall workflow begins with MRI image upload, followed by tumor detection and classification, 

explanation generation, and result visualization. 
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Fig. 1. NeuroAI system interface 

 

Figure 1 shows a user facing version of the proposed Neuro AI system. The design enables users to load MRI 

brain scans directly to a web-based interface, making it fast and easy to use. Adjustable confidence and IoU 

threshold sliders are provided for clinicians or users to further adjust detection sensitivity depending on 

diagnostic needs. The class confidence scores and bounding boxes indicate the tumor area that are detected in 

the visualization panel. Also, there is a text explanation module in the interface that displays medically 

relevant information based on the tumor type. This collaborative design brings the automated detection a step 

further into human understanding, making it appropriate for both clinical decision making and educational 

applications. 

 

 

V. DATASET DESCRIPTION 

The MRI dataset used in this study was obtained from The Cancer Imaging Archive (TCIA), a publicly 

available repository maintained by the National Cancer Institute. TCIA provides de-identified, ethically 

usable medical imaging data suitable for academic research. 

The dataset includes MRI scans representing: 

 

 Meningioma 

 Glioma 

 Pituitary tumors 

 Non-tumor cases 

 

The data was divided into training, validation, and testing subsets to ensure unbiased evaluation. 

Preprocessing steps included image resizing, normalization, and quality filtering. Data augmentation 

techniques such as rotation, flipping, and scaling were applied to enhance generalization and mitigate 

overfitting. 

 
Fig. 2. Sample MRI image selection 

 

Fig. 2 shows the selection of images for the dataset during the evaluation phase of the proposed system. MRI 

scans are classified into classes categorized according to a tumor type, including meningioma, glioma, 

pituitary tumor and non-tumor cases. This system of organization facilitates data collection and 
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experimentation during training and testing. Tests are conducted manually by selecting images to test for real-

world performance of the model on unseen samples. Such class-wise organization is essential to ensure 

accurate evaluation and a level of class-specific detection behavior, particularly in medical imaging where 

visual similarities among classes can impact model performance. 

 

Tumor 

Class 

Description  

Meningioma Tumors originating from the 

meninges 

Glioma Tumors arising from glial cells 

Pituitary Tumors affecting the pituitary 

gland 

No Tumor Normal brain MRI scans 

Fig. 3. Table of Dataset Composition 

 

Fig. 3 describes the tumor categories used for the study and their clinical description. The inclusion of several 

tumor types allows the proposed system to perform multi-class classification, rather than binary detection, 

which also increases its clinical utility. A specific anatomical and visual patterning within the tumor category 

is evident in MRI images, suggesting this particular challenge to automated detection. A non-tumor class also 

allows the model to function as anomaly detection system, distinguishing pathological cases from healthy 

brain scans. This multi-class setup improves the robustness of the framework and makes it more applicable 

for diagnostic purposes. 

 

 

VI. METHODOLOGY 

A. YOLOv8 Architecture 

YOLOv8 is a single-stage object detection model that performs localization and classification in a single 

forward pass. This architecture enables real-time inference while maintaining high detection accuracy. The 

model predicts bounding boxes along with class probabilities for each detected object.  

 

B. Detection Threshold Selection 

To minimize false negatives, a confidence threshold of 0.25 was selected. This choice prioritizes sensitivity, 

which is critical in medical diagnosis where missing a tumor can have severe consequences. An IoU threshold 

of 0.45 was chosen to handle irregular tumor boundaries commonly observed in MRI scans. 

 

C. Multi-Class Tumor Detection 

The model outputs predictions for four classes: meningioma, glioma, pituitary tumor, and no tumor. This 

multi-class setup allows the system to function both as an anomaly detector and a tumor classification tool. 

 

 

VII.  MATHEMATICAL MODELING AND ALGORITHM DESIGN 

YOLOv8 predicts bounding boxes and class probabilities using the following formulation: 

a. Bounding Box Prediction: 

𝐵𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥, 𝐵𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦  

𝐵𝑤 = 𝑝𝑤𝑒
𝑡𝑤 , 𝐵ℎ = 𝑝ℎ𝑒

𝑡ℎ  

where 𝜎(⋅)denotes the sigmoid function. 
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b. Intersection over Union (IoU):      

IoU = Area of Overlap/Area of Union 

An IoU threshold of 0.45 was selected to accommodate irregular tumor boundaries. 

 

c. Confidence Score: 

𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 = 𝑷(𝒐𝒃𝒋𝒆𝒄𝒕) × 𝑰𝒐𝑼 

A confidence threshold of 0.25 was used to prioritize sensitivity. 

d. Softmax Classification: 

𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝒙𝒊) =
𝒆𝒙𝒊

∑ 𝒆𝒙𝒋𝒋

 

e. Overall Loss Function 

𝑳 = 𝑳𝒄𝒍𝒔 + 𝑳𝒃𝒐𝒙+ 𝑳𝒐𝒃𝒋 

 

 

VIII. MODEL TRAINING AND IMPLEMENTATION DETAILS 

The YOLOv8 model was implemented using the Ultralytics framework. Training was conducted using GPU-

accelerated hardware to ensure efficient convergence. Hyperparameters such as learning rate, batch size, and 

number of epochs were tuned empirically. 

 

Parameter Value 

Optimizer Adam 

Learning Rate 0.001 

Batch Size 16 

Image Size 640 x 640 

Epochs Multiple iterations 

Fig. 4. Table of Training Configuration 

 

The Illustration presents the key training parameters used to develop the YOLOv8-based detection model. 

The choice of optimizer, learning rate, and batch size plays a crucial role in achieving stable convergence and 

optimal performance. A fixed image resolution was selected to balance detection accuracy and computational 

efficiency. These hyperparameters were empirically tuned to ensure reliable learning while minimizing 

overfitting. Providing detailed training configuration enhances the reproducibility of the study and allows 

other researchers to replicate or extend the proposed framework. 

 

 

IX. EXPERIMENTAL SETUP AND EVALUATION METRICS 

Performance was evaluated using standard metrics: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Recall was prioritized due to its importance in minimizing false negatives. 
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X. RESULTS AND DISCUSSION 

The proposed NeuroAI framework performance was assessed through qualitative and analytical analysis of 

MRI brain scans taken from the TCIA. The analysis focused on how the system could detect, localize, and 

classify brain tumors in real-world conditions with high sensitivity, which is an essential consideration for 

clinical diagnostics. The proposed system does simultaneous localization as well as multiclass classification 

as they do with the traditional technique of predicting only a tumor to provide a more complex view of MRI 

scans. But, the most striking finding of this experimental study is that the system is extremely versatile in 

identifying tumor sites from normal brain tissue in numerous tumor types such as meningioma, glioma and 

pituitary tumors. YOLOv8-based detection model consistently produced abnormal regions that had well 

defined boundaries, even in cases where tumor boundaries were irregular or completely blended with 

surrounding tissues. This feature also highlights the value of the acquired spatial features and demonstrates 

the utility of spatial approaches for object detection in clinical imaging applications that require accurate 

localization to make clinical decisions. The model's scores of classification confidence also show high 

discriminative performance. On properly identified tumor regions, the model predicted high confidence values 

for corresponding tumor class and low confidence values for non-relevant classes. This behaviour indicates 

that the model has learned class specific visual characteristics despite the high prevalence of similarities 

between classes in brain MRI scans. In particular, there was reliable differentiation between tumor and non-

tumor cases indicating that the system can be used as an anomaly detection strategy. This is of clinical 

importance, because the assumption that healthy tissue is pathologic is susceptible to unnecessary follow-up 

and increased patient anxiety. In this model the use of a relatively low confidence threshold of 0.25 is a design 

choice. In their experimental studies, the presence of this threshold allows for sensitivity to be prioritized and 

therefore possible tumor locations are not overlooked. False negatives are much more critical in medical 

diagnosis than false positives because missed tumors can inhibit treatment and lead to worse patient outcomes. 

This lower confidence threshold allows the system to identify subtle or early-stage tumors that would 

otherwise have been overlooked by more conservative models. While this could increase the number of low 

confidence detections, these can be analysed by clinicians and thus the system is an effective decision support 

tool rather than a fully autonomous diagnostic system. The IoU threshold of 0.45 also plays an important role 

in balancing detection accuracy with localization precision. Brain tumors have irregular patterns and diffuse 

boundaries which can lead to some overlap between predicted and ground truth regions. But, where the 

localization is clinically appropriate, they may be penalized by a stricter IoU limit. This threshold allows for 

the model to account for anatomical variability without compromising spatial consistency. It has been found 

that this threshold aids in the accurate determination of specialized tumors with complex morphology, 

including gliomas, which exhibit an infiltrative growth pattern. A stable performance across several MRI 

scans from a qualitative perspective suggests a good generalization capability for the system. This robustness 

was also maintained by the use of data augmentation during training, where models were exposed to a wider 

range of orientations, scales and intensity variability. This is particularly important in medical imaging 

applications, where acquisition conditions and patient factors can have a dramatic influence on image quality. 

The model’s ability to cope with such variability suggests that it may also be applied in actual clinical practice 

outside of controlled experimentation. One of the highlights of the findings is that the RAG module integrates 

well with the AR program to improve interpretability. While the detection model outputs quantitative data in 

the form of bounding boxes and confidence scores, the RAG module converts these results into medical 

context. This combination of visual and text information encourages user-centered understanding and trust in 

the forecasts that are made by the system. Such interpretability is essential in clinical practice because health 

professionals need not only predictions, but context in order to develop diagnostic reasoning. While it has 

strengths, experimental testing was also able to reveal weaknesses that warrant discussion. While visual 

similarity between tumor types did occasionally result in minor classification ambiguities, such as between 

meningioma and glioma with overlapped intensity characteristics. These misclassifications show the 

complexity of brain tumor imaging and call for more contextual or multimodal data in future improvements. 

On top of that, the use of 2D MRI slices may affect the model’s ability to accurately represent 3D tumor 
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structure, suggesting that future research could benefit from 3D volumetric analysis. Overall, these results 

suggest that this NeuroAI framework effectively addresses important problems of automatic brain tumor 

detection and classification. Using object detection with sensitivity focused thresholding as well as the outputs 

which are explicable in order to obtain accurate tumor identification and to remain clinically relevant. The 

performance of the system is consistent with its function as an additional diagnostic tool for aiding clinicians 

in the analysis of MRI scans more efficiently and consistently. This data supports the role of deep learning 

based object detection models in medical imaging applications and diagnostic workflows for healthcare 

patients.     

  
Fig. 5. Brain tumor detection by the system 

 

The figure illustrates a complete detection cycle performed by the proposed NeuroAI framework, starting 

from the MRI brain scan and culminating in the final tumor detection output. The upper portion of the interface 

displays the uploaded MRI image, representing real-world clinical input data. The middle section highlights 

the adjustable confidence and Intersection-over-Union (IoU) threshold controls, which allow users to fine-

tune detection sensitivity and spatial overlap requirements. In the presented example, a confidence threshold 

of 0.25 and an IoU threshold of 0.45 were used to prioritize sensitivity and accommodate irregular tumor 

boundaries commonly observed in brain MRI scans. The lower portion of the figure shows the detection result 

generated by the YOLOv8 model, where the tumor region is localized and classified with corresponding 

confidence scores. The high confidence value assigned to the meningioma class demonstrates the model’s 

ability to accurately distinguish tumor types while suppressing non-relevant classes. This end-to-end 

visualization reinforces the practical effectiveness of the system by clearly linking input data, parameter 

selection, and detection outcomes within a single integrated interface. 

 

 

XI. CONCLUSION 

This paper presented NeuroAI, a multi-objective deep learning model that automates the identification, 

localization, and multiclass classification of brain tumors using MRI scans. The proposed system sought to 

address key limitations of conventional MRI based diagnosis, such as manual interpretation, variability in 

diagnostic outcome, and increasing radiology workload. The YOLOv8 object detection architecture allows 

for tumor localization and classification in one inference step and produces spatial and semantic information 

relevant for clinical interpretation. One of the biggest contributions of this work is the design of brain tumor 

detection as a anomaly detection and object localization problem rather than as a simple image classification 

task. This method allows for the system to identify abnormal regions in MRI scans, and distinguishes among 

several types of tumors, including meningioma, glioma, pituitary tumor, and non-tumor cancer. The use of 

sensitivity focused detection thresholds reflects the clinical priority to minimize false negatives, so that more 

subtle or early onset tumors will not be overlooked. Plus, the results from experiments revealed that this design 

choice achieves a satisfactory balance between detection robustness and clinical relevance, demonstrating that 

model objects may be appropriate for medical imaging applications. Another of the important aspects of the 
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proposed framework is the use of explainability as a module of Retrieval Augmented Generation (RAG). 

Although deep learning models are generally criticized as a black box model, contextual medical explanations 

and detection outputs make transparency and user trust more important. It provides medically related informed 

decision making and allows for the sharing of information with clinicians, students, and researchers, through 

the conversion of the raw model predictions into interpretive medical knowledge. This preoccupation with 

interpretability is consistent with the existing best practices in medical artificial intelligence, where 

explainability is increasingly identified as a requirement of real-world use. NeuroAI’s practical impact is 

further enhanced by its web application usage. The system is available in a normal web browser, which 

eliminates specialized hardware or programs, and is suitable for a variety of applications, including resources 

limited environments. This framework is intended to serve as a decision support tool, rather than replace 

clinical knowledge of radiologists by highlighting areas of interest and providing pre-tests that can improve 

diagnostic accuracy and consistency. Its performance is good but also it identifies important areas for 

improvement. This reliance on 2-dimensional MRI slices leaves the system unable to fully capture three-

dimensional tumor morphology; further validation through larger multi-institutional datasets will allow 

generalizability across populations of patients. On top of that, clinical application would require strict review 

and regulation as well as ethical and legal considerations. Finally, the proposed NeuroAI framework 

demonstrates the potential of deep learning-based object detection models to increase the accuracy of brain 

tumor diagnosis by combining detection automaton, multi-class classification, interpretability, and real-time 

deployment into one single unit. The results from this study suggest that medical imaging platforms that are 

embedded in AI and designed for ethical and clinical purposes can be useful to healthcare professionals and 

improve diagnostic processes and the progression of artificial intelligence into modern medicine. 
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