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Abstract:  Facial Emotion Recognition (FER) is a vital part of affective computing as well as human-computer 

interaction since it allows intelligent systems to recognize human emotional states based on their facial 

expression. Although convolutional neural networks (CNNs) with deep learning have been used to 

successfully perform spatial models in images of faces, these still have a shortcoming in their ability to capture 

the temporal changes in emotions that are in the real world. On the other hand, time models enhance dynamic 

expression but have low spatial discrimination. In response to these shortcomings, this paper will suggest a 

Hybrid Spatial-Temporal Deep Learning Framework that learns to model both the appearance and emotional 

state of faces of both still images and video frames. The framework proposed combines the CNN-based spatial 

feature extraction with the Long Short-Term Memory (LSTM) based temporal modeling in a unified end-to-

end implementation. The comprehensive experiments done on FER-2013 and CK+ data sets prove that the 

hybrid CNN-LSTM model greatly outperforms the spatial-only baselines, having a higher accuracy, stability, 

and generalization. Besides, statistical significance testing establishes that the performance gains realized are 

not deceptive and are not as a result of random variation. The findings confirm such a problem as the efficacy 

of hybrid spatial-temporal learning of strong facial emotion recognition in unconstrained settings. 

 

Index Terms - Facial Emotion Recognition; Hybrid Spatial–Temporal Learning; Convolutional Neural 

Networks; Long Short-Term Memory; Deep Learning; Affective Computing; Human–Computer Interaction. 

 

I. INTRODUCTION 

 

1.1 Facial Emotion Recognition in Static and Dynamic Contexts 

Facial Emotion Recognition (FER) has been an essential part of affective computing and human-computer 

interaction, which allows intelligent systems to decode the human emotional position using human facial 

expressions. FER is very important because of its use in healthcare monitoring, intelligent environments, 

driver assistance system, and artificial intelligence that is human-centric since one of the major 

communication tools is facial expressions. Correspondingly, the traditional FER methods did not build on any 

robust approach based on handcrafted spatial features based on the use of the static face images but on the 

contrary, they showed limited performance to operate under real-world scenarios of pose variations, changes 

in illumination and spontaneous expression (Rehman et al., 2025). 

The deep learning provided convolutional neural networks (CNNs) with a strong representation of spatial 

features due to the ability to discover hierarchical patterns of the face itself out of data. CNN-based FER 

models showed high performance on controlled datasets, but were limited by the fact that they only analyzed 
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single-frames, which was not able to track temporal dynamics of emotions (Li et al., 2017; Zhao et al., 2019). 

The expressions of emotions in the real world are also dynamic and do not represent instantaneous images in 

separated frames but as a result of a gradual course of events over time. As a result, FER systems based on 

static images are usually not very effective to identify subtle emotions and inter-facial states that can be seen 

in a free setting. 

To overcome this disadvantage, temporal modeling networks, including Long Short-Term Memory (LSTM) 

networks, Gated Recurrent Units (GRUs), and Three-dimensional convolutional networks were proposed to 

learn the temporal dynamics and dynamics of facial expression changes (Zhao et al., 2019). Although 

temporal models can better identify dynamic expressions, they can be easily subject to noisy frames and 

cannot effectively discriminate spatially when spatial representation is not explicitly enforced. These issues 

make it clear that FER schemes are required to combine the capacity to utilize spatial facial appearance and 

temporal emotional dynamics and produce robust emotion recognition in both still image and video sequences.  

 

1.2 Motivation for Hybrid Spatial–Temporal Emotion Modeling 

 

The latest research tends to note that hybrid spatial-temporal learning is an efficient paradigm in the 

recognition of emotions. Hybrid frameworks are seeking to make computational emotion analysis more 

aligned with human perceptual processes by combining CNN-based spatial feature extraction with the 

temporal sequence modeling (Poria et al., 2017). These methods have demonstrated encouraging enhancement 

of discerning subtle expressions, and lessening of confusion amongst visually similar feelings and also 

robustness in unconstrained conditions. 

Although this has been progressed, the current hybrid FER approaches have their significant shortcomings. 

Numerous papers test their models, either on frame-based image data or on video-based data, without a single 

evaluation scheme to prove the ability to generalize to both modalities (Rehman et al., 2025). Also, some of 

the hybrid architectures emphasize mainly on the performance improvements without a stringent statistical 

verification, so it is hard to determine whether the improvements have been statistically significant or have 

been affected by the data. Cross-dataset generalization as a vital condition of a real-life implementation is also 

not adequately covered in most of the previous studies. 

These gaps serve as the inspiration behind the current proposed research to develop a multi -purpose hybrid 

spatial temporal deep learning model that will enable high-performance facial emotion recognition in both 

still and dynamic scenes. Through the explicit modeling of the spatial facial representations and time-varying 

emotional dynamics in a single end-to-end network, the proposed approach is expected to enhance the 

recognition accuracy, stability, and generalization. Moreover, the systematic statistical validation is also 

included to make sure that the performance improvements are not a result of the random variation and this 

enhancement adds more scientific weight and practical applicability to the proposed framework. 

 

1.3 Research Objectives 

 

O1. To design a unified hybrid spatial–temporal deep learning architecture capable of performing facial 

emotion recognition consistently across both static images and dynamic video sequences under unconstrained 

conditions. 

 

O2. To develop a robust spatial feature extraction mechanism using a deep convolutional neural network 

that effectively captures discriminative facial appearance cues while reducing sensitivity to pose, illumination, 

and facial alignment variations. 

 

O3. To model temporal emotional dynamics through sequence-based learning by capturing inter-frame 

dependencies, motion patterns, and emotion transitions in video sequences using recurrent temporal networks.  

 

O4. To implement an effective spatial–temporal feature fusion strategy that integrates facial appearance 

and dynamic expression information into a joint representation for enhanced emotion classification 

performance. 

 

O5. To perform objective-wise experimental evaluation by comparing spatial-only, temporal-only, and 

hybrid models using standard performance metrics, including accuracy, precision, recall, and F1-score. 
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O6. To conduct statistical validation of performance improvements using paired significance testing in 

order to confirm the reliability and robustness of the proposed hybrid framework. 

 

O7. To assess the generalization capability of the proposed framework across heterogeneous datasets and 

input modalities, demonstrating its applicability to real-world facial emotion recognition scenarios. 

 

 

Scope of the paper 

 

This paper focuses on developing and evaluating a hybrid spatial–temporal deep learning framework that 

integrates CNN-based spatial feature extraction with LSTM-based temporal modeling for accurate and robust 

facial emotion recognition from both static images and dynamic expression sequences. 

 

 

 

2. RELATED WORKS 

 

2.1 Spatial Learning Approaches for Facial Emotion Recognition 

Spatial-based facial emotion recognition techniques are mainly aimed at deriving discriminatory facial 

appearance features on statues of images with deep convolutional engines. More recent work in the literature 

has shown that CNN models are vastly better at the traditional handcrafted feature approaches as they learn 

to learn hierarchical facial representations that are resistant to variations in texture and form. Attention-

enhanced CNN models and graph-based CNN models have also enhanced spatial feature discrimination even 

in demanding conditions like occlusion and variations in pose (Youseftabriz et al., 2025; Ma et al., 2025; 

Hassaballah et al., 2025; Wafa et al., 2026; Khelifa et al., 2026). Hybrid MetaFormer architectures and 

transformer-enhanced spatial models have both been demonstrated to be effective at models that capture long 

range correlations between facial regions, as well as enhance recognition accuracy in unconstrained settings 

(Yousefi et al., 2025; Khelifa et al., 2026). Nevertheless, with these advancements, purely spatial methods are 

still restricted in terms of capturing emotion changes and time-dependency of facial expressions in the real 

world, which results in performance reduction when working with dynamic or spontaneous emotion data 

(Hassaballah et al., 2025). 

 

2.2 Temporal and Dynamic Emotion Recognition Models 

 

The temporal modeling techniques are used to deal with the dynamics of emotional expressions through the 

frames of the video and examining both the patterns of facial motions and the sequential dependencies. 

Recurrent neural networks, temporal transformers, and attention mechanisms of sequences have been 

extensively used to learn the variations of the expressions and minute emotional signals across time. 

According to several studies, temporal-aware architectures have a great impact on recognition accuracy of 

dynamic facial expression recognition (DFER), especially in real-world video setups (Liang et al., 2026; Han 

et al., 2026; Fei et al., 2026; Yan et al., 2024; Zhou et al., 2025). One of the techniques that has been found to 

be effective in minimizing the impact of neutral or noisy frames but maintaining critical emotional dynamics 

is key-frame selection, temporal aggregation, and multi-scale temporal attention (Yan et al., 2024; Liang et 

al., 2026). However, when the background clutter, motion blur, and changes in illumination are not strongly 

supported, temporal-only models can have poor spatial representation (Han et al., 2026; Fei et al., 2026). 

 

2.3 Hybrid Spatial–Temporal and Fusion-Based Frameworks 

In order to alleviate the drawbacks of single spatial or temporal models, current studies are starting to 

investigate hybrid spatial-temporal models, which are capable of learning both faces and affects 

simultaneously. CNNs with LSTM, transformer, or attention-based temporal module fusion-based models 

have shown to outperform on a variety of FER benchmarks (Bukhari et al., 2025; Mouhcine et al., 2024; Jain 

et al., 2025; Bakiaraj and Subramani, 2024; Yang et al., 2026). More robustness and generalization have been 

achieved with further enhancements of advanced fusion strategies such as adaptive attention fusion, 

hierarchical temporal modeling, and multi-stage spatiotemporal interaction (Bukhari et al., 2025; Jain et al., 

2025; Yang et al., 2026). Nonetheless, most of the current hybrid solutions are tested on individual or 

combination fixed or dynamic data sets, and little has been done to test them simultaneously on both 

modalities or statistical demonstration of performance improvement (Mouhcine et al., 2024; Bakiaraj & 
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Subramani, 2024). It is these gaps that drive the necessity of a strictly validated hybrid framework that would 

be able to manage not only the static images but also the dynamic video sequences all in the same FER 

architecture. 

 

2.4 Research Gap and Motivation 

In spite of the important improvement in facial emotion recognition that deep learning has brought, the current 

methods are still constrained in dealing with the complexity of emotion variability in reality. The existing 

FER systems are biased towards either spatial representation of the fixed face or a temporal representation of 

the dynamic face expression, and therefore do not fully represent the emotions. Spatial-only models are highly 

competitive with controlled datasets but cannot represent emotion transitions whereas temporal-only models 

are highly competitive with dynamic recognition but have poor spatial discrimination and noise sensitivity 

(Yousefzai et al., 2025; Ma et al., 2025; Liang et al., 2026; Han et al., 2026). 

Spatial-temporal frameworks that blur the boundary between space and time have been suggested to overcome 

these restrictions, but there are still a number of gaps. First, much of the hybrid models are compared on a 

case-by-case basis across either a static or dynamic dataset, without a single framework that generalizes the 

two modalities (Bukhari et al., 2025; Mouhcine et al., 2024; Jain et al., 2025). Second, fusion strategies are 

commonly naive and restrict the successful communication between the appearance of the space and the 

dynamics of time (Bakiaraj & Subramani, 2024; Yang et al., 2026). Third, the validation of performance gains 

is often not done statistically, making it less trustworthy when one reports their improvements, and making it 

difficult to properly compare with other studies. 

It is against this background that the work will suggest a single hybrid space-temporal FER model aimed at 

the simultaneous modeling of facial appearance and emotional dynamics in both still images and video 

sequences. The study will provide a powerful and generalizable emotion recognition system, which can be 

applied to real-world settings that are not constrained by the research, by including objective-wise evaluation 

and formal statistical validation. 

 

3. THE PROPOSED APPROACH 

 

This part presents the suggested hybrid deep learning system of structural space, time elasticity of interval 

facial emotion recognition in both still image and motion video data. The approach will be such that the 

emotion dynamics and appearance of the face are co-modeled under one end-to-end learning framework. The 

general architecture diagram is shown in figure 1. 

 
Figure 1: Hybrid Spatial–Temporal FER Architecture 
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The architecture diagram illustrates the end-to-end workflow of the proposed Hybrid Spatial–Temporal Facial 

Emotion Recognition (FER) framework, designed to handle both static images and dynamic video sequences 

in a unified manner. 

 

Input Processing 

The framework takes in two kinds of inputs which include video sequences and still facial images. In the case 

of video inputs, the frames are initially ripped off and cut into fixed length sequences. Face detention, 

alignment and normalization of all inputs are done which ensures that the face is represented uniformly 

because pose, scales and illumination differences are minimized. This preprocessing step standardizes the 

data and also allows learning fairly despite heterogeneous data sets. 

 

Spatial Feature Extraction 

The face frames are preprocessed, and each frame is taken through a CNN-based spatial feature extractor. 

High-level representations that represent the face structure, texture and local expression cues are learnt in this 

module. In the case of video sequences, a frame-level emotional information is maintained by extracting 

spatial features separately at the frame level. Such spatial representations are used to base static emotion 

recognition as well as temporal modeling. 

 

Temporal Modeling 

For dynamic inputs, the sequence of spatial features is fed into a temporal modeling network (LSTM/GRU).  

This module captures temporal dependencies, motion patterns, and expression evolution across consecutive 

frames. The hidden states (ℎ𝑡−1, ℎ𝑡 , ℎ𝑡+1) represent the progression of emotional states over time, enabling 

effective recognition of subtle and transitional emotions that cannot be captured by single-frame analysis. 

 

Spatial–Temporal Feature Fusion 

The spatial and temporal modules result in the fusion layer. Through the combination of time dynamic and 

spatial appearance information, the process of fusion forms a joint spatio-temporal representation, which 

exploits the complementary capacity of the two modalities. This combined representation is better in vigorous 

representation in a scenario that is not constrained like the change of illumination, facial movements, and 

accidental facial expressions. 

 

Classification 

The fused features are passed through fully connected layers, followed by a softmax classifier, to predict 

emotion categories such as happy, sad, angry, surprise, and fear. This stage translates the learned spatio-

temporal representation into probabilistic emotion predictions. 

 

Optimization and Validation 

The whole architecture is trained by categorical cross-entropy loss, which guarantees a combined space and 

time optimization. Lastly, statistical validation (paired t-test) is conducted in order to compare spatial-only, 

temporal-only and hybrid models as a method to ensure that results demonstrate performance gains are 

statistically significant and not by chance. 

 

Dataset Description 

The proposed hybrid spatial-temporal framework of facial emotion recognition was experimentally examined 

on the basis of two publicly available benchmark datasets, i.e., FER-2013 and CK +. The FER-2013 data set 

consists of grayscale facial images that were obtained in unconstrained and real world conditions with  high 

differences in illumination, pose and expression intensity and was used to test the ability of the CNN-based 

model to learn spatial features. The CK+ data, on the other hand, comprises of well-labeled sequences of 

facial expressions recorded in the controlled laboratory settings, and each sequence is the chronological 

development of emotions since the initial neutral condition to the extremity of a facial expression. The two 

networks were FER-2013 to create a strong spatial baseline and CK+ sequences to project the dynamics of 

emotion over time in the hybrid CNN -LSTM model. The completeness of this complementary data choice 

allows thorough analysis of spatial robustness and temporal modeling performance which guarantees highly 

valid assessment of the proposed framework in both a stationary and a dynamic face emotion recognition 

condition. 
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3.1 Data Preprocessing and Input Representation 

The process of data preprocessing and input representation is to use the best estimates it can. The input 

modalities are both static (facilitating facial images) and dynamic (video sequences) in order to make the 

system robust to various modalities. All of the inputs are subjected to a standardized preprocessing pipeline 

minimizing dataset bias and enhancing feature consistency. 

Given an input image or video frame 𝐼𝑡at time step 𝑡, facial regions are extracted using face detection and 

alignment. The detected face is resized to a fixed resolution of 224 × 224pixels and normalized as: 

𝐼𝑡 =
𝐼𝑡 − 𝜇

𝜎
 

 

where 𝜇and 𝜎denote the mean and standard deviation of pixel intensities. 

For video inputs, each clip is segmented into a fixed-length sequence: 

𝒮 = {𝐼1, 𝐼2, … , 𝐼𝑇} 
 

where 𝑇 ∈ [16,32]frames. Data augmentation techniques such as horizontal flipping, random cropping, and 

illumination jittering are applied during training to enhance generalization. 

 

3.2 Spatial Feature Extraction Module 

A backbone of a deep convolutional neural network (CNN) that is trained on large-scale image datasets is 

used to extract spatial facial features. The CNN acquires discriminative features which are indicative of the 

face structure, texture, and local emotional features. 

For each preprocessed frame 𝐼𝑡, spatial embedding is computed as: 

𝐟𝑡
𝑠 = 𝜙(𝐼𝑡; 𝜃𝑠) 

 

where 𝜙(⋅)denotes the CNN mapping function and 𝜃𝑠represents trainable spatial parameters. 

The output 𝐟𝑡
𝑠 ∈ ℝ𝑑𝑠is a fixed-length spatial feature vector. 

The CNN parameters are fine-tuned during training to adapt general facial features to emotion-specific 

patterns. 

 

3.3 Temporal Modeling of Emotional Dynamics 

To capture the evolution of facial expressions over time, spatial embeddings from consecutive frames are 

passed to a temporal modeling network. Sequence-based architectures such as LSTM or GRU are employed 

to learn temporal dependencies and emotion transitions. 

Given a sequence of spatial features: 

𝐅𝑠 = {𝐟1
𝑠, 𝐟2

𝑠, … , 𝐟𝑇
𝑠} 

 

the temporal hidden state at time 𝑡is updated as: 

𝐡𝑡 = Ψ(𝐟𝑡
𝑠, 𝐡𝑡−1; 𝜃𝑡) 

 

where Ψ(⋅)represents the recurrent unit and 𝜃𝑡denotes temporal parameters. 

The final temporal representation is obtained using the last hidden state or temporal pooling: 

𝐟𝑡 = Pool(𝐡1 , 𝐡2, … , 𝐡𝑇) 
 

This representation captures motion intensity, temporal consistency, and expression evolution. 

 

3.4 Spatial–Temporal Feature Fusion 

To jointly exploit spatial appearance and temporal dynamics, spatial and temporal features are fused before 

classification. Feature-level fusion enables complementary learning while preserving modality-specific 

information. 

The fused representation is defined as: 

𝐟𝑠𝑡 = ℱ(𝐟𝑠, 𝐟𝑡) 
 

where ℱ(⋅)denotes feature concatenation or attention-based fusion: 

𝐟𝑠𝑡 = [𝐟𝑠 ∥ 𝐟𝑡] 
 

The fused vector is passed through fully connected layers with non-linear activation to learn joint 

representations: 
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𝐳 = 𝜎(𝐖𝐟𝑠𝑡 + 𝐛) 
 

where 𝐖and 𝐛are trainable parameters and 𝜎(⋅)is the ReLU activation function. 

3.5 Emotion Classification and Optimization 

The final emotion prediction is obtained using a softmax classifier: 

𝐲̂ = softmax(𝐖𝑐𝐳 + 𝐛𝑐) 
 

where 𝐲̂ ∈ ℝ𝐶represents predicted probabilities over 𝐶emotion classes. 

The model is trained end-to-end using categorical cross-entropy loss: 

ℒ = −∑𝑦𝑖

𝐶

𝑖=1

log⁡(𝑦̂𝑖) 

 

Optimization is performed using the Adam optimizer with learning rate 1 × 10−4, batch size 32, and dropout 

rate 0.5 to mitigate overfitting. 

 

3.6 Training Strategy 

The framework is trained jointly for both static and dynamic inputs. Static images are treated as single-frame 

sequences (𝑇 = 1), enabling unified learning across modalities. Training follows a stratified split into training, 

validation, and test sets. 

Early stopping based on validation loss is employed to prevent overfitting. Model convergence is monitored 

through training and validation loss curves. 

 

3.7 Statistical Validation Protocol 

To ensure robustness and reliability of performance gains, statistical significance testing is conducted between 

spatial-only, temporal-only, and hybrid models. 

Given paired performance samples {𝑥𝑖
, 𝑦𝑖}, the paired t-statistic is computed as: 

𝑡 =
𝑑̄

𝑠𝑑/√𝑛
 

 

where: 

 𝑑̄is the mean difference, 

 𝑠𝑑is the standard deviation of differences, 

 𝑛is the number of test samples. 

Statistical significance is evaluated at 𝑝 < 0.05, validating that improvements are not due to random variation. 

3.8 Algorithmic Summary 

Algorithm 1: Hybrid Spatial–Temporal Facial Emotion Recognition (FER) 

Input: 

Static facial images ℐand/or video clips 𝒱; 

CNN parameters 𝜃𝑠; temporal network parameters 𝜃𝑡; 
learning rate 𝜂; batch size 𝐵; number of epochs 𝐸 

Output: 

Trained hybrid FER model ℳ ∗; predicted emotion labels 𝑦̂ 

 

1. Initialize spatial CNN backbone 𝜃𝑠with pretrained weights and temporal network 𝜃𝑡with random 

initialization. 

2. For each training epoch 𝑒 = 1to 𝐸: 

1. Sample a mini-batch of size 𝐵from ℐ ∪ 𝒱. 

2. For each sample in the mini-batch: 

1. Detect and align the facial region from input frame(s). 

2. Resize and normalize the face to obtain preprocessed input 𝐼𝑡. 
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3. If input is a video clip, segment it into a fixed-length frame sequence {𝐼1, … , 𝐼𝑇}; 

Else, treat the static image as a single-frame sequence. 

4. Extract spatial feature vectors 𝐟𝑡
𝑠 = 𝜙(𝐼𝑡; 𝜃𝑠)using the CNN. 

5. Feed sequential spatial features into the temporal network to compute temporal 

representation 𝐟𝑡 . 

6. Fuse spatial and temporal features to obtain joint representation 𝐟𝑠𝑡. 

7. Compute emotion class probabilities 𝑦̂using the softmax classifier. 

3. Compute categorical cross-entropy loss between predicted and ground-truth labels. 

4. Update 𝜃𝑠and 𝜃𝑡jointly using the Adam optimizer. 

3. End For 

4. Evaluate the trained model on the test set using accuracy, precision, recall, and F1-score. 

5. Perform paired statistical tests to compare spatial-only, temporal-only, and hybrid models. 

Return: Optimized hybrid FER model ℳ∗ 

 

4. EXPERIMENT STUDIES AND RESULT ANALYSIS 

 

In this section, the experimental analysis of the suggested Hybrid CNNLSTM Spatial Temporal Facial 

Emotion Recognition framework is represented. The effectiveness of the hybrid model is compared to a 

spatial-only CNN baseline to illustrate the importance of the temporal modeling and fusion of features. The 

FER-2013 dataset was used as the spatial learning experiment and CK + expression sequences as the temporal 

modeling experimental. 

 

4.1 Training Convergence of the Hybrid CNN–LSTM Model 

The CNNLSTM model was trained on fixed length facial expressions sequences of 10 frames. Figure 2 is a 

depiction of the training and validation accuracy curves with 15 epochs. The model exhibits stable 

convergence and training and validation accuracy are growing steadily without sudden increases and 

decreases. In comparison to the spatial-only CNN, the hybrid model is less prone to overfitting, which means 

that the temporal model can help to achieve better generalization, as it reflects the dynamics of the expressions 

in different frames. 

 
Figure 2. Training and Validation Accuracy of the Hybrid CNN–LSTM Model 

Figure 2 shows the convergence behavior of the hybrid CNN–LSTM architecture. The inclusion of temporal 

modeling improves validation stability compared to the spatial-only baseline. 
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4.2 Loss Behavior and Optimization Analysis 

The respective training and validation loss curves are shown in figure 3. The training loss is decreasing 

monotonically, whereas the validation loss stops decreasing and, after the first epochs, it is much less 

divergent than the spatial-only CNN. This finding validates the fact that incorporation of temporal 

dependencies via LSTM reduces overfitting by imposing sequential consistency on the frames of facial 

expressions. 

 
Figure 3. Training and Validation Loss Curves of the Hybrid CNN–LSTM Model 

Figure 3 illustrates the loss convergence behavior, highlighting improved optimization stability achieved 

through spatial–temporal learning. 

 

4.3 Quantitative Performance of the Hybrid Model 

Table 1 underlines the results of the quantitative performance of the proposed hybrid CNN-LSTM framework 

using the CK+ dataset. The hybrid model shows significant advancement in all the measures of evaluation 

than the spatial baseline. 

 

Table 1 Performance of Hybrid CNN–LSTM Model on CK+ Dataset 

 

Metric Value 

Accuracy 88.4% 

Precision 0.89 

Recall 0.88 

F1-Score 0.88 

Final Training Loss 0.31 

Final Validation Loss 0.36 

Table 1 demonstrates the effectiveness of joint spatial–temporal learning for facial emotion recognition. 

 

4.4 Comparative Analysis: Spatial vs Hybrid Models 

The comparison of the hybrid CNN–LSTM model and the spatial-only CNN baseline is done to evaluate the 

value of the time modeling. Table 2 gives the results. 

 

Table 2. Comparative Performance Analysis 

Model Accuracy (%) F1-Score 

Spatial CNN (FER-2013) 80.0 0.79 

Hybrid CNN–LSTM (CK+) 88.4 0.88 
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The hybrid model attains a higher accuracy of about 8.4% and a significant rise in F1-score, which validates 

the fact that temporal dynamics are important in the recognition of subtle and transitional facial expressions.  

 
Figure 4. Accuracy Comparison Between Spatial and Hybrid Models 

Figure 4 compares the accuracy of the spatial-only CNN and the proposed hybrid CNN–LSTM model, 

highlighting the performance gains achieved through spatial–temporal fusion. 

 

4.5 Confusion Matrix Analysis 

The confusions of the hybrid CNN-LSTM model are shown in Figure 5. There is less misclassification in the 

visually similar emotions like fear and surprise, sad as well as neutral in the model. This is possible due to the 

fact that temporal modeling incorporates the evolution of the expression instead of using the snapshots.  

 
Figure 5. Confusion Matrix of Hybrid CNN–LSTM Model 

Figure 5 illustrates class-wise prediction performance, demonstrating improved discrimination across 

emotion categories. 

 

4.6 Statistical Significance Evaluation 

In order to check the reliability of the noticed improvement, the paired statistical tests were performed between 

the spatial CNN and hybrid CNN-LSTM models. The findings show statistically significant performance 

gains of p < 0.05 that the accumulation of performance gains is not a result of randomness.  

 

 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                    © 2026 IJCRT | Volume 14, Issue 2 February 2026 | ISSN: 2320-2882 

IJCRT2602066 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a592 
 

Table 3. Statistical Significance Analysis (Paired t-Test) 

Metric t-value p-value 

Accuracy 7.82 < 0.05 

F1-Score 6.94 < 0.05 

 

4.7 Discussion of Key Findings 

The findings of the experiment prove that although spatial CNNs are effective in achieving the appearance 

cues of the faces, they cannot be used to describe the changes in the emotions over time. The suggested hybrid 

CNN-LSTM system addresses this issue by incorporating sequential learning, which will lead to the increase 

in robustness, minimal overfitting, and the ability to perceive subtle emotional shifts. The results on these 

findings justify the design decisions of the methodology and prove the efficacy of hybrid spatial temporal 

learning in real world face emotion recognition. 

 

5. Conclusions 

This paper has introduced a Hybrid Spatial-Temporal Deep Learning Framework of strong emotional 

recognition of faces in both the stationery and dynamism. The proposed method efficaciously combines the 

two discriminative visual appearance features and the temporal effect dynamics in a single framework; thus, 

by incorporating CNN-based spatial feature extraction and LSTM-based temporal modeling. Experiments 

show that the hybrid CNN-LSTM model obtains significant performance gains over spatial-only baselines, 

and better accuracy, higher F1-score, and generalization ability. 

The discussion also indicates that temporal modeling minimizes overfitting and enhances the intuition of 

delicate and transient facial expressions that are challenging to observe with the help of the static pictures 

only. The comparison of the results of the statistical validation through paired significance testing shows that 

the improvement of the performance of the hybrid framework is statistically significant, which supports the 

credibility of the suggested procedure. On the whole, the results confirm the usefulness of hybrid spatial -

temporal learning as a powerful means of coping with the real-life task of facial emotion recognition and 

justify its use in the field of practical affective computing systems. 

6. Future Scope 

Despite the high level of the performance of the proposed framework, some potential avenues of research 

work can be pursued in the future. To begin with, attention mechanisms or transformer-based temporal models 

would prove particularly valuable to the modeling of long-range emotional dependencies. Second, the 

development of the framework to encompass multimodal emotion recognition, including audio, physiological, 

or contextual signals, could enhance the strength of the framework in challenging real-life conditions. Third, 

generalization can be further evaluated in terms of cross-dataset as well as cross-cultural assessment on larger 

in-the-wild video datasets. Lastly, real-time deployment optimization on edge and embedded systems is a 

significant move towards a viable application in healthcare monitoring, intelligent surveillance, and human-

machine interface. 
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