

Seasonal Diversity of Chlorophyceae in Gorja Lake of Bhadrawati, District Chandrapur (M.S.), India.

Harney, N.V.

Department of Zoology, CHLR & SS in Zoology, Nilkanthrao Shinde Science and Arts College, Bhadrawati,
District Chandrapur (M.S.), India.

ABSTRACT

The present seasonal study was conducted in the Gorja Lake near Bhadrawati. Monthly and seasonal variation in the biological parameters for phytoplanktonic study like Chlorophyceae in Gorja lake were studied during the study period of June 2024 to May 2025 in which 17 species were recorded. This study indicates that the lakes of central India exhibit substantial variation in their biotic and abiotic characteristics.

KEY WORDS: Gorja lake, Chlorophyceae diversity, Phytoplankton.

INTRODUCTION

Gorja lake is principal fresh water body located in Gorja village of Bhadrawati tahsil in Chandrapur district of Maharashtra state. Gorja lake is 10 km south side from Bhadrawati tahsil at about 198 m above mean sea level and is at 79°05'48" E longitude and 20°05'59" N latitude. Gorja lake receives the water from the surrounding catchment areas during the monsoon period. Monthly and seasonal variation in the biological parameters for phytoplanktonic study like Chlorophyceae in Gorja lake were studied during the study period of June 2024 to May 2025.

MATERIAL AND METHODS

The area of Gorja Lake is spread over 300 acres. The depth of water is 35 feet during the monsoon and 12 feet during the summer season. Sample for planktonic study were collected monthly from each pond. The samples were collected in the morning hours between 8.30 a.m to 10.30 a.m. 50 Lt. of water sample was filtrated through the plankton net made of bolting silk number 25 with mesh size 64 lime. The collected samples were allowed to settle down by adding Lugol's iodine. Normally, sedimentation requires 24 hrs. After which supernatant was removed and concentrate was made up to 50 ml depending the number of plankton and preserved in 5% formalin for further studies.

For the quantitative study, the concentrated sample was shaken and immediately one drop of sample was taken on a clear micro slide with the help of a standard dropper, the whole drop was then carefully covered with the cover glass and observed. Plankton identification up to genera and whenever possible up to species level was classified according to keys given by Prescott (1954), Edmonson (1959), Sehgal (1983),

Adoni (1985) and APHA (1985) and standard analysis was undertaken as per Zar (2005). Quantitative study of plankton was done by Sedgwick – Rafter cell method.

RESULT AND DISCUSSION

Planktons are sensitive to the environment changes. Plankton diversity is mostly dependent on water quality, climatic factors and various physico-chemical and biological status of water body must be simultaneously taken into a consideration for understanding the fluctuations of plankton population (Davis, 1955). The study of planktons are very useful for the estimation of quality of water and also understand the basic nature and generally economy of the lake.

Chlorophyceae is (from the Greek word chloros, meaning “green”) make up an extremely large and very important class of green algae but Chlorophyceae these are distinguished mainly in the basis of ultrastructural morphology. Members may be unicellular, filamentous or colonial. The Chlorophyceae are generally found on rocks or soil forming a blackish crust when dry. Chlorophyceae there are approximate 350 genera and total approximately 2650 living species of chlorophyceans. They come in a wide variety of shapes forms and including free-swimming unicellular species, unicells, colonies, non-flagellate, filament and more.

In the present investigation, 17 species are recorded among which *Ankistrodesmus sp.* (216 no./lit) was dominant followed by *Chlorella sp.* (173 no./lit), *Chlamydomonas sp.* (139 no./lit), *Volvox sp.* (127 no./lit), *Chara sp.* (47 no./lit), *Netriumdigitus* (34 no./lit), *Pediastrum tetras* (40 no./lit), *Hydrodictyon sp.* (41 no./lit), *Cosmarium granatum* (49 no./lit), *Vorticella sp.* (47 no./lit), *Oedogonium sp.* (44 no./lit), *Spirogyra sp.* (44 no./lit), *Pleurodiscus sp.* (39 no./lit), *Staurastrum sp.* (37 no./lit), *Closteridium lunula* (25 no./lit), *Cylindrospermum sp.* (12 no./lit) and *Fritschella* (6 no./lit).

During present study, Chlorophyceae was found the most dominant group among all the phytoplankton. The abundance of Chlorophyceae was also observed by Sakhare and Joshi (2002) in Yeldari reservoir of Nanded District, Maharashtra. Kumawat and Jawale (2003) reported 14 genera belonging to Chlorophyceae from a freshwater pond at Dharmapuri in Beed District, Maharashtra. Pawar and Phulle (2006) observed Chlorophyceae were found to be dominant throughout the study of Pethwadaj dam at taluka Kandhar of District Nanded, Maharashtra. Pawar and Phulle (2006) observed 26 species of Chlorophyceae and reported *Ankistrodesmus falcatus* as an abundance species in Chlorophyceae in Petwadas dam of Kandhar of Nanded District, Maharashtra. Tiwari and Chouhan (2006) observed 34 species of Chlorophyceae in Kitham lake of Agra, Uttar Pradesh. Waghmare and Mali (2007) reported 10 species of the Chlorophyceae in a minor irrigation dam of Kalamnuri of District Hingoli, Maharashtra. and Jayabhaye, *et.al.*, (2007) in a Parola dam of Hingoli District of Maharashtra. Aijaz, *et.al.*, (2009) founded of 43 species Chlorophyceae from Wular lake., R. Prathap Singh and G.S. Regini Balasingh (2012) also observed that chlorophytae were the maximum number of genus in Kodaikanal lake of Dindugal District, R. Prathap Singh and G.S. Regini Balasingh (2012) noted 43 species belong chlorophyta in Kodaikanal lake of Dindugal District, D.S. Malik and Umesh Bharti (2012) reported 12 species of Chlorophyceae in Sahastradhara stream at Uttarakhand. R. Prathap Singh and M.R. Abadar (2013) collected only one species of Chlorophyceae in Morna lake Shirala (M.S.), K. Harish Kumar (2015) observed that Chlorophyceae with 27 species and Bacillariophyceae with 22 species were dominant in the Jannapura tank Bhadravati taluka of Karnataka. Patil Alaka A. (2015) reported the Chlorophyceae noted to be dominant over other groups in Bhambarde Reservoir of Sangli, Maharashtra. Sachinkumar R. Patil, *et.al.*, (2015) also founded that Chlorophyceae was dominant in Yarandol Khanapur in major freshwater bodies of Ajara Tahsil in Kolhapur District (M.S.). Sachinkumar R. Patil, *et.al.*, (2015) observed 16 species belong to Chlorophyceae in major freshwater bodies in Ajara Tahsil of Kolhapur District (M.S.), Patil Alaka A. (2015) observed 22 species of Chlorophyceae in Bhambarde reservoir of Sangli,

Maharashtra. S. C. Chunne, P. N. Nasare (2018) reported a total 74 species of phytoplankton were recorded during study period. In Nandgaon lake 43 species and in Arwat Lake 31 species of phytoplankton's were reported. Wasudha J. Meshram (2021) recorded 21 species of Chlorophyceae in Devtaki Pond, Gondia, Distt. Gondia. (M.S.). Rafiullah M Khan and Milind J Jadhav (2022) reported a total of 79 species of algae, under 39 genera in Lonar lake throughout the period of study. M. P. Nandeshwar, B. K. Mendhe & B. N. Pardhi (2023) reported 50 species were found in this study. All 50 species were found growing luxuriantly in different seasons. Out of these all 20 species of Cyanophyceae, 19 species of Chlorophyceae, 2 species of Charophyceae, 4 species of Euglenophyceae, and 5 species of Bacillariophyceae in Salekasa Tehsil of Gondia District, Maharashtra. Bibhishan Mahadik, Panchshila Kabnoorkar (2025) recorded 36 species belong to Chlorophyceae in Bhadawladi Lake. Raut D. K., Raut R. R., Pathan T. S. (2025) reported a total of 19 phytoplankton species in Tarangwadi Perennial Lake, Indapur, District Pune. B. Mallesh Reddy (2025) reported a total of 64 taxa of phytoplankton have been isolated from the lake out of which 50 species of Chlorophyceae are found Perennial Lake of Bamanwada Village, Chandrapur District, Maharashtra.

In the present investigation the seasonal Chlorophyceae was found maximum during the winter season and minimum during the monsoon season. Jayabhaye, *et.al.*, (2007) observed maximum Chlorophyceae population during the summer season and minimum during the rainy season in Parola dam of Hingoli, Maharashtra. D.S. Malik and Umesh Bharti (2012) reported and revealed that Chlorophyceae was maximum during the winter season and minimum during the monsoon season in Sahastradhara stream at Uttarakhand. Wasudha J. Meshram (2021) observed chlorophycean abundance coincided with lower PH range. DO was recorded peak during the winter season while lower during the summer season in Devtaki Pond, Gondia, Distt. Gondia. (M.S.). Bibhishan Mahadik, Panchshila Kabnoorkar (2025) reported Chlorophyceae members mostly found in rainy and winter season whereas Cyanophycean and Bacillariophyceae found in summer season mainly in Bhadawladi Lake. Raut D. K., Raut R. R., Pathan T. S. (2025) reported seasonal Variations Chlorophyceae showed peak abundance during summer months (April-June), attributed to higher temperatures and nutrient availability. Bacillariophyceae were prominent during winter (November-January), while Cyanophyceae exhibited sporadic blooms, particularly after monsoon inflows (July-September) in Tarangwadi Perennial Lake, Indapur, District Pune. In the present investigation the Chlorophyceae was found the maximum during the winter season may be due to high amount of dissolved oxygen and the minimum during the monsoon season may be due to low temperature and dilution due to rain water. Dissolved oxygen shows positive correlation with the Chlorophyceae species.

REFERENCE

1. Adoni, A. D. 1985 *Studies on microbiological of Sagar lake*, Ph.D Thesis, Sagar University Sagar, Madhya Pradesh. pp. 243.
2. Adoni, A. D. 1985 Work book on limnology, Dept. of Environment, Govt. of India, Bandana printing service, New Delhi. pp. 88.
3. APHA, 1985 Standard Methods for the Examination of Water and Waste Water, American Public Health Association, New York. 16th Edition.
4. APHA, 1995 Standard methods of examination of water and waste water. American Public Health Association, 19th Ed. Inc. New York, pp.1170.
5. B. Mallesh Reddy 2025 Systematic Investigation of Algal Diversity of a Perennial Lake of Bamanwada Village, Chandrapur District, Maharashtra. The Bioscan. Vol. 20(1): 51-58.

6. Bibhishan Mahadik, Panchshila Kabnoorkar 2025 A preliminary study on Bhadalwadi Lake - Algal Biodiversity. *The Bioscan*. Vol. 20(1): S1: 42-47.
7. Davis, C. C. 1955 The marine and freshwater plankton, Michigan State University Press, East Lansing, USA. pp. 562.
8. Edmondson, W. T. 1959 Freshwater Biology, John Wiley and Sons Inc. N.Y. pp. 420-494.
9. Jayabhaye, U. M., V. R. Madlapure and B. S. Salve, 2007 Phytoplankton diversity of Parola Dam Hingoli, Maharashtra. *J. Aqua. Biol.* Vol. 22 (2): 27-32.
10. Kumawat, D. A. and Jawale, A. K. 2003 Phytoplankton ecology of a fish pond at Anjale reservoir, Jalgaon, Maharashtra. *J. Aqua. Biol.* Vol. 18 (1): 9-13.
11. Malik, D. S. and Umesh Bharti, 2012 Status of plankton diversity and biological productivity of Sahastradhara stream at Uttarakhand, India. *Journal of Applied and Natural Science*. Vol. 4 (1): 96-103.
12. M. P. Nandeshwar, B. K. Mendhe & B. N. Pardhi 2023 Diversity of algal flora in Salekasa Tehsil of Gondia District, Maharashtra. *Young Researcher*, Vol. 12 (4) : 60-66.
13. Patil Alaka, A. 2015 Biodiversity of Bhambarde reservoir of Sangli, Maharashtra, India. *Research Journal of Recent Sciences* Vol. 4 (ISC-2014): 209-215.
14. Pawar, S. K., Pulle, J. S. and Shendge, K. M. 2006 The study on phytoplankton of Pethwadaj dam, Tal. Kandhar, Dist. Nanded, Maharashtra. *J. Aqua Biol.* Vol. 21 (1): 1-6.
15. Prathap Singh, R. and G. S. Regini Balasingh, 2012 Contribution of algal flora in Kodaikanal lake, Dindigul District, Tamilnadu. *Indian Journal of Fundamental and Applied Life Sciences* Vol. 2 (4): 134-140.
16. Prescott, G. W. 1954 The fresh – water algae. W.M.C. Brown company. Dubuque, USA.
17. Raut D. K., Raut R. R., Pathan T. S. 2025 Phytoplankton Diversity of Tarangwadi Perennial Lake, Indapur, District Pune. *International Journal of Research Studies on Environment, Earth, and Allied Sciences*. Vol. 2 (I) : 89-91.
18. Rafiullah M Khan, Milind J Jadhav 2022 Algal diversity of Lonar Lake in Maharashtra state of India. *International Journal of Botany Studies*. Vol. 7(6) : 24-27
19. S. C. Chunne, P. N. Nasare 2018 Phytoplankton diversity of Nandgaon And Arwat Lakes of Chandrapur District Maharashtra, India. Vol. 5(1) : 187-191.
20. Sakhare, V. B. and Joshi, P. K. 2002 Ecology of Palas Nilegaon reservoir in Osmanabad District, Maharashtra. *J. Aqua. Biol.* Vol. 12 (1): 28-31.
21. Tiwari, A. and Chouhan, S. V. S. 2006 Seasonal phytoplanktonic diversity of Kitham lake, Agra. *J. Aqua. Biol.* Vol. 27 (1): 35-38.

22. Waghmare, V. N. and Mali, R. P. 2007 The study of phytoplankton of Kalammuri minor irrigation dam, Kalamnuri District Hingoli, Maharashtra. *J. Aqua. Biol.* Vol. 22 (2): 59-62.

23. Wasudha J. Meshram 2021 Diversity of chlorophyceae in relation with the water quality of Devtaki Pond, Gondia, Distt. Gondia. (M.S.). International journal of science technology and management. Vol. 10(1) : 113-117

24. Zar, J. H. 2005 *Biostatistician Analysis* (4th Ed.), Pearson Education Inc., Delhi.

Table 1 : Seasonal variation of Chlorophyceae of Gorja lake

S.N.	Parameters	MONSOON	WINTER	SUMMER	Total
1	Chlorophyceae	57.25 ± 14.08	130.25 ± 9.36	78.00 ± 30.12	88.50 ± 8.88

