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Abstract: Flavonoids, abundant polyphenolic compounds in plants, exhibit remarkable potential in 

wound healing through their multifaceted actions on key phases of repair: hemostasis, inflammation, 

proliferation, and remodeling. Their therapeutic effects arise primarily from potent antioxidant properties 

neutralizing reactive oxygen species (ROS), upregulating enzymes such as SOD, CAT, and GPx, and 

activating the master regulator Nrf2/ARE pathway to mitigate oxidative stress alongside robust anti -

inflammatory activities via inhibition of NF-κB, MAPK/ERK, COX-2, and pro-inflammatory cytokines 

(TNF-α, IL-6, IL-1β). Additional benefits include promotion of angiogenesis (via upregulation of VEGF, 

bFGF, TGF-β), re-epithelialization, collagen synthesis, extracellular matrix remodeling, and 

antimicrobial action against common wound pathogens. Preclinical evidence, predominantly from animal 

models of acute, burn, and diabetic wounds, demonstrates that prominent flavonoids (e.g., quercetin, 

kaempferol, curcumin, rutin) accelerate closure, enhance granulation tissue formation, and reduce 

scarring. However, challenges such as poor solubility and bioavailability are being addressed through 

advanced formulations, including hydrogels, nanoparticles, nanogels, and composite dressings,  which 

enable sustained release, improved penetration, and superior outcomes in diabetic wound models (e.g., 

>90% closure in 14 days in some studies).While clinical translation remains limited, emerging data 

support flavonoids as safe, multi-target natural agents, particularly for managing chronic non-healing 

wounds dominated by persistent inflammation and oxidative stress. This review highlights underlying 

pathways, key compounds, formulation advances, and future directions for harnessing flavonoids in 

wound therapeutics. 
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Introduction:  

Flavonoids, a diverse group of polyphenolic compounds abundant in plants, have gained significant 

attention for their multifaceted role in wound healing. Their therapeutic potential stems from potent 

antioxidant, anti-inflammatory, antimicrobial, pro-angiogenic, and collagen-promoting activities, which 

collectively modulate all major phases of wound repair: hemostasis, inflammation, proliferation, and 

remodeling. These properties make flavonoids particularly valuable for managing acute wounds, chronic 

wounds (such as diabetic ulcers), and burn injuries, often outperforming conventional treatments in 

preclinical models when formulated appropriately (e.g., hydrogels, nanoparticles, or ointments). 
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Mechanisms of Flavonoids in Wound Healing 

Flavonoids exert their effects through multiple interconnected pathways: 

Antioxidant activity: They neutralize reactive oxygen species (ROS), upregulate endogenous 

antioxidant enzymes (SOD, CAT, GPx), and activate the Nrf2/ARE pathway, thereby reducing oxidative 

damage that delays healing (Carvalho et al., 2021; Al-Rekabi et al., 2023). 

ROS (Reactive Oxygen Species) are highly reactive oxygen-containing molecules, including superoxide 

anion (O₂⁻), hydrogen peroxide (H₂O₂), and hydroxyl radical (•OH). In wound healing, ROS exhibit a 

dual (biphasic) role (Deng et al., 2024; Li et al., 2023; Wilkinson & Hardman, 2024): 

Beneficial at physiological/low-to-moderate levels (especially in the early inflammatory phase): They 

serve as signaling molecules to recruit immune cells, promote antimicrobial defense via respiratory burst 

in phagocytes, stimulate angiogenesis (e.g., via VEGF), enhance fibroblast proliferation, support collagen 

synthesis, and facilitate extracellular matrix remodeling (Deng et al., 2024; Li et al., 2023). 

Detrimental when excessive or prolonged: Leading to oxidative stress (OS), which causes lipid 

peroxidation, protein oxidation, DNA damage, prolonged inflammation, impaired re-epithelialization, 

reduced angiogenesis, increased apoptosis, and chronic non-healing wounds (e.g., diabetic ulcers) 

(Wilkinson & Hardman, 2024; Ju et al., 2023). 

Precise spatiotemporal regulation of ROS is essential for smooth progression through hemostasis, 

inflammation, proliferation, and remodeling phases. 

Antioxidant Enzymes: SOD, CAT, GPx 

These form the primary enzymatic antioxidant defense cascade to maintain redox homeostasis by 

detoxifying ROS sequentially (Deng et al., 2024; Li et al., 2023; Soares et al., 2021): 

SOD (Superoxide Dismutase): The frontline enzyme that dismutates superoxide: 2O₂⁻ + 2H⁺ → H₂O₂ + 

O₂ Preventing superoxide from forming damaging species like peroxynitrite. Isoforms include Cu/Zn-

SOD (cytosolic), Mn-SOD (mitochondrial, often induced in hypoxic wounds), and extracellular SOD. 

Activity often decreases in chronic wounds, exacerbating OS (Deng et al., 2024). 

CAT (Catalase): Primarily peroxisomal; decomposes H₂O₂: 2H₂O₂ → 2H₂O + O₂ Blocking Fenton-

mediated •OH generation. Critical in high-ROS wound microenvironments to limit peroxide buildup 

(Soares et al., 2021; Long et al., 2019). 

GPx (Glutathione Peroxidase): Selenoenzymes (e.g., GPx1–4) reduce H₂O₂ and lipid hydroperoxides 

using GSH: H₂O₂ + 2GSH → GSSG + 2H₂O Protecting membranes from lipid peroxidation; GSSG is 

recycled by glutathione reductase. Often depleted in wounds, contributing to sustained OS (Deng et al., 

2024; Brigelius-Flohé & Maiorino, 2013). 

These enzymes synergize: SOD produces H₂O₂, which CAT/GPx eliminate, averting oxidative cascades. 

Induction (e.g., via Nrf2 or flavonoids) mitigates OS, shortens inflammation, boosts granulation, collagen 

deposition, and accelerates closure (Soares et al., 2021; Al-Rekabi et al., 2023). 
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Nrf2/ARE Pathway:  

The Nrf2/ARE pathway is the master regulator of adaptive antioxidant responses to 

oxidative/electrophilic stress (Soares et al., 2021; Long et al., 2019; Carvalho et al., 2021). 

 Nrf2 (Nuclear factor erythroid 2-related factor 2) is a Cap 'n' Collar bZIP transcription factor. 

 In basal conditions, Keap1 binds Nrf2 in the cytoplasm, promoting ubiquitination and proteasomal 

degradation. 

 Oxidative stress (e.g., ROS) or electrophiles modify Keap1 cysteines, disrupting binding; Nrf2 

accumulates, translocates to the nucleus, heterodimerizes with small Maf, and binds ARE 

(Antioxidant Response Element) sequences (e.g., 5'-RTGACNNNGC-3') in target promoters. 

 This induces >1000 cytoprotective genes, including antioxidant enzymes (SOD, CAT, GPx, HO-1, 

NQO1), GSH synthesis (GCL), and others (ferritin) (Soares et al., 2021; Tonelli et al., 2018). 

Significance in OS and Wound Healing: 

Nrf2 senses wound-site ROS and activates defenses, restoring redox balance and preventing damage 

(Soares et al., 2021; Long et al., 2019). Promotes inflammatory-to-proliferative transition by reducing 

NF-κB-driven inflammation, supporting TGF-β granulation, VEGF angiogenesis, keratinocyte/fibroblast 

migration/proliferation, and anti-apoptosis (Wilkinson & Hardman, 2024; Zhao et al., 2016). In 

chronic/diabetic wounds, Nrf2 impairment sustains OS/inflammation and delays healing; Nrf2 knockout 

slows closure, while activation (e.g., DMF, sulforaphane) accelerates it via upregulated 

SOD/CAT/GPx/HO-1 (Rabbani et al., 2018; Li et al., 2022). Flavonoids (e.g., quercetin, curcumin, 

xanthohumol, rutin) activate Nrf2/ARE (via Keap1 modification, MAPK/PI3K/PKC, or GSK3 

inhibition), enhancing enzyme expression and multi-target protection for wound healing (Al-Rekabi et 

al., 2023; Li et al., 2022; Carvalho et al., 2021). Targeting Nrf2/ARE (e.g., via flavonoids or activators) 

harnesses endogenous defenses for chronic wound therapy. 

Anti-inflammatory effects: Flavonoids inhibit NF-κB, MAPK/ERK, COX-2, and pro-inflammatory 

cytokines (TNF-α, IL-6, IL-1β), attenuating excessive inflammation and promoting transition to the 

proliferative phase (Al-Rekabi et al., 2023; Carvalho et al., 2021). 

NF-κB, MAPK/ERK, COX-2, and Pro-Inflammatory Cytokines (TNF-α, IL-6, IL-1β) play central roles 

in the inflammatory phase of wound healing. While essential for initiating repair (e.g., pathogen 

clearance, immune cell recruitment), their excessive or prolonged activation contributes to chronic 

inflammation, delayed healing, and non-healing wounds (e.g., diabetic ulcers) (Al-Rekabi et al., 2023; 

Deng et al., 2024; Wilkinson & Hardman, 2024). 

NF-κB Pathway 

NF-κB (Nuclear Factor Kappa B) is a key transcription factor family that acts as a master regulator of 

inflammation. In response to injury signals (e.g., ROS, cytokines, PAMPs), NF-κB translocates to the 

nucleus, binding promoters of pro-inflammatory genes (Soares et al., 2021; Al-Rekabi et al., 2023). 

Role in wound healing: Early activation drives cytokine/chemokine production (TNF-α, IL-1β, IL-6), 

adhesion molecules, and enzymes (e.g., COX-2, iNOS) to amplify inflammation, recruit 

neutrophils/macrophages, and promote transition to proliferation (Deng et al., 2024; Li et al., 2023). In 

chronic wounds, sustained NF-κB activity perpetuates M1 macrophage polarization, excessive cytokine 

release, impaired angiogenesis, and fibrosis (Al-Rekabi et al., 2023; Zhao et al., 2016). 
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Significance: Dysregulated NF-κB delays the inflammatory-to-proliferative shift, reducing growth factor 

expression (e.g., VEGF, TGF-β) and tissue regeneration. 

MAPK/ERK Pathway 

MAPK (Mitogen-Activated Protein Kinase) pathways, including ERK (Extracellular Signal-Regulated 

Kinase), p38, and JNK, are serine/threonine kinases activated by upstream signals (e.g., growth factors, 

stress, cytokines) (Wilkinson & Hardman, 2024; Long et al., 2019). 

ERK subfamily: Promotes cell proliferation, migration (keratinocytes/fibroblasts), and re-

epithelialization; ERK activation supports wound closure but can be dysregulated in chronic settings (Al-

Rekabi et al., 2023). 

Role in inflammation: MAPK/ERK crosstalk with NF-κB; phosphorylation cascades amplify pro-

inflammatory gene expression (e.g., via AP-1 transcription factor) and cytokine production (TNF-α, IL-6) 

(Deng et al., 2024; Ju et al., 2023). 

Significance: In wounds, balanced MAPK activity aids repair; excessive activation sustains 

inflammation, while inhibition (e.g., by natural compounds) promotes M2 macrophage polarization and 

resolution (Soares et al., 2021). 

COX-2 

COX-2 (Cyclooxygenase-2) is an inducible enzyme that catalyzes prostaglandin synthesis (e.g., PGE₂) 

from arachidonic acid. 

Role in wound healing: Upregulated early by NF-κB/MAPK in response to cytokines/injury; PGE₂ 

promotes vasodilation, leukocyte recruitment, and pain/inflammation signaling (Al-Rekabi et al., 2023; 

Deng et al., 2024). 

Significance: Transient COX-2 aids acute inflammation; persistent elevation in chronic wounds 

exacerbates edema, prolongs neutrophil influx, and delays resolution (Wilkinson & Hardman, 2024). 

Pro-Inflammatory Cytokines: TNF-α, IL-6, IL-1β 

These cytokines are rapidly released by neutrophils, macrophages, and keratinocytes post-injury. TNF-α 

(Tumor Necrosis Factor-α): Amplifies inflammation via NF-κB activation, induces adhesion molecules, 

promotes MMP production, and recruits immune cells; excessive levels cause tissue damage and 

chronicity (Deng et al., 2024; Li et al., 2023). IL-6 (Interleukin-6): Dual role—early: drives acute 

inflammation and immune recruitment; later: supports transition to repair (e.g., fibroblast activation); 

sustained high levels correlate with poor healing (Al-Rekabi et al., 2023). IL-1β (Interleukin-1 Beta): 

Stimulates neutrophil influx, fever, and further cytokine cascades; overproduction sustains M1 

macrophages and inhibits resolution (Wilkinson & Hardman, 2024). These mediators interconnect: 

Cytokines activate NF-κB/MAPK, which upregulate more cytokines and COX-2 in a feed-forward loop 

(Soares et al., 2021; Carvalho et al., 2021). 
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Modulation by Flavonoids in Wound Healing 

Flavonoids (e.g., quercetin, kaempferol, curcumin) inhibit these pathways, attenuating excessive 

inflammation: 

Suppress NF-κB activation (via IκB stabilization, reduced p65 translocation) → ↓ TNF-α, IL-6, IL-1β, 

COX-2 (Al-Rekabi et al., 2023; Carvalho et al., 2021). Inhibit MAPK/ERK phosphorylation (p38, JNK, 

ERK) → reduced cytokine/mediator production and promoted M2 polarization (Lodhi et al., 2023). 

Downregulate COX-2 expression and PGE₂ → lessened vascular permeability and chronic inflammation 

(Al-Rekabi et al., 2023). This multi-target suppression shortens inflammation, enhances proliferation 

(angiogenesis, collagen synthesis), and accelerates closure in models of acute/chronic wounds (Al-Rekabi 

et al., 2023; Li et al., 2022). Like that Angiogenesis and GFS, Re-epithelialization, collagen synthesis and 

Antimicrobial action of flavonoids play crucial role in wound healing. Angiogenesis and growth factor 

stimulation:  They upregulate VEGF, bFGF, TGF-β, and COL3A expression, enhancing new blood 

vessel formation, fibroblast migration, and collagen deposition (Al-Rekabi et al., 2023; Lodhi et al., 

2023). Re-epithelialization and collagen synthesis: Flavonoids promote keratinocyte and fibroblast 

proliferation/migration, increase hydroxyproline content, and modulate MMPs/TIMPs balance for 

balanced extracellular matrix remodeling (Lodhi et al., 2023; Carvalho et al., 2021). Antimicrobial 

action: Many flavonoids (especially in combination) inhibit common wound pathogens like S. aureus and 

P. aeruginosa, reducing infection risk (Suntres et al., 2022; Al-Rekabi et al., 2023). 

These mechanisms often involve crosstalk among pathways such as PI3K/Akt, Wnt/β-catenin, TGF-

β/Smad, JNK, and Hedgehog signaling (Al-Rekabi et al., 2023; Carvalho et al., 2021). 

Prominent Flavonoids and Their Evidence in Wound Healing 

Quercetin: Widely studied flavonol; accelerates wound closure in diabetic models via enhanced 

angiogenesis, reduced oxidative stress, and fibroblast proliferation. Nano-formulations significantly 

improve bioavailability and efficacy (Hegde et al., 2022; Wang et al., 2022; Al-Rekabi et al., 2023). 

Kaempferol — Promotes collagen synthesis, VEGF/bFGF expression, and rapid epithelialization; shows 

strong effects in excision and diabetic wound models (Lodhi et al., 2023; Al-Rekabi et al., 2023). 

Curcumin: Exhibits synergistic effects with quercetin; reduces inflammation, stimulates migration, and 

combats infection. Often used in combination formulations for enhanced wound contraction (Suntres et 

al., 2022; Wang et al., 2022). 

Rutin: Supports re-epithelialization and tensile strength; effective in burn and excision models, often 

combined with quercetin (Al-Rekabi et al., 2023). 

Other notable flavonoids: Hesperidin, naringenin, luteolin, apigenin, and myricetin show promising 

anti-inflammatory, antioxidant, and pro-regenerative effects, frequently incorporated into advanced 

delivery systems (Lodhi et al., 2023; Carvalho et al., 2021). 

Advanced Formulations Enhancing Flavonoid Delivery 

Poor solubility and bioavailability limit the clinical translation of flavonoids. Recent advances focus on:  

Hydrogels: Self-healing, antioxidant, and thermo-sensitive hydrogels loaded with flavonoids (or 

combinations like quercetin + curcumin) promote sustained release, hydration, and full-thickness 

regeneration in diabetic wounds (Zeng et al., 2025; Lodhi et al., 2023). 
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Nanoparticles and nanogels: Flavonoid-loaded nanoparticles (e.g., ZIF-8, silver, or collagen-based) 

enhance penetration, targeted delivery, and antimicrobial activity while accelerating granulation tissue 

formation (Kusnadi et al., 2024; Al-Rekabi et al., 2023). 

Composite dressings: Flavonoid-rich fractions in ethyl acetate extracts or combined with polymers show 

superior wound contraction, collagen deposition, and upregulation of COL3A/VEGF/bFGF compared to 

controls (Lodhi et al., 2023). 

Preclinical studies (mostly animal excision, incision, and diabetic wound models) consistently 

demonstrate faster closure rates (often 80–93% within 14 days), improved histopathology, and reduced 

scarring (Zeng et al., 2025; Lodhi et al., 2023). Clinical evidence remains limited but emerging, with 

promising results in topical flavonoid applications for chronic wounds. 

Conclusion 

Flavonoids represent a safe, multi-target, natural strategy for wound healing, particularly in chronic and 

diabetic cases where inflammation and oxidative stress predominate. Ongoing research into optimized 

nano- and hydrogel-based formulations is bridging the gap toward clinical translation, offering potential 

alternatives or adjuncts to existing therapies. 
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