www.ijcrt.org © 2026 IJCRT | Volume 14, Issue 1 January 2026 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE
p RESEARCH THOUGHTS (IJCRT)
/ An International Open Access, Peer-reviewed, Refereed Journal

Beyond the Hype: Evolving Microservices
Architecture with Spring Boot 3.3 and Java 21

1Achyut Pandey, 2Rahul Vishwakarma, 3Aditya Kumar Dwivedi, 4Divyansh Yadav
1HOD, 2Professor , 3Student, 4Student
1Thakur Ranmat Singh College,
2Thakur Ranmat Singh College,
3Thakur Ranmat Singh College,
4Thakur Ranmat Singh College

Abstract

Microservices have been the go-to architecture for the past decade, but in 2025, people are starting to question
if the hype matches reality. Sure, breaking things into smaller services has its perks, but the headaches—
networking, distributed transactions, all that “distributed system tax”—can get out of hand fast, especially
for smaller teams. This paper lays out a more practical path: “Pragmatic Evolutionary Architecture.” It’s all
about using the latest Java tools—Spring Boot 3.3, Spring Modulith, and Java 21°s Virtual Threads—to build
modular apps that feel like monoliths but can evolve into true distributed systems with minimal pain. The
old “Monolith or Microservices?” question? It’s outdated. We show how you can start-with a single, tidy
codebase and split it up later if you need to, all while benefiting from the kind of high-concurrency you used
to only get with complicated Reactive programming.

1. Introduction

Microservices took off because companies wanted to scale and deploy parts of their systems independently.
That’s the dream. But in practice, the costs—slow network calls, tricky distributed transactions, and always
chasing “eventual consistency”—often make things harder, not easier, for most teams.

Now, with Spring Boot 3.x and Java 21, everything’s shifting. Virtual Threads (thanks, Project Loom) make
it possible to build apps that can handle tons of traffic without resorting to complex non-blocking code. At
the same time, Spring Modulith lets you enforce clean boundaries inside a single runtime, so you can keep
your code modular and only split things out into separate services when it actually makes sense.

2. Architectural Paradigm: The Modulith First Approach
Here’s the twist: Forget “Microservices First” as your default. We’re pushing for a “Modulith First” mindset.

With Spring Modulith, you draw clear lines between different parts of your app—Inventory, Order,
Payment—using compilation and integration tests, not firewalls and network boundaries.

IJCRT2601704 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | f697

http://www.ijcrt.org/

www.ijcrt.org © 2026 IJCRT | Volume 14, Issue 1 January 2026 | ISSN: 2320-2882
2.1 Logical Isolation vs. Physical Isolation

Classic microservices split things physically—each service gets its own JVM. With Moduliths, isolation is
logical. You keep everything in one process, but each module is tightly controlled and can’t poke into another
module’s internals unless you allow it.

Our argument: If you respect those boundaries, you can switch to microservices later with almost no big
architectural changes. Keep N=1 (one deployment) until you really need to split for scaling. No need to over-
engineer from the start.

3. Concurrency Model: The End of Reactive?

For ages, Spring WebFlux (the Reactive approach) was the answer for handling tons of requests without
blowing out your thread pool. It works, but it’s not fun—callback hell, tough debugging, and a steep learning
curve.

3.1 Java 21 Virtual Threads

Now, Spring Boot 3.2+ supports Virtual Threads. These threads are super lightweight because the JVM, not
the OS, manages them. Suddenly, the old “one thread per request” approach can scale to millions of
connections, and you don’t need to dive into Reactive streams just to keep up.

Want to turn this on? In your application.properties:
Spring.threads.virtual.enabled=true

That’s it. Now your standard Spring MVC controllers can handle high concurrency, just like WebFlux—no
special tricks required. For most use cases, there’s no reason to learn Reactive unless you really want to.

4. Implementation Strategy
4.1 Domain Decomposition with Spring Modulith

Spring Modulith gives you a way to write integration tests that enforce modularity. 1f one module tries to
sneak into another’s private space, the build fails. No more “spaghetti” codebases.

@ApplicationModuleTest
Class ArchitectureVerificationTest {

@Test

Void verifyModularity(ApplicationModules modules) {
// Fails if ‘Order’ tries to access ‘Inventory’ internals
Modules.verify();

¥
¥

4.2 Observability: The New Standard

Spring Boot 3 swapped out Spring Cloud Sleuth for Micrometer Tracing, so now your metrics and tracing
are unified. One thing you really need in modern systems is “Correlation ID injection”—making sure trace
IDs follow a request across REST and Kafka boundaries.

With Micrometer, trace 1Ds are automatically attached to logs. Thanks to Virtual Threads, the trace context
sticks around even when threads “park™ during I/O. This solves a big problem from the old days of async
tracing.

IJCRT2601704 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | f698

http://www.ijcrt.org/

www.ijcrt.org © 2026 IJCRT | Volume 14, Issue 1 January 2026 | ISSN: 2320-2882

5. Performance Benchmarking: Native Images

Some microservices have to start up fast—think serverless functions. Spring Boot 3 now supports GraalVM
Native Images out of the box.

- JVM Startup: about 1.5-3.0 seconds
- Native Image Startup: about 0.05-0.1 seconds

This makes “Scale-to-Zero” architectures possible. Your services don’t have to run 24/7; they can spin up
instantly when needed, slashing your cloud costs.

6. Conclusion

The conversation around “Microservices & Architecture” in the Spring world isn’t what it used to be.
Heading into 2025, here’s the big idea: focus on how your code is structured, not just the underlying
infrastructure.

If you use Spring Modulith to draw clean boundaries in your code, and pair that with Java 21°s Virtual
Threads for better concurrency, you get something interesting. You end up with systems that feel as modular
as microservices, but just as straightforward as good old monoliths. Think of “Distributed System” not as
your default starting point, but as a tool you reach for only when you hit real scaling issues.

References

*Long, J. (2024). Reactive to Virtual: The Spring Migration. Spring 1/O.

* Bechler, O. (2024). Spring Modulith Reference Documentation. Vmware.
* Pressler, R. (2023). JEP 444: Virtual Threads. OpenJDK.

Recommended Viewing

Want a closer look at how Spring is moving from Reactive to Virtual Threads in Spring Boot 3.3? Check out
this keynote. It breaks down the performance differences and shows you exactly how it works.

Spring Boot 3.3: The Virtual Threads Revolution

Why watch? This talk benchmarks Spring Cloud Gateway MV C running on Java 21 Virtual Threads. It backs
up the point that blocking 1/0O is quickly becoming the new go-to for high-performance microservices.

Just a heads up: Watching on YouTube means your views and data get stored according to their Terms of
Service.

IJCRT2601704 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | f699

http://www.ijcrt.org/

