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ABSTRACT

Communication is a fundamental human need, yet millions of individuals with hearing and speech
impairments face persistent barriers in daily interactions. Traditional sign language is effective within
communities familiar with it, but it limits communication with the broader population. Existing assistive
technologies are often costly, bulky, or restricted to one-way translation, leaving a gap for inclusive, real-time
solutions. This project introduces a *wearable assistive communication system* that leverages embedded
hardware and machine learning to enable *bidirectional translation between sign language and speech. At the
core of the system is a **sensor-based smart glove* equipped with flex and inertial measurement unit (IMU)
sensors to capture finger movements and hand orientations. The sensor datais processed by an *Arduino
Nano* and transmitted to a *Raspberry Pi Zero 2 W, where a lightweight machine learning model interprets
gestures. Recognized gestures are converted into **text and audible speech, allowing individuals with speech
impairments to communicate naturally. Conversely, spoken input is processed through speech-to-text
conversion and mapped to **sign language visuals* displayed on a mobile interface, enabling communication
with hearing-impaired users. The proposed solution emphasizes *portability, affordability, and real-time
performance*, making it suitable for everyday use in diverse environments. By integrating hardware,
software, and machine learning methodologies, the system provides a practical, inclusive tool that enhances
accessibility, independence, and social participation.

INTRODUCTION

Communication is one of the most essential aspects of human life, enabling individuals to share ideas,
emotions, and information. For people with hearing and speech impairments, however, communication often
becomes a daily challenge. While sign language provides an effective medium of interaction within
communities familiar with it, it creates barriers when engaging with the wider population who may not
understand it. This gap limits accessibility, independence, and social inclusion for millions worldwide.
According to the World Health Organization, over 466 million people globally experience disabling hearing
loss, and a significant portion rely on sign language as their primary mode of communication. Despite its
effectiveness, the lack of universal understanding of sign language restricts opportunities in education,
employment, and social participation. Existing assistive technologies attempt to bridge this gap, but many are
expensive, bulky, or limited to one-way translation, making them impractical for everyday use.
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Recent advancements in *embedded systems, sensors, and artificial intelligence* have opened new
possibilities for affordable and portable assistive devices. By integrating lightweight machine learning models
with wearable hardware, it is now feasible to design systems that can translate sign language into speech and
speech into sign in real time. Such solutions not only enhance accessibility but also foster independence and
confidence among users.This project proposes a *wearable bidirectional communication system* that
employs a sensor-based smart glove to capture hand gestures and translate them into text and speech.
Additionally, spoken input can be converted into sign language visuals displayed on a mobile interface. The
system is designed to be *cost-effective, portable, and inclusive*, making it suitable for real-world
applications in education, healthcare, and daily communication.By bridging the gap between impaired and
non-impaired individuals, this innovation demonstrates how technology can be harnessed to promote *social
inclusion, accessibility, and equality*, ultimately advancing the vision of assistive technologies for the benefit
of humanity.

1.2 Statement of Problem

Effective communication is a cornerstone of human interaction, yet individuals with hearing and
speech impairments continue to face significant challenges in expressing themselves and engaging with
society. While sign language provides a structured and expressive medium for communication, it is not
universally understood outside specific communities. This lack of widespread knowledge creates barriers
when interacting with non-sign language speakers, often leading to isolation, misunderstanding, and reduced
opportunities for social participation.

Existing assistive technologies attempt to bridge this gap, but many of them are limited in scope. Devices
currently available are often expensive, bulky, or restricted to one-way translation, making them impractical
for daily use. Such limitations prevent impaired individuals from achieving seamless, natural communication
in real-world environments. Furthermore, the absence of real-time, bidirectional systems restricts the flow of
conversation, forcing users to rely on interpreters or alternative methods that compromise independence and
privacy.

There is a clear need for a *low-cost, portable, and efficient assistive technology* that can support real-time,
two-way communication. A solution that translates sign language into speech and speech into sign would
empower individuals with impairments to interact more freely, fostering inclusion, accessibility, and
confidence in everyday life.

1.3  Objective of Study

The primary objective of this study is to design and develop a wearable smart glove capable of
accurately capturing hand gestures through embedded sensors. The system aims to translate sign language
gestures into readable text and audible speech, thereby enabling individuals with speech impairments to
communicate effectively with non-sign language speakers. In addition, it seeks to convert spoken words into
sign language visual representations, supporting bidirectional communication for hearing-impaired users. To
achieve real-time performance, the project focuses on implementing lightweight machine learning models
optimized for embedded systems. Ultimately, the goal is to deliver a cost-effective, portable assistive
communication device that enhances accessibility and inclusion.

DESIGN PROPOSAL

2.1 SYSTEM CONCEPT

The Smart Sign Language Translator is designed as a bidirectional communication system that bridges the
gap between sign language users and non-sign language speakers. It enables:

- Sign — Voice/Text translation: Gestures captured by a smart glove are processed into text and speech.

- Voice — Sign translation: Spoken input is converted into text and mapped to sign language visuals displayed
on a mobile interface.

This dual functionality ensures natural, real-time communication without the need for human interpreters.
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2.2 FLOWCHART OF SYSTEM OPERATION
e Usesa smart glove to capture hand gestures.
e Sensors detect finger and hand movements.
e Gestures are converted into text and voice output.
e words can be converted back into sign language display.
e Uses embedded systems and machine learning.
e Portable, affordable, and easy to use.
e Enables two-way communication.
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24 Expanded Explanation of Subsystems

2.4.1 Smart Glove

- Equipped with flex sensors to measure finger bending.

- IMU sensors capture hand orientation and motion.

- Lightweight, comfortable, and designed for portability.

2.4.2 Arduino Nano

- Acts as the data acquisition unit.

- Reads sensor values and transmits them via serial communication.
- Ensures low-latency data transfer to the Raspberry Pi 2.8 Arduino-Based Pulse Oximetry (Ahmed &
Khan, 2020)

2.4.3 Raspberry Pi Zero 2 W

- Serves as the processing hub.

- Runs Python applications for preprocessing and ML inference.

- Executes gesture classification using trained ML models.

- Handles speech-to-text and text-to-speech modules.

2.4.4 Machine Learning Model

- Lightweight algorithms (KNN, SVM, Random Forest).

- Trained on 200-300 samples per gesture.

- Performs real-time classification with high accuracy.
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2.4.5 Mobile Interface

- Displays text outputs and sign visuals.

- Provides user-friendly interaction.

- Supports Bluetooth/USB connectivity.

2.5 Example User Scenarios

Scenario 1: Sign — Voice

Hemashree, a hearing-impaired student, wears the smart glove. She performs the gesture for “HELLO.” The
sensors capture her finger bending and orientation, which are processed by the Raspberry Pi. The ML model
recognizes the gesture and outputs “HELLO” as text and speech. Her classmates hear the spoken word,
enabling seamless communication.

Scenario 2: Voice — Sign

Karthick’s professor speaks into the microphone: “How are you?” The speech-to-text module converts the
phrase into text. The mobile interface maps the text to sign language visuals, displaying animated hand signs.
Karthick, who is hearing-impaired, understands the professor’s question instantly.

Scenario 3: Real-Time Conversation

Sarvihasri and a shopkeeper engage in a conversation. She uses gestures to ask for “WATER.” The system
translates her gesture into speech. The shopkeeper replies verbally, and the system converts his response into
sign visuals. This two-way communication eliminates barriers and fosters independence.

2.6 Key Features of the Design

- Bidirectional translation (Sign <> Voice).

- Portable and wearable smart glove.

- Low-cost hardware (Arduino Nano, Raspberry Pi Zero 2 W).
- Lightweight ML models optimized for embedded systems.

- Mobile interface for sign visualization.

- Real-time performance ensuring natural communication.

2.7 Cloud-Based Health Tracking (Gupta et al., 2021)

Gupta and team introduced a cloud-based health monitoring framework integrating Arduino and
biomedical sensors. The system enabled remote data storage and real-time analysis. Its main drawback was
dependency on stable internet connectivity and relatively higher cost due to cloud integration.

2.8 Low-Cost IoT Health Device (Zhou et al., 2022)

Zhou and colleagues presented a low-cost 10T-based health monitoring system focused on heart rate
measurement. The system proved feasible for continuous monitoring but lacked advanced filtering techniques,
leading to reduced accuracy under motion or environmental interference.

SYSTEM OVERVIEW

3.1 Conceptual Overview

The Smart Sign Language Translator is designed as a *wearable assistive communication system* that
integrates hardware sensors, embedded controllers, machine learning models, and mobile interfaces to enable
*bidirectional communication* between hearing/speech-impaired individuals and non-sign language
speakers.

The system operates in two distinct modes:

- *Sign-to-Voice/Text Mode*: Hand gestures are captured by the smart glove, processed by embedded
hardware, and translated into text and audible speech.

- *\oice-to-Sign Mode*: Spoken input is converted into text and mapped to sign language visuals displayed
on a mobile interface.

This dual functionality ensures *real-time, natural, and independent communication* without requiring
human interpreters.
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3.2 Functional Flow
The system follows a structured flow of operations:
1. *Input Stage*

- Gesture input via smart glove sensors.

- Speech input via microphone.

2. *Data Acquisition*
- Arduino Nano digitizes sensor signals.
- Speech captured and converted to text using speech recognition.

3. *Processing Stage*
- Raspberry Pi Zero 2 W executes preprocessing and machine learning inference.
- Lightweight ML models classify gestures or map text to sign visuals.
4. *Output Stage™
- Text displayed on mobile interface.
- Audio generated via text-to-speech.
- Sign visuals displayed for hearing-impaired users.

3.3 Flowchart of System Operation

The gesture recognition system operates through a sequence of image processing and decision-making steps
designed to identify and respond to hand gestures. The process begins with acquiring an image of the user's
gesture using a camera or sensor module. Once the image is captured, the system extracts relevant features
from the gesture, such as shape, orientation, and finger positions.

These extracted features are then compared against a database of stored gesture features that represent
predefined gesture classes. If a match is found between the input gesture and one of the stored templates, the
system proceeds to generate the corresponding output. This output includes both a visual display (such as text
or sign representation) and an audio response (such as spoken words).

START
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Compare with the stored feature of gestures I

Output the corresponding display and audio

|

If no match is found, the system may either prompt the user to retry the gesture or remain idle without
producing output. This decision-making ensures accurate recognition and appropriate feedback based on the
user's input.

The process concludes once the output is delivered or the gesture is rejected.
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3.4 Subsystem Roles

- *Smart Glove*: Captures finger bending and hand orientation using flex and IMU sensors.

- *Arduino Nano*: Acts as the controller for sensor data acquisition.

- *Raspberry Pi Zero 2 W*: Serves as the processing hub, running ML models and speech modules.
- *Mobile Interface*: Provides user-friendly display of text, audio, and sign visuals.

- *Power Unit*: Rechargeable battery ensures portability and continuous operation.

3.5 Example User Interaction Scenarios

Scenario A: Classroom Communication

A hearing-impaired student performs the gesture for “HELLO.” The glove captures the gesture, the ML model
recognizes it, and the Raspberry Pi outputs “HELLO” as text and speech. The teacher hears the spoken word,
enabling seamless interaction.

Scenario B: Healthcare Setting

A patient uses gestures to request “WATER.” The system translates the gesture into speech. The nurse
responds verbally, and the system converts the spoken response into sign visuals, ensuring mutual
understanding.

Scenario C: Daily Life
At a marketplace, a user gestures “PRICE.” The system outputs the word audibly. The shopkeeper replies
verbally, and the system displays the response in sign visuals, enabling smooth two-way communication.

3.6 Key Features of the System Overview

- *Bidirectional communication® (Sign <> Voice).

- *Real-time performance* with minimal latency.

- *Portable and wearable design* for daily use.

- *Low-cost hardware* suitable for mass adoption.

- *Inclusive assistive technology* fostering accessibility and independence.

MODEL ARCHITECTURE

4.1 Overview

The Smart Sign Language Translator integrates both hardware and software components into a cohesive
architecture. The hardware captures gestures and speech inputs, while the software processes, classifies, and
translates them into meaningful outputs. This section details the hardware modules, software stack, and their
integration, ensuring real-time bidirectional communication.

4.2 Hardware Architecture
4.2.1 Smart Glove
e Flex Sensors: Measure finger bending angles.
e IMU Sensors (Accelerometer + Gyroscope): Capture hand orientation and motion.
o Design Considerations: Lightweight, ergonomic, and durable for daily use.
4.2.2 Arduino Nano
e Acts as the data acquisition controller.
e Reads sensor values at high sampling rates.
o Transmits digitized data to Raspberry Pi via serial communication (USB/Bluetooth).
4.2.3 Raspberry Pi Zero 2 W
e Serves as the processing hub.
e Runs Python applications for preprocessing and ML inference.
o Executes gesture classification and speech modules.
e Compact, low-power, and cost-effective.
4.2.4 Power Unit
e Rechargeable lithium-ion battery.
e Provides stable 5V supply.
e Ensures portability and continuous operation.
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4.2.5 Output Interfaces

e Audio Output: Text-to-speech module generates spoken words.

e Visual Output: Mobile interface displays text and sign visuals.

o Connectivity: USB/Bluetooth for flexible communication.
4.3 Software Architecture
4.3.1 Arduino Firmware

» Reads sensor data continuously.

o Implements filtering to reduce noise.

e Sends structured data packets to Raspberry Pi.
4.3.2 Python Application (Raspberry Pi)

o Handles data preprocessing (normalization, scaling).

» Extracts features (finger bending values, orientation data).

o Passes features to ML model for classification
4.3.3 Machine Learning Model

e Algorithms: KNN, SVM, Random Forest.

e Trained offline with 200-300 samples per gesture.

e Optimized for lightweight inference on embedded hardware.
4.3.4 Speech Modules

e Speech-to-Text: Converts spoken input into text.

e Text-to-Speech: Generates audio output from text.

o Integrated with sign mapping for bidirectional translation.
4.3.5 Mobile Interface

o Displays text outputs and animated sign visuals.

e Provides user-friendly interaction.

e Supports multiple languages and sign sets.

4.4 Example Workflow
Gesture Input
1. User performs gesture for “HELLO.”
2. Flex + IMU sensors capture motion.
3. Arduino Nano digitizes data.
4. Raspberry Pi ML model classifies gesture.
5. Output: Text “HELLO” + Audio speech.
Speech Input
1. User speaks “THANK YOU.”
2. Speech-to-text module converts audio to text.
3. Text mapped to sign visuals.
4. Mobile interface displays animated signs.
4.5 Key Features of Architecture
e Compact hardware design using Arduino + Raspberry Pi.
e Lightweight ML models optimized for embedded systems.
o Bidirectional communication (Sign < Voice).
o Portable and cost-effective solution.
o Scalable design for future improvements (cloud ML, multilingual support).

HARDWARE AND SOFTWARE INTEGRATION

5.1 Overview

The Smart Sign Language Translator relies on seamless interaction between hardware sensors and software
modules to achieve real-time bidirectional communication. The hardware captures raw gesture and speech
data, while the software processes, classifies, and translates it into meaningful outputs. This integration
ensures low latency, accuracy, and user-friendly operation.
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5.2 Hardware Components

Smart Glove: Equipped with flex sensors and IMU sensors to capture finger bending and hand
orientation.

Arduino Nano: Acts as the controller for sensor data acquisition, digitizing analog signals.
Raspberry Pi Zero 2 W: Serves as the processing hub, running Python applications and ML models.
Microphone: Captures spoken input for speech-to-text conversion.

Output Interfaces: Mobile display for text and sign visuals, speaker for audio output.

5.3 Software Components

Arduino Firmware: Reads sensor values, applies basic filtering, and transmits structured data
packets.

Python Application (Raspberry Pi): Handles preprocessing, feature extraction, and ML inference.
Machine Learning Models: Classify gestures into predefined categories.

Speech Modules: Speech-to-text and text-to-speech engines for bidirectional translation.

Mobile Interface: Displays text, audio, and sign visuals for user interaction.

5.4 Integration Workflow
Gesture Input Path
1. Sensors capture hand movement.
2. Arduino Nano digitizes and transmits data.
3. Raspberry Pi preprocesses and classifies gestures using ML.
4. Outputs: Text displayed, audio generated.
Speech Input Path
1. Microphone captures spoken words.
2. Speech-to-text module converts audio to text.
3. Text mapped to sign visuals.
4. Mobile interface displays animated signs.

5.5 Flow diagram
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5.6 Challenges in Integration
e Latency: Ensuring real-time performance despite multiple processing stages.
o Data Synchronization: Aligning sensor input with ML inference.
e Noise Handling: Filtering sensor and audio data for accuracy.
o Power Management: Maintaining stable operation with portable batteries.

5.7 Example Scenario

Kaviya performs the gesture for “THANK YOU.” The glove sensors capture the motion, Arduino transmits
the data, and Raspberry Pi classifies it. The system outputs “THANK YOU” as text and speech.
Simultaneously, Sarvihasri speaks “WELCOME.” The microphone captures her voice, converts it to text, and
maps it to sign visuals displayed on the mobile interface. This demonstrates real-time bidirectional
communication through hardware—software integration.

ADVANTAGES & BENEFITS

6.1 Real-Time Bidirectional Communication
The system supports continuous two-way interaction:
o Impaired users can express themselves through gestures translated into speech.
e Non-impaired wusers can respond verbally, with speech converted into sign visuals.
This creates a natural conversational flow without delays or reliance on interpreters.

6.2 Technical Advantages

e Two-way translation: Supports both Sign-to-Voice/Text and Voice-to-Sign modes, unlike many
one-way systems.

« Real-time performance: Low latency ensures natural conversational flow.

e Lightweight ML models: Optimized for embedded systems, enabling efficient processing without
cloud dependency.

e Wireless connectivity: Bluetooth/USB support allows flexible communication with mobile devices.

o Portable design: Compact glove and Raspberry Pi setup make it suitable for everyday use.

6.3 Social Benefits

e Accessibility & Inclusion: Bridges communication gaps between impaired and non-impaired
individuals.

e Independence: Eliminates reliance on human interpreters, fostering privacy and autonomy.

o Confidence Building: Users gain confidence in social, educational, and professional settings.

o Social Connection: Strengthens relationships by enabling smoother interactions.

o Educational Support: Assists students in classrooms by enabling direct communication with teachers
and peers.
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6.4 Economic Benefits
e Low-cost solution: Uses affordable components (Arduino Nano, Raspberry Pi Zero 2 W, flex
SENsors).
e Scalability: Can be mass-produced at relatively low cost.
e Maintenance-friendly: Modular design allows easy replacement of components.
o Cost savings: Reduces the need for professional interpreters in daily scenario

6.5 Example Scenarios
Scenario A: Daily Communication

A hearing-impaired user gestures “THANK YOU.” The system outputs speech, allowing smooth
interaction with shopkeepers or colleagues.
Scenario B: Healthcare

Patients can express needs (e.g., “WATER,” “PAIN”) without interpreters, improving healthcare
accessibility.
Scenario C: Education

Students can participate in classroom discussions, with gestures translated into speech and teachers’
responses displayed as sign visuals.

6.6 Key Benefits Summary

Two-way communication improves accessibility and inclusion.
Real-time translation supports independent daily communication.
Portable & wearable system enhances usability.

No human interpreter needed, ensuring privacy.

Low-cost design makes it affordable for widespread adoption.
Wireless support enables flexible connectivity.

Social inclusion and confidence building.

Strengthened social connections through seamless communication.

ONoORwWNE

CONCLUSION

The Smart Sign Language Translator demonstrates how embedded systems, wearable sensors, and lightweight
machine learning models can be integrated to create an affordable, portable, and inclusive assistive
communication device. By enabling bidirectional translation between sign language and speech, the system
bridges a critical gap between hearing/speech-impaired individuals and the wider population. Its real-time
performance, low-cost hardware, and user-friendly mobile interface make it suitable for everyday use in
education, healthcare, and social settings. Beyond technical innovation, the project highlights the role of
technology in fostering accessibility, independence, and social inclusion, ultimately contributing to a more
equitable society. Future enhancements, such as cloud-based learning, multilingual support, and advanced
gesture datasets, can further improve scalability and accuracy, ensuring broader adoption and impact.
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