

A Conceptual Blockchain Framework for Secure Digital Library Resource Sharing in Indian Central Universities

Nimmala Karunakar

Assistant Professor, Department of Library and Information Science

Central University of Himachal Pradesh

nkarunakar@hpcu.ac.in

&

Prof. Shivarama Rao K

Professor & Head

Dept. of Library & Information Science
Central University of Himachal Pradesh

Email: shiva.perla@hpcu.ac.in

Abstract

Central Universities in India persist to encounter institutional constraints in managing digital knowledge resources, including redundancy subscriptions, licensing costs, identity fabric, and Open Irony to scholarly content. Although blockchain technology has garnered global attention for secure and transparent digital transactions, its systematic application within inter-university digital library ecosystems in India remains largely unexplored and under-theorized.

This paper presents a conceptual and design science-based blockchain framework for digital library resource sharing among Indian Central Universities. Grounded in design science research principles, the study proposes a decentralized architecture integrating blockchain-enabled digital identities, smart contracts, and distributed ledgers to manage access rights, lending workflows, and audit trails across institutions. Rather than reporting an implemented system, the paper focuses on **architectural logic, governance assumptions, feasibility considerations, and alignment with national higher education policies**.

The proposed framework contributes a **theoretically grounded, policy-relevant model** that can inform future pilot studies, consortium-level strategies, and national digital knowledge infrastructure initiatives. Limitations and directions for empirical validation are explicitly acknowledged.

Keywords: Blockchain, Digital Libraries, Smart Contracts, Resource Sharing, Academic Consortia, Design Science Research.

1. Introduction

India hosts one of the largest higher education systems globally, encompassing more than a thousand universities and tens of thousands of colleges. Central Universities play a critical role in national teaching, research, and knowledge dissemination. Academic libraries within these institutions are fundamental infrastructures supporting learning, research productivity, and scholarly communication.

Over the past two decades, academic libraries have transitioned from primarily print-based collections to hybrid and fully digital ecosystems. Subscriptions to electronic journals, databases, and e-book platforms now constitute a major portion of library budgets. However, this digital expansion has also introduced persistent challenges. Central Universities frequently subscribe independently to identical commercial databases, leading to duplicated expenditure, inefficient resource utilization, and inequitable access—particularly disadvantaging newly established or smaller institutions.

Existing digital library consortia in India largely operate under centralized architectures. While such models enable collective bargaining, they often lack transparency, scalability, and institutional autonomy. Authentication systems are typically IP-based or VPN-dependent, restricting seamless inter-university access. Consequently, students and researchers from one publicly funded university are unable to access licensed resources of another, despite shared governance under the same national framework.

Blockchain technology offers an alternative architectural paradigm. By enabling decentralized trust, immutable transaction records, and programmable access control through smart contracts, blockchain has the potential to restructure digital library resource sharing. This paper explores this potential by proposing a **conceptual blockchain-based framework** tailored to the governance, policy, and operational realities of Indian Central Universities.

2. Research Design and Methodology

This study adopts a **design science research (DSR) methodology**, which is particularly suitable for examining emerging technologies where large-scale empirical implementations are limited or nascent. Design science emphasizes the development of artifacts—such as conceptual frameworks, models, and system architectures—that address identified organizational and technological problems.

The research followed four sequential stages:

1. Problem Identification:

Analysis of prevailing digital library practices in Indian Central Universities, focusing on subscription duplication, authentication barriers, and access inequities.

2. Literature Review:

Examination of scholarly literature on blockchain applications in libraries, higher education systems, digital rights management, and decentralized information infrastructures.

3. Artifact Design:

Development of a conceptual blockchain-based framework comprising digital identity management, smart contracts, distributed ledgers, and repository integration.

4. Analytical Evaluation:

Assessment of feasibility, benefits, constraints, governance requirements, and policy alignment within the Indian higher education context.

No surveys, pilot deployments, or prototype systems were undertaken. The proposed framework is intended as a **foundational conceptual artifact** to guide future empirical research, pilot studies, and institutional decision-making.

3. Literature Review

Blockchain technology has been increasingly explored across academic ecosystems, including credential verification, research data preservation, intellectual property protection, and digital identity management. Studies indicate that distributed ledger systems enhance data integrity, transparency, and long-term trust in scholarly records.

Within library and information science, blockchain has been discussed in relation to secure metadata storage, inter-library lending, provenance verification, and access control. Smart contracts have been proposed as mechanisms for automating licensing compliance and usage tracking of digital resources.

In the Indian context, digital library initiatives such as national consortia and virtual libraries primarily rely on centralized governance models. While effective in negotiating subscriptions, these models often struggle with scalability, transparency, and equitable access. National policy frameworks increasingly emphasize digital infrastructure sharing, open knowledge access, and efficient utilization of public funds, yet technological architectures to support these objectives remain limited.

Despite growing conceptual discussions, there is a noticeable gap in **context-specific design frameworks** addressing inter-university digital library sharing in India. This study addresses this gap by integrating blockchain principles with academic library governance considerations.

4. Conceptual Blockchain Framework for Digital Libraries

The proposed framework envisions a **decentralized consortium of Central Universities**, each operating as a node within a permissioned blockchain network. The system does not store digital content on the blockchain itself; instead, it records access rights, transactions, and audit trails while repositories remain off-chain.

4.1 Digital Identity Layer

Each authorized user—student, researcher, or faculty member—is assigned a blockchain-based digital identity. This identity replaces institution-specific usernames and passwords and enables **universal authentication across participating universities**. Identity verification occurs at the institutional level, while access permissions are managed at the consortium level.

4.2 Smart Contract Layer

Smart contracts govern lending rules, access duration, renewal limits, waitlists, and licensing compliance. These programmable contracts automatically enforce publisher terms and institutional policies, reducing manual intervention and administrative overhead.

4.3 Distributed Ledger Layer

All access and lending transactions are recorded on a shared, immutable ledger. No single institution can alter records unilaterally, ensuring transparency, accountability, and tamper resistance. Audit trails support compliance reporting and usage analytics.

4.4 Digital Repository Layer

Digital resources—such as e-books, journals, theses, and multimedia materials—remain stored in secure institutional or consortium repositories. The blockchain references these assets without storing them directly, preserving performance and scalability.

5. Inter-University Resource Sharing Network

Under the proposed model, participating Central Universities form a blockchain consortium network. Each institution contributes to shared governance while retaining autonomy over its licensed resources. Access decisions are executed collectively through smart contracts rather than centralized administrators.

Key advantages include:

- Reduction in duplicated subscription costs
- Equitable access to high-value scholarly resources
- Enhanced collaboration among institutions
- Improved utilization of publicly funded knowledge assets

6. Smart Contract-Based Lending Workflow

The lending workflow operates as follows:

1. A user submits a request for a digital resource.
2. The smart contract verifies user authorization and license availability.
3. If available, access is granted automatically.
4. If unavailable, the user is placed in a waitlist queue.
5. Upon expiry, access rights are revoked automatically.
6. All transactions are permanently recorded on the ledger.

This workflow minimizes manual processing, eliminates overdue penalties, and ensures consistent policy enforcement.

7. Blockchain-Based Library Model versus Cryptocurrency Systems

While both systems utilize blockchain technology, their objectives differ fundamentally.

- Cryptocurrency systems manage financial assets and monetary transactions.
- Blockchain-based library systems manage **access rights, usage logs, and digital licenses**.

In the library context, blockchain serves as a governance and trust mechanism rather than a financial instrument.

8. Advantages of the Proposed Framework

The conceptual framework offers several potential benefits:

- Cost efficiency through shared subscriptions
- Universal authentication across institutions
- Automated access control and compliance

- Transparent audit trails
- Support for distance and online education
- Reduced administrative burden on library staff

9. Challenges and Limitations

Despite its potential, the framework faces several challenges:

- Initial infrastructure and training costs
- Integration with existing library management systems
- Publisher licensing constraints
- Need for national-level governance and standards
- Dependence on reliable network infrastructure

These limitations underscore the necessity of phased implementation and policy support.

10. Feasibility and Cost Considerations

From a feasibility perspective, blockchain implementation in academic libraries is primarily constrained by governance coordination rather than technological capability. Since digital content remains off-chain, infrastructure costs are limited to node deployment, system integration, and capacity building.

A consortium-based cost-sharing model could significantly reduce long-term subscription expenditure. Pilot implementations involving clusters of Central Universities would allow gradual scaling while mitigating financial risk.

11. Suggestions and Policy Implications

- National coordination through appropriate academic bodies
- Phased pilot implementations before large-scale rollout
- Legal review of licensing agreements for blockchain compatibility
- Capacity-building programs for library professionals

12. Conclusion

This study positions blockchain not as an immediately deployable solution, but as a **conceptual design framework** for rethinking digital library collaboration among Indian Central Universities. By shifting the focus from centralized control to decentralized trust, the proposed model aligns with national policy objectives of equity, transparency, and efficient public resource utilization.

Although empirical validation remains a future task, the framework offers a structured foundation for pilot studies, policy deliberations, and institutional experimentation. With appropriate governance and phased adoption, blockchain has the potential to reshape digital library services in India's higher education ecosystem.

References

- Chandra, R., & Hussain, A. (2023). Secure academic resource exchange using blockchain networks. *Library Hi Tech*, 41(4), 1102–1121.
- Gupta, P., & Ahmad, S. (2022). Distributed ledger applications in higher education infrastructure. *Future Internet*, 14(10), 312.
- Li, X., & Luo, Z. (2021). Smart contract-driven e-content management for universities. *Computers & Security*, 105, 102260.
- Mahmoud, K., & Elsayed, A. (2023). Decentralized scholarly data preservation. *International Journal of Information Management Data Insights*, 3(2).
- Zhang, W., & Cho, H. (2022). Blockchain authentication for academic libraries. *Library & Information Science Research*, 44(3), 101159.

