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Abstract: The Cheetah Chase Algorithm (CCA), inspired by predator-prey dynamics, offers a bio-inspired
solution to a wide range of optimization challenges across diverse domains. Its adaptive decision-making,
energy efficiency, and ability to identify cost-effective paths make it highly versatile for several real-world
applications. In network routing, the CCA enhances path selection by minimizing routing costs and
convergence delays, making it suitable for dynamic and large-scale network environments. In healthcare
applications, the algorithm optimizes data transmission in sensor networks for patient monitoring, ensuring
timely and accurate delivery of critical health data. In robotics and autonomous vehicles, the CCA supports
efficient path planning and obstacle avoidance, enhancing navigation in uncertain and dynamic environments.
The algorithm also shows promise in supply chain logistics, where it can streamline delivery routes and
resource allocation, reducing costs and improving operational efficiency. Its application in‘Vehicular Ad Hoc
Networks (VANETS) enables reliable and low-latency communication among vehicles, enhancing traffic
management and road safety. Additionally, in VLSI (Very-Large-Scale Integration) design, the CCA aids in
optimizing interconnect routing and reducing signal delays, contributing to more efficient chip layouts. The
adaptability and resource-efficient nature of the Cheetah Chase Algorithm make it a powerful tool for solving
complex optimization problems across multiple industries. This research highlights the broad applicability of
the CCA, setting the stage for further exploration of its capabilities in advancing modern technological
systems.

Index Terms - Cheetah Chase Algorithm (CCA); Bio-Inspired Computing; Nature-Inspired Algorithms;
Network Routing, VANET, VLSI, Supply Chain Logistics.

|I. INTRODUCTION

Optimization challenges in real-world systems are characterized by dynamic parameters, uncertain inputs,
and the need for rapid decision-making. Traditional algorithms often fall short in addressing these
complexities. Bio-inspired algorithms, which mimic nature’s intelligence, have emerged as strong contenders
in optimization. One such algorithm is the Cheetah Chase Algorithm (CCA).

Inspired by the agile and efficient hunting strategies of a cheetah, CCA simulates stalking, acceleration, and
precision capture to explore and exploit search spaces effectively. This paper explores how the CCA can be
applied to domains such as communication networks, healthcare, robotics, logistics, VANETS, and VLSI
design—nhighlighting its strengths and domain-specific performance.
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I1. Overview of the Cheetah Chase Algorithm (CCA)

The CCA is structured around the natural phases of a cheetah's hunt:

o Stalking Phase: Agents perform broad exploration to identify promising zones based on preliminary
fitness values. This phase avoids premature convergence and promotes diversity.

e Acceleration Phase: Once a promising region is identified, agents rapidly converge toward potential
solutions using dynamic acceleration strategies that adapt to environmental feedback.

o Capture Phase: The best solution is fine-tuned and locked upon. Velocity is reduced to prevent
overshooting, ensuring minimal cost and optimal selection.

These phases reflect a balance between global search (exploration) and local refinement (exploitation).

The Cheetah Chase Algorithm (CCA) is a bio-inspired optimization technique modeled on the hunting
strategy of a cheetah, the fastest land animal. The algorithm’s power lies in its structured pursuit
behavior, which can be mapped effectively to routing and optimization problems in networks. Each phase
has a distinct role in narrowing down the search space and guiding agents toward optimal solutions.

2.1. Stalking Phase — Identifying Optimal Zones

In nature, a cheetah first stalks its prey by analyzing the environment and identifying a potential target.
It stays stealthy, maintaining low visibility while tracking prey movements.

In the algorithm:

e This phase represents initial exploration.

o Each cheetah (agent) scans the solution space for promising zones.

e The focus is on low-speed, wide-range exploration to identify areas with high fitness values (e.g.,
lower routing cost, minimal energy consumption).

e A probability function or initial heuristic helps in shortlisting potential paths.

o Similar to population initialization in metaheuristics like PSO or GA.

2.2 Acceleration Phase — Rapid Chase toward the Best Route

Once the cheetah locks onto a target, it accelerates rapidly to close the distance. The cheetah uses vision
and real-time feedback to make swift directional adjustments.

In the algorithm:

e The cheetah (solution agent) now intensifies the search in the selected zone.
o The velocity of each agent increases, guided by the gradient of improvement in the fitness
function.
e A fuzzy logic controller may dynamically tune acceleration based on parameters like:
o Distance to optimal node.
o Rate of change in path quality (fitness delta).
o Node congestion or velocity variation.
e The search becomes more exploitative than explorative.
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2.3. Capture Phase — Locking onto Optimal Path with Minimum Cost

As the cheetah nears the prey, it fine-tunes its movements to ensure a successful catch. The goal is to
strike precisely without missing or overshooting the target.

In the algorithm:
e This phase involves local refinement or final optimization of the chosen path.
e Agent movement becomes more controlled, reducing speed (velocity decay).
e The algorithm confirms the feasibility of the selected route using constraints (e.g., energy limits, link
stability).
e The best-fit solution is “captured” and stored as the final output.
o Optionally, a memory structure or neural network may store this optimal route for future reference
(reinforcement).
I11. Real-World Applications of CCA
3.1 Network Routing
CCA can adaptively select routes in dynamic network environments like Mobile Ad Hoc Networks
(MANETS) or Internet of Things (IoT) networks. By mimicking the cheetah’s adaptive pursuit, the
algorithm ensures:
o Faster convergence to optimal routes.
« Reduced routing cost and energy consumption.
o Real-time responsiveness to topology changes.
3.2 Healthcare Sensor Networks
Wearable and embedded health sensors require timely and accurate data delivery. CCA supports:
o Low-latency routing in body area networks.
o Adaptive routing based on patient mobility or sensor availability.
o Efficient load distribution among relay nodes.
3.3 Robotics and Autonomous Vehicles
Robots and autonomous vehicles must navigate complex, changing environments. CCA helps with:
o Real-time obstacle avoidance.
e Dynamic path planning in uncertain terrain.
e Multi-robot coordination through decentralized routing strategies.
3.4 Supply Chain and Logistics
Logistics systems involve scheduling, delivery routing, and inventory optimization. CCA offers:
e Adaptive delivery path planning.
o Dynamic rerouting under traffic or resource constraints.
o Energy and cost savings in transportation systems.
3.5 Vehicular Ad Hoc Networks (VANETS)

In VANETS, where vehicle communication is constantly changing, CCA ensures:

e Low-latency and reliable routing.
e Real-time traffic information dissemination.
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o Enhanced road safety and congestion control.

3.6 VLSI Design Optimization
In Very-Large-Scale Integration (\VLSI), routing interconnects efficiently is critical. CCA supports:
e Minimization of signal delay.
e Optimization of interconnect wire lengths.
e Reduction of routing congestion in chip layouts.
IV. Experimental Results
Simulation tools were used across domains:
e NS-3 for network routing and VANET simulations.
e MATLAB for healthcare and logistics routing tasks.
e EDA Tools (e.g., Cadence, Synopsys) for VLSI routing optimization.
Key metrics observed:
o PDR (Packet Delivery Ratio) improved by 5-8% compared to ACO and PSO.
e End-to-End Delay reduced by 15-20%.
e Convergence Time to optimal solution reduced significantly due to adaptive acceleration logic.

o Signal Delay in VLSI routing reduced by up to 12%.

A. Network Routing

/Algorithm|[PDR (%6)| Delay (ms)||Convergence Time (s)|
DSR 1854  [230 125 |
ACO 891  |170 8.7 |
PSO 1887 |90 9.2 |
ccA  |o36 142 5.3 |

Comparitive Chart - Network Routing
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Figure 1 — Network Routing Comparison Chart

Figure 1 illustrates the comparative performance of the proposed Cheetah Chase Algorithm (CCA) against
traditional routing and metaheuristic approaches in network routing scenarios simulated using NS-3. The
results indicate that CCA achieves the highest Packet Delivery Ratio (93.6%), demonstrating superior route
reliability under dynamic network conditions. Additionally, CCA significantly reduces end-to-end delay to
142 ms, outperforming DSR, ACO, and PSO due to its adaptive chase—acceleration mechanism that enables
rapid path selection. The convergence time is also minimized (5.3 s), highlighting the algorithm’s fast
stabilization and suitability for real-time routing environments.
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B. Healthcare Sensor Networks

/Algorithm|[PDR (%6)| Delay (ms)||Convergence Time (s)|
LEACH |j80.2  |290 15.1 |
PEGASIS |82.3 270 1143 |
PSO 86,5 ][50 11.8 |
CCA |04  |210 9.5 |

Comparitive Chart - Healthcare Networks
400
300

200
100 I
, HENN ———

PDR (%) Delay (ms) Convergence Time (s)

B LEACH m PEGASIS PSO mCCA

Figure 2 — Health Care Sensor Network Comparison Chart

Figure 2 presents the performance comparison of CCA with conventional clustering and optimization
algorithms in healthcare sensor networks modeled in MATLAB. The proposed CCA attains a higher PDR
of 90.4%, reflecting improved data reliability and reduced packet loss in energy-constrained medical
sensing environments. End-to-end delay is reduced to 210 ms, indicating efficient routing decisions with
minimal communication overhead. Furthermore, the faster convergence time (9.5 s) demonstrates CCA’s
ability to quickly adapt to node dynamics and topology changes, making it well-suited for latency-sensitive
healthcare monitoring applications.

C. Robotics & Autonomous Vehicles

]AIgorithmHPDR (%)HDeIay (ms)HConvergence Time (s)\ ‘
A* 755 |j310 118.3 |
D* 783|295 116.5 |
RRT 1842 240 13.2 |
cCcA 897  |200 l20.1 |

Comparitive Chart - Robotics & Autonomous Vehicles
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Figure 3 — Robotics and Autonomous Vehicles Comparison Chart
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Figure 3 compares the effectiveness of CCA with classical path-planning algorithms such as A*, D*, and
RRT in robotics and autonomous vehicle navigation. The results show that CCA achieves a PDR of 89.7%,
indicating robust path selection even in dynamically changing environments. The reduction in delay to 200
ms highlights smoother and more efficient trajectory planning. Additionally, CCA converges faster (10.1 s)
than traditional planners, validating its ability to rapidly compute optimal paths through its exploration—
exploitation balance inspired by cheetah hunting behavior.

D. Supply Chain Logistics

]AIgorithmHPDR (%)HDeIay (ms)HConvergence Time (s)\
Greedy [70.6 340 120.1 |
ACO  |743  |300 7.8 |
PSO 78.8 280 115.3 |
CCA 841  |240 127 |

Comparitive Chart - Supply Chain Logistics
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Figure 4 — Supply Chain Logistics Comparison Chart

Figure 4 demonstrates the application of the Cheetah Chase Algorithm in supply chain logistics
optimization. Compared to greedy, ACO, and PSO approaches, CCA achieves a notable improvement in
PDR (84.1%), indicating higher delivery success rates and reduced routing failures. The end-to-end delay is
minimized to 240 ms, reflecting efficient decision-making in route and resource allocation. The
convergence time of 12.7 s further confirms that CCA efficiently scales to complex logistics networks,
enabling timely optimization in large-scale and time-critical supply chain operations.

E. VANETs
\AIgorithmHPDR (%)HDeIay (ms)HConvergence Time (s)\
GPSR  |825  |250 113.0 |
GYTAR 851  [?230 1115 |
PSO 188.3 ][00 l10.2 |
CCA  |917 165 7.8 |
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Figure 5 — Vanet Comparison Chart

Figure 5 illustrates the performance evaluation of CCA in Vehicular Ad Hoc Networks (VANETS) using
NS-3 simulations. The proposed algorithm outperforms GPSR, GYTAR, and PSO by achieving the highest
PDR (91.7%), ensuring reliable data delivery in highly mobile vehicular environments. A significant
reduction in end-to-end delay (165 ms) is observed, attributed to CCA’s rapid response to frequent topology
changes. Moreover, the reduced convergence time (7.8 s) highlights its effectiveness in fast-changing
VANET scenarios, making it suitable for intelligent transportation systems.

F. VLSI Design
]Algorithm HPDR (%)HDeIay (ms)HConvergence Time (s)\
IMaze Routing|68.4 380 22.3 |
Line-Probe |72.1  [[340 120.4 |
IACO 769  |310 118.2 |
ICCA 1823 |l270 114.9 |
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Figure 6 — VLSI Design Comparison Chart

Figure 6 presents a comparative analysis of routing optimization techniques in VLSI design environments
using industry-standard EDA tools. The proposed CCA demonstrates superior performance with a PDR of
82.3% and a reduced signal delay of 270 ms, indicating improved routing efficiency and lower interconnect
latency. Compared to maze routing, line-probe, and ACO methods, CCA achieves faster convergence (14.9
s), which can be attributed to its adaptive acceleration and intelligent path refinement strategy. These results
validate the applicability of CCA for timing-critical and large-scale VLSI routing optimization.
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5. Conclusion

The Cheetah Chase Algorithm exhibits remarkable versatility and effectiveness across diverse real-world
optimization scenarios. Its biologically inspired pursuit model provides fast and intelligent decision-making,
while its modular structure makes it adaptable to hybrid enhancements using fuzzy logic or neural networks.
As technology evolves, CCA stands as a powerful optimization strategy for autonomous systems, smart
infrastructure, and high-performance computing environments.
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