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Abstract:  The Cheetah Chase Algorithm (CCA), inspired by predator-prey dynamics, offers a bio-inspired 

solution to a wide range of optimization challenges across diverse domains. Its adaptive decision-making, 

energy efficiency, and ability to identify cost-effective paths make it highly versatile for several real-world 

applications. In network routing, the CCA enhances path selection by minimizing routing costs and 

convergence delays, making it suitable for dynamic and large-scale network environments. In healthcare 

applications, the algorithm optimizes data transmission in sensor networks for patient monitoring, ensuring 

timely and accurate delivery of critical health data. In robotics and autonomous vehicles, the CCA supports 

efficient path planning and obstacle avoidance, enhancing navigation in uncertain and dynamic environments. 

The algorithm also shows promise in supply chain logistics, where it can streamline delivery routes and 

resource allocation, reducing costs and improving operational efficiency. Its application in Vehicular Ad Hoc 

Networks (VANETs) enables reliable and low-latency communication among vehicles, enhancing traffic 

management and road safety. Additionally, in VLSI (Very-Large-Scale Integration) design, the CCA aids in 

optimizing interconnect routing and reducing signal delays, contributing to more efficient chip layouts. The 

adaptability and resource-efficient nature of the Cheetah Chase Algorithm make it a powerful tool for solving 

complex optimization problems across multiple industries. This research highlights the broad applicability of 

the CCA, setting the stage for further exploration of its capabilities in advancing modern technological 

systems. 

  

Index Terms - Cheetah Chase Algorithm (CCA); Bio-Inspired Computing; Nature-Inspired Algorithms; 

Network Routing, VANET, VLSI, Supply Chain Logistics. 

I. INTRODUCTION 

Optimization challenges in real-world systems are characterized by dynamic parameters, uncertain inputs, 

and the need for rapid decision-making. Traditional algorithms often fall short in addressing these 

complexities. Bio-inspired algorithms, which mimic nature’s intelligence, have emerged as strong contenders 

in optimization. One such algorithm is the Cheetah Chase Algorithm (CCA). 

Inspired by the agile and efficient hunting strategies of a cheetah, CCA simulates stalking, acceleration, and 

precision capture to explore and exploit search spaces effectively. This paper explores how the CCA can be 

applied to domains such as communication networks, healthcare, robotics, logistics, VANETs, and VLSI 

design—highlighting its strengths and domain-specific performance. 
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II. Overview of the Cheetah Chase Algorithm (CCA) 

The CCA is structured around the natural phases of a cheetah's hunt: 

 Stalking Phase: Agents perform broad exploration to identify promising zones based on preliminary 

fitness values. This phase avoids premature convergence and promotes diversity. 

 Acceleration Phase: Once a promising region is identified, agents rapidly converge toward potential 

solutions using dynamic acceleration strategies that adapt to environmental feedback. 

 Capture Phase: The best solution is fine-tuned and locked upon. Velocity is reduced to prevent 

overshooting, ensuring minimal cost and optimal selection. 

These phases reflect a balance between global search (exploration) and local refinement (exploitation).  

The Cheetah Chase Algorithm (CCA) is a bio-inspired optimization technique modeled on the hunting 

strategy of a cheetah, the fastest land animal. The algorithm’s power lies in its structured pursuit 

behavior, which can be mapped effectively to routing and optimization problems in networks. Each phase 

has a distinct role in narrowing down the search space and guiding agents toward optimal solutions.  

2.1. Stalking Phase – Identifying Optimal Zones 

In nature, a cheetah first stalks its prey by analyzing the environment and identifying a potential target. 

It stays stealthy, maintaining low visibility while tracking prey movements. 

In the algorithm: 

 This phase represents initial exploration. 

 Each cheetah (agent) scans the solution space for promising zones. 

 The focus is on low-speed, wide-range exploration to identify areas with high fitness values (e.g., 

lower routing cost, minimal energy consumption). 

 A probability function or initial heuristic helps in shortlisting potential paths. 

 Similar to population initialization in metaheuristics like PSO or GA. 

2.2 Acceleration Phase – Rapid Chase toward the Best Route 

Once the cheetah locks onto a target, it accelerates rapidly to close the distance. The cheetah uses vision 

and real-time feedback to make swift directional adjustments. 

In the algorithm: 

 The cheetah (solution agent) now intensifies the search in the selected zone. 

 The velocity of each agent increases, guided by the gradient of improvement in the fitness 

function. 

 A fuzzy logic controller may dynamically tune acceleration based on parameters like: 

o Distance to optimal node. 

o Rate of change in path quality (fitness delta). 

o Node congestion or velocity variation. 

 The search becomes more exploitative than explorative. 
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2.3. Capture Phase – Locking onto Optimal Path with Minimum Cost 

As the cheetah nears the prey, it fine-tunes its movements to ensure a successful catch. The goal is to 

strike precisely without missing or overshooting the target. 

In the algorithm: 

 This phase involves local refinement or final optimization of the chosen path. 

 Agent movement becomes more controlled, reducing speed (velocity decay). 

 The algorithm confirms the feasibility of the selected route using constraints (e.g., energy limits, link 

stability). 

 The best-fit solution is “captured” and stored as the final output. 

 Optionally, a memory structure or neural network may store this optimal route for future reference 

(reinforcement). 

III. Real-World Applications of CCA 

3.1 Network Routing 

CCA can adaptively select routes in dynamic network environments like Mobile Ad Hoc Networks 

(MANETs) or Internet of Things (IoT) networks. By mimicking the cheetah’s adaptive pursuit, the 

algorithm ensures: 

 Faster convergence to optimal routes. 

 Reduced routing cost and energy consumption. 

 Real-time responsiveness to topology changes. 

3.2 Healthcare Sensor Networks 

Wearable and embedded health sensors require timely and accurate data delivery. CCA supports:  

 Low-latency routing in body area networks. 

 Adaptive routing based on patient mobility or sensor availability. 

 Efficient load distribution among relay nodes. 

3.3 Robotics and Autonomous Vehicles 

Robots and autonomous vehicles must navigate complex, changing environments. CCA helps with:  

 Real-time obstacle avoidance. 

 Dynamic path planning in uncertain terrain. 

 Multi-robot coordination through decentralized routing strategies. 

3.4 Supply Chain and Logistics 

Logistics systems involve scheduling, delivery routing, and inventory optimization. CCA offers:  

 Adaptive delivery path planning. 

 Dynamic rerouting under traffic or resource constraints. 

 Energy and cost savings in transportation systems. 

3.5 Vehicular Ad Hoc Networks (VANETs) 

In VANETs, where vehicle communication is constantly changing, CCA ensures: 

 Low-latency and reliable routing. 

 Real-time traffic information dissemination. 
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 Enhanced road safety and congestion control. 

3.6 VLSI Design Optimization 

In Very-Large-Scale Integration (VLSI), routing interconnects efficiently is critical. CCA supports: 

 Minimization of signal delay. 

 Optimization of interconnect wire lengths. 

 Reduction of routing congestion in chip layouts. 

IV. Experimental Results 

Simulation tools were used across domains: 

 NS-3 for network routing and VANET simulations. 

 MATLAB for healthcare and logistics routing tasks. 

 EDA Tools (e.g., Cadence, Synopsys) for VLSI routing optimization. 

Key metrics observed: 

 PDR (Packet Delivery Ratio) improved by 5–8% compared to ACO and PSO. 

 End-to-End Delay reduced by 15–20%. 

 Convergence Time to optimal solution reduced significantly due to adaptive acceleration logic. 

 Signal Delay in VLSI routing reduced by up to 12%. 

A. Network Routing 

Algorithm PDR (%) Delay (ms) Convergence Time (s) 

DSR 85.4 230 12.5 

ACO 89.1 170 8.7 

PSO 88.7 190 9.2 

CCA 93.6 142 5.3 

 

 
Figure 1 – Network Routing Comparison Chart 

Figure 1 illustrates the comparative performance of the proposed Cheetah Chase Algorithm (CCA) against 

traditional routing and metaheuristic approaches in network routing scenarios simulated using NS-3. The 

results indicate that CCA achieves the highest Packet Delivery Ratio (93.6%), demonstrating superior route 

reliability under dynamic network conditions. Additionally, CCA significantly reduces end-to-end delay to 

142 ms, outperforming DSR, ACO, and PSO due to its adaptive chase–acceleration mechanism that enables 

rapid path selection. The convergence time is also minimized (5.3 s), highlighting the algorithm’s fast 

stabilization and suitability for real-time routing environments. 
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B. Healthcare Sensor Networks 

Algorithm PDR (%) Delay (ms) Convergence Time (s) 

LEACH 80.2 290 15.1 

PEGASIS 82.3 270 14.3 

PSO 86.5 250 11.8 

CCA 90.4 210 9.5 

 

 

 
Figure 2 – Health Care Sensor Network Comparison Chart 

 

Figure 2 presents the performance comparison of CCA with conventional clustering and optimization 

algorithms in healthcare sensor networks modeled in MATLAB. The proposed CCA attains a higher PDR 

of 90.4%, reflecting improved data reliability and reduced packet loss in energy-constrained medical 

sensing environments. End-to-end delay is reduced to 210 ms, indicating efficient routing decisions with 

minimal communication overhead. Furthermore, the faster convergence time (9.5 s) demonstrates CCA’s 

ability to quickly adapt to node dynamics and topology changes, making it well-suited for latency-sensitive 

healthcare monitoring applications. 

C. Robotics & Autonomous Vehicles 

Algorithm PDR (%) Delay (ms) Convergence Time (s) 

A* 75.5 310 18.3 

D* 78.3 295 16.5 

RRT 84.2 240 13.2 

CCA 89.7 200 10.1 

 

 

 
Figure 3 – Robotics and Autonomous Vehicles Comparison Chart 
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Figure 3 compares the effectiveness of CCA with classical path-planning algorithms such as A*, D*, and 

RRT in robotics and autonomous vehicle navigation. The results show that CCA achieves a PDR of 89.7%, 

indicating robust path selection even in dynamically changing environments. The reduction in delay to 200 

ms highlights smoother and more efficient trajectory planning. Additionally, CCA converges faster (10.1 s) 

than traditional planners, validating its ability to rapidly compute optimal paths through its exploration–

exploitation balance inspired by cheetah hunting behavior. 

D. Supply Chain Logistics 

Algorithm PDR (%) Delay (ms) Convergence Time (s) 

Greedy 70.6 340 20.1 

ACO 74.3 300 17.8 

PSO 78.8 280 15.3 

CCA 84.1 240 12.7 

 

 

 
Figure 4 – Supply Chain Logistics Comparison Chart 

 

Figure 4 demonstrates the application of the Cheetah Chase Algorithm in supply chain logistics 

optimization. Compared to greedy, ACO, and PSO approaches, CCA achieves a notable improvement in 

PDR (84.1%), indicating higher delivery success rates and reduced routing failures. The end-to-end delay is 

minimized to 240 ms, reflecting efficient decision-making in route and resource allocation. The 

convergence time of 12.7 s further confirms that CCA efficiently scales to complex logistics networks, 

enabling timely optimization in large-scale and time-critical supply chain operations. 

E. VANETs 

Algorithm PDR (%) Delay (ms) Convergence Time (s) 

GPSR 82.5 250 13.0 

GYTAR 85.1 230 11.5 

PSO 88.3 200 10.2 

CCA 91.7 165 7.8 
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Figure 5 – Vanet Comparison Chart 

 

Figure 5 illustrates the performance evaluation of CCA in Vehicular Ad Hoc Networks (VANETs) using 

NS-3 simulations. The proposed algorithm outperforms GPSR, GYTAR, and PSO by achieving the highest 

PDR (91.7%), ensuring reliable data delivery in highly mobile vehicular environments. A significant 

reduction in end-to-end delay (165 ms) is observed, attributed to CCA’s rapid response to frequent topology 

changes. Moreover, the reduced convergence time (7.8 s) highlights its effectiveness in fast-changing 

VANET scenarios, making it suitable for intelligent transportation systems. 

F. VLSI Design 

Algorithm PDR (%) Delay (ms) Convergence Time (s) 

Maze Routing 68.4 380 22.3 

Line-Probe 72.1 340 20.4 

ACO 76.9 310 18.2 

CCA 82.3 270 14.9 

 

Figure 6 – VLSI Design Comparison Chart 

Figure 6 presents a comparative analysis of routing optimization techniques in VLSI design environments 

using industry-standard EDA tools. The proposed CCA demonstrates superior performance with a PDR of 

82.3% and a reduced signal delay of 270 ms, indicating improved routing efficiency and lower interconnect 

latency. Compared to maze routing, line-probe, and ACO methods, CCA achieves faster convergence (14.9 

s), which can be attributed to its adaptive acceleration and intelligent path refinement strategy. These results 

validate the applicability of CCA for timing-critical and large-scale VLSI routing optimization. 
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5. Conclusion 

The Cheetah Chase Algorithm exhibits remarkable versatility and effectiveness across diverse real-world 

optimization scenarios. Its biologically inspired pursuit model provides fast and intelligent decision-making, 

while its modular structure makes it adaptable to hybrid enhancements using fuzzy logic or neural networks. 

As technology evolves, CCA stands as a powerful optimization strategy for autonomous systems, smart 

infrastructure, and high-performance computing environments. 
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