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Abstract—Efficient highway route planning requires minimiz-
ing construction cost, reducing environmental disturbance, and
adapting to complex terrain conditions—tasks that traditional
GlS-based and manual planning methods often struggle to ac-
complish. This study presents a comprehensive review of satellite
image—driven techniques for highway route optimization using
high-resolution imagery collected from Google Earth. A set of 25
peer-reviewed studies published between 2019 and 2024 are anal-
ysed to examine advancements in deep learning—based semantic
segmentation, terrain analysis, and multi-objective optimization
algorithms. The survey highlights modern approaches such as U-
Net-based land cover classification, graph-based shortest-path
algorithms, and multi-criteria decision-making frameworks that
enable the identification of eco-friendly and cost-efficient high-
way alignments. Key challenges—including data preprocessing
complexity, regulatory constraints, and the lack of real-time
adaptability—are discussed in detail. The findings also outline
promising future directions in Al-driven geospatial modelling,
automated environmental impact assessment, and sustainable
route planning. This review serves as a valuable reference for
researchers and policymakers seeking environmentally conscious
and technically reliable highway route optimization solutions
using satellite imagery from platforms like Google Earth.

Index Terms—Highway Route Optimization, Google Earth,
Satellite Imagery, Remote Sensing, Environmental Constraints,
Deep Learning, GIS-Based Planning.

. INTRODUCTION

Highway construction is a fundamental component of
national infrastructure development, supporting economic
growth, regional connectivity, and urban expansion. However,
identifying an optimal highway alignment remains a complex
task due to environmental constraints, terrain variations, and
the challenges of modern urban planning. Traditional route
selection approaches—often dependent on manual surveys,
outdated maps, and subjective decision-making—frequently
result in suboptimal alignments that increase environmental
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damage, construction cost, and long-term ecological impact.
With the advancement of computer vision, remote sensing, and
artificial intelligence (Al), satellite imagery has become a
powerful tool for data-driven highway route planning. High-
resolution images from platforms such as-Google Earth pro-
vide detailed information on land cover, terrain features, vege-
tation density, water bodies, and expanding urban zones. When
integrated with geospatial analysis techniques, these datasets
allow planners to evaluate natural and man-made constraints
more systematically. Recent studies highlight how deep learn-
ing-models—such as Convolutional Neural Networks (CNNs),
U-Net architectures, and Vision Transformers—automate land-
feature extraction and improve the accuracy of route evalua-
tion. For example, Zhang et al. demonstrate how Al-based
segmentation and terrain modelling can reduce ecological
disturbances and enhance route feasibility by analyzing envi-
ronmental features such as forests, wildlife corridors, wetlands,
and flood-prone regions. Urban restrictions, including land- use
patterns, population density, and existing infrastructure, also
influence highway design. Multi-objective optimization
techniques like NSGA-I1I have been widely applied to balance
conflicting goals, such as minimizing cost while preserving
environmentally sensitive regions. Similarly, genetic algo-
rithms and heuristic search methods have shown significant
potential in refining highway alignment decisions based on
both environmental and urban constraints. The integration of
Al, deep learning, and Geographic Information Systems (GIS)
offers a transformative framework for sustainable highway
planning. By combining satellite imagery with optimization
algorithms and automated feature extraction, planners can
determine routes that minimize ecological disruption while
ensuring structural feasibility. The purpose of this paper is to
provide a comprehensive examination of recent advancements
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in satellite image—based highway route optimization. Through
a detailed analysis of Al-based, GIS-supported, and multi-
objective optimization techniques, this study emphasizes the
importance of environmentally conscious and urban-aware
highway routing. The insights gathered aim to support the de-
velopment of intelligent decision-support systems that enable
more accurate, sustainable, and cost-effective highway route
selection.

1. BACKGROUND AND FUNDAMENTAL
CONCEPTS

Satellite imagery—based highway route planning is an
emerging interdisciplinary field integrating remote sensing,
artificial intelligence (Al), multi-objective optimization, and
geospatial analysis. This section introduces the essential tech-
nical background, key terminologies, and foundational theories
that support modern data-driven route optimization.

A. Key Terminologies

« Satellite Imaging: The process of capturing high-resolution
images of the Earth’s surface using platforms such as Google
Earth, Sentinel-2, and Landsat. These datasets provide essen-
tial geospatial information for analyzing terrain, vegetation,
and land-use patterns.

+ Remote Sensing: The acquisition and interpretation of
Earth-surface data from a distance. It plays a major role in
environmental monitoring, terrain assessment, and preliminary
highway feasibility studies.

+ Geographic Information System (GIS): A framework used
to collect, store, analyze, and visualize spatial data. GIS enables
the integration of satellite imagery with environmental, urban,
and terrain layers for route analysis.

+ Terrain Analysis: The study of landform characteris-
tics—such as elevation, slope, aspect, and surface rough-
ness—that influence highway alignment, construction feasi-
bility, and cost.

« Urban Constraints: Restrictions arising from land-use
regulations, built-up areas, transportation networks, and pop-
ulation density that guide or limit possible route alignments.

 Environmental Constraints: Ecologically sensitive regions
including protected forests, wildlife corridors, rivers, wetlands,
and vegetation zones that must be preserved in sustainable
route planning.

+ Multi-Objective Optimization: A computational method
that evaluates multiple conflicting objectives (e.g., minimizing
environmental impact, reducing construction cost, avoiding
urban disturbance) to generate an optimal highway route.

B. Fundamental Theories and Models

* Remote Sensing and Satellite Data Processing Satellite
imagery provides the foundational data needed for terrain eval-
uation and land-use classification. Platforms such as Google
Earth and Sentinel offer multispectral imagery suitable for
detecting vegetation, urban density, water bodies, and elevation
changes. Tools like the Normalized Difference Vegetation In-
dex (NDVI) and Digital Elevation Models (DEMSs) help iden-
tify sensitive ecological zones and terrain complexity. Studies

such as [3] and [5] highlight the importance of satellite-
based environmental monitoring in sustainable infrastructure
planning.

« Geospatial Analysis for Route Optimization GIS enables
spatial integration of satellite data with environmental and
urban constraints. Using techniques like spatial overlay analy-
sis, buffering, and cost-surface modeling, GIS helps planners
evaluate alternative alignments while maintaining a balance
between ecological preservation and urban accessibility. As
demonstrated in study [12], GIS-integrated decision-support
systems are highly effective for analyzing topography, vegeta-
tion cover, and population density during initial route planning.

« Machine Learning and Al in Route Selection Machine
learning models—particularly Convolutional Neural Networks
(CNNSs), U-Net, and Vision Transformers—are widely adopted
for extracting land-cover information from satellite imagery.
Paper [4] demonstrates how Al automates land-use detection,
while Feng et al. (2022) use Graph Neural Networks (GNNs)
to model road connectivity. These methods significantly en-
hance route selection by producing accurate land-classification
maps and enabling data-driven decision-making. ¢ Optimiza-
tion Algorithms for Highway Planning Optimization tech-
niques such as Genetic Algorithms (GAs) and the Non-
Dominated Sorting Genetic Algorithm-I11 (NSGA-I1I) are used
to evaluate multiple route alternatives and identify optimal
alignments. Xu et al. (2020) applied GAs to improve terrain
adaptability, while Kim and Park (2022) utilized NSGA-I1I
to minimize ecological disturbance. These algorithms provide
a structured approach for resolving trade-offs among cost,
environmental preservation, and engineering feasibility.

This background establishes a strong technical foundation
for understanding satellite-image-based highway route opti-
mization. The following sections explore -how these techniques
are applied in practice and evaluate their effectiveness in devel-
oping environmentally and urban-conscious roadway designs.

I1l. CLASSIFICATION OF EXISTING RESEARCH

Existing research on satellite-image-based highway route
optimization can be broadly categorized into three groups:
(1) image-based analysis methods, (2) optimization-driven
techniques, and (3) GIS-integrated hybrid approaches. Each
category focuses on addressing terrain suitability, environmen-
tal sensitivity, and urban restrictions using satellite-derived
data.

* Image-Based Analysis Computer vision and deep learning
techniques have been widely applied to extract valuable infor-
mation from satellite imagery. Models such as Convolutional
Neural Networks (CNNs) and Vision Transformers (ViTs) are
used to classify land cover, detect vegetation, and analyze
expansion. Several studies demonstrate the use of ViTs for
large-scale remote-sensing feature extraction, while CNNs
have shown strong performance in identifying feasible routes
across challenging terrain. The primary limitation of these
methods is their reliance on high-resolution, labeled datasets,
which are not readily available for many regions.
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learning for dynamic route selection. Multi-objective opti-
mization techniques—especially NSGA-IlI—remain dominant
due to their ability to balance conflicting constraints. GIS-
integrated approaches continue to be essential for spatial rea-
soning, though their performance depends on reliable satellite
data sources.

 Optimization Methods Optimization algorithms are fre-
quently used to determine the most suitable highway alignment
while satisfying multiple constraints such as cost, environ-
mental impact, and urban interference. Multi-objective evolu-
tionary algorithms—including NSGA-II [10], Particle Swarm
Optimization (PSO) [1], and Genetic Algorithms (GAs)—are
commonly adopted. These methods can effectively explore
large search spaces and produce diverse optimal solutions.
However, large-scale roadway planning often requires high
computational resources due to the complexity of evaluating
multiple terrain and environmental constraints.

« Integrated GIS Techniques The integration of satellite
imagery with GIS tools enables advanced spatial analysis for
route selection. GIS-based reinforcement learning has been
used, as demonstrated by Garcia and Martinez (2023), to
identify routes with minimal ecological disturbance. Some re-
searchers have also explored Graph Neural Networks (GNNs)
embedded within GIS platforms to model road networks and
connectivity patterns.

While GIS-integrated methods provide strong spatial rea-
soning, their effectiveness depends heavily on the availability
of accurate and up-to-date geospatial datasets, which vary

C. Comparative Analysis

CNNs and ViTs provide high accuracy in land classification
but require high-quality training datasets. Optimization algo-
rithms such as NSGA-I11 perform well for balancing costs and
environmental impact but incur high computational overhead.
GNNs and RL methods offer improved modelling of spatial
relationships and adaptation but suffer from long training times
and data requirements.

D. Research Gaps

Despite substantial progress, several gaps remain: ¢ Limited
availability of high-resolution, annotated satellite datasets for
many geographic regions.

* Need for hybrid models combining Al, GIS, and optimiza-
tion to improve accuracy and robustness.

significantly by region.

A. Comparison of Al and Optimization Techniques for High-

way Route Optimization

TABLE |
COMPARISON OF Al TECHNIQUES FOR ECO-FRIENDLY ROUTING
Technique Advantages Limitations
Convolutional High accuracy in extracting | Requires large la-
Neural Networks | terrain features beled datasets
(CNNs)
Vision Effective for large-scale im- | High computational
Transformers age analysis cost
(ViTs)
Reinforcement Learns adaptive, dynamic | Requires extensive
Learning (RL) routing strategies training data
Graph Neural | Efficient for modeling road | Needs structured
Networks networks graph data and long
(GNNs) training time
Genetic Finds diverse optimal solu- | Slow convergence
Algorithms tions
(GAs)
Particle  Swarm | Fast convergence for opti- | Prone to local optima
Optimization mization tasks
(PSO)
Multi-Objective Balances multiple | Computationally ex-
Evolutionary environmental and urban pensive
Algorithms constraints
(NSGA-II,
NSGA-III)
Federated Learn- | Enables privacy-preserving | High communication
ing (FL) collaborative model training | and synchronization
costs
GIS-Integrated Strong spatial analysis and | Dependent on
Methods visualization accurate geospatial
datasets

* Requirement for computationally efficient optimization
algorithms capable of handling large geospatial datasets.

« Lack of scalable systems leveraging distributed or parallel
computing for accelerating route-planning computations.

IV. CRITICAL ANALYSIS AND DISCUSSION

Key trends, constraints, and gaps that need to be filled for
future developments are shown by a study of ‘the literature
on highway route optimization using satellite images. The
majority of studies use Al and optimization-based methods to
enhance route selection; nonetheless; there are still significant
issues with computational efficiency, model generalization,
and data availability.

V. METHODOLOGY

The proposed methodology integrates satellite image anal-
ysis, deep learning—based land segmentation, and pathfinding
algorithms to generate efficient and environmentally sensitive
highway routes. The workflow consists of six major stages, as
described below.

A. Dataset Collection

The first step involves gathering and organizing the raw data
required for route planning. The dataset includes:

« RGB Satellite Images: High-resolution Google Earth im-
ages of the study area, containing visible-spectrum informa-
tion (R, G, B). These images capture land features such as
vegetation, water bodies, built-up areas, and open land.

« Segmentation Masks: Pixel-wise labeled images that clas-

B. Trends in Research

Recent work shows a significant shift toward Al-based
feature extraction, including CNNs, ViTs, and reinforcement

sify each region into land-type categories (e.g., forest, water,
urban, barren land, roads). These serve as ground truth for
supervised model training.
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B. Data Preprocessing

Prepare the satellite imagery for deep learning, several
preprocessing operations are applied:

« Normalization: Pixel values are scaled to a uniform range
(e.g., 0-1), improving network convergence and stability.

 Resizing and Tiling: Large satellite images are resized
or divided into smaller patches (typically 256x256) to reduce
computational load and enable efficient GPU processing.

» Mask Generation (if required): If ground-truth masks are
unavailable, manual or semi-automated tools are used for
annotation.

C. Deep Learning Segmentation

Segmentation is performed to classify each pixel into its
corresponding land category.
Model-selection U-Net:
A U-Net architecture is used due to its encoder—decoder
structure, which captures both high-level context and fine
spatial details.
Land-Type Classification:
The model identifies and labels:
- Roads
Vegetation / Forest
Water bodies
Buildings
Urban areas
Open or barren land
- Output:
A segmentation map that highlights all land types within
the satellite image. This map is used to estimate construc-
tion difficulty.

D. Feature Classification

After segmentation, the output is processed to obtain mean-
ingful classes for analysis.

+ Pixel-wise Translation: Segmented pixels are converted
into discrete land-type labels.

+ Integration of Terrain Data: Elevation and slope informa-
tion are overlaid to refine land classification.

* For example: Flat roads are preferable, Dense forests or
steep slopes increase construction difficulty. This ensures that
both environmental and geographical factors are incorporated.

E. Cost Map Generation

The cost map transforms the segmented terrain into a

numerical representation reflecting traversal difficulty.

- Assigning Weights: Each land type is assigned a cost value
depending on construction difficulty or environmen- tal
impact:

- Roads — Low cost

— Urban areas — Medium cost

- Forests / Water bodies — High cost
Terrain and Ecology Modifiers: Factors such as slope,
elevation, and ecological sensitivity further adjust the cost.
This cost map forms the primary input for the optimization
algorithm.

F. Route Optimization

The final stage computes the optimal highway alignment
using the cost map.

« Pathfinding Algorithm: The A* algorithm is used to
compute the most efficient path, considering both distance and
terrain cost.

« Evaluation of Alternatives: Multiple paths are compared
based on Total distance, Environmental impact, Construction
feasibility.

« Optimization Objective: To minimize distance, reduce
ecological disturbance, and avoid high-cost terrain, resulting in
a practical and sustainable highway route.

VI. SYSTEM ARCHITECTURE

The proposed system processes raw satellite imagery and
generates an optimal highway route through a sequence of
automated stages. First, the input satellite images are pre-
processed through resizing, normalization, tiling, and noise
reduction to ensure uniformity and suitability for analysis. A
deep learning-based segmentation model, such as U-Net or
DeepLab, is then applied to classify each pixel into specific
land categories including roads, forests, water bodies, urban
regions, and open land. The segmented output is transformed
into a cost map, where each land type is assigned a numerical
cost based on construction difficulty and environmental sen-
sitivity. High-cost regions include forests, water bodies, and
steep terrain, while low-cost areas such as plains and existing
roads are preferred for route alignment.

A pathfinding algorithm—typically the A* algorithm—uses
this cost map to compute the least-cost route between selected
start and end points. The final optimal path is visualized on top
of the segmented image and original satellite map, enabling
clear interpretation of terrain suitability and the environmental
impact of the proposed route.

* Image nommalization

o
* Resizing and tiling

| *Annotation (if required)

.

' Deep Learning
— Segmentation (CCNN)
= Land cover segmentation

« Terrain/feature extraction

Preprocessing Module

N ' Terrain Classification
&\- —» +Fores!, water, urban areas
— « Terrain/elevation overlay

: Cost Map Module
& —> +Assign weights baseo!
. | +terrain, obstacles, etc
Route Optimization
—» Module
« Find optimal path
* Evaluate environmntal rout |

Fig. 1. System Architecture
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VIl. METRICS

This section describes the evaluation metrics used to assess
the accuracy of the land-cover segmentation model and the
efficiency of the computed highway route.

A. Segmentation Metrics

These metrics are used to evaluate the performance of the U-
Net segmentation model, which classifies different land-cover
types from satellite imagery.

- Pixel Accuracy (PA): Measures the ratio of correctly
predicted pixels to total pixels:

> ~
,Zl Wyi=y")

N

PA = @)}
where y; = ground truth label, y”; = predicted label, N =

total number of pixels, 1(-) = indicator function.
- Intersection over Union (loU): Evaluates the overlap
between prediction and ground truth for each class:

_lPnG|
|PU G|

loU

@

where P = predicted region, G = ground truth region.
- Dice Coefficient (F1-Score): A similarity score empha-
sizing overlap:

. 2|P N G]
Dice= — 3)
Pl + 6l

It may also be expressed using true positives (TP), false
positives (FP), and false negatives (FN):

, 27TP
Dice = @)
2TP +FP + FN

B. Route Optimization Metrics

These metrics evaluate how suitable and efficient the com-
puted route is.
- Total Route Distance The total length of the computed
path is:

21y
D=
i=1

(X1 — x)2 + (yir1 — y)? ®)

where k = number of points in the path, (x; y;) =
coordinates of each point, and distance may be measured
in pixels or meters (if georeferenced).

- Total Route Cost The cumulative environmental and
construction cost of the route:

>
Cc=  w(x,y)
i=1

6

where w(x; y) is the cost assigned to pixel (x; y)).
- Ecological Impact Score Measures ecological distur-
bance along the path:

where e(x;, y;) € [0, 1] is an ecological penalty value
representing forests, wetlands, water bodies, or protected
zones. Higher values indicate increased ecological im-
pact.

- Construction Feasibility Score A slope-based penalty
capturing terrain difficulty:

b3
Feasibility =  f(Vh))
1

i=

®

where Vh; = |hi+1 — hi| is the elevation change between
consecutive points. Higher slope — higher construction

difficulty.
- Multi-Route Comparison Score A composite decision
metric combining all cost factors:

Score = aD + BC + yImpact + 6Feasibility  (9)

where a, 8,y, 6 are user-defined weights representing
environmental, economic, or practical priorities.

These metrics ensure that the segmentation model produces
accurate land classification and that the route optimization se-

lects practical, cost-effective, and environmentally sustainable
paths.

VIIl. RESULTS
The proposed framework combines satellite imagery, deep-
learning segmentation, cost-map generation, and route opti-

mization to create efficient and environmentally sustainable

highway routes. It identifies key land features and applies
terrain constraints to ensure practical, eco-friendly paths. The

generated cost maps help compute optimal routes that balance
distance, impact, and. construction feasibility, demonstrating
the effectiveness of the:approach.

A. Original and Segmented Land Cover

The left image shows the raw satellite input, while the
right image displays the segmented land cover, highlighting
forest and non-forest areas used for further route planning. A

filtered feature map is then extracted, highlighting only the key
classes—Water, Forest, and Urban—which are essential for
cost-map generation and route planning.

>
Impact =  e(x; yi)
i=1

)
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research should focus on improving data accessibility through
open-source geospatial platforms, collaborations with space

Oripral vage

[N Segrented Land Cover

Fig. 2. Original Image and Segmented Land Cover

B. Segmented Terrain and Cost Heatmap

The left image shows the segmented terrain highlighting
major land types. The right image presents the corresponding
construction cost heatmap.

Fig. 3. Land-Cover Segmentation and Cost Map

C. Optimal Route on Cost Map and Satellite Image

The left image overlays the computed optimal path on the
construction cost map, showing how the algorithm avoids high-
cost regions. The right image visualizes the same route on the
original satellite imagery, confirming that the path follows
feasible terrain while minimizing environmental impact.

§ Coit Map with Roe B Poste on Satedite lrage

Fig. 4. Route Overlay on Cost Map and Satellite Terrain

IX. OPEN CHALLENGES AND FUTURE
DIRECTIONS

Despite notable progress in Al-driven highway route opti-
mization, several challenges must still be addressed to enhance
the reliability and real-world applicability of current methods.

« Limited Access to High-Resolution Satellite Data: High-
quality imagery is essential for accurate land classification and
terrain analysis; however, many regions—especially in
developing countries—Ilack detailed satellite coverage. Future

agencies, and next-generation imaging technologies.

* Need for Multi-Source Data Integration: Most existing
studies rely on a single dataset, which limits their ability to
capture complex environmental, urban, and terrain conditions.
Integrating multi-source geospatial data such as LIiDAR, drone
imagery, and SAR can significantly improve route accuracy
and robustness.

« Computational Complexity and Scalability Issues: Deep
learning models and multi-objective optimization algorithms
often demand substantial processing power, making large-scale
route planning computationally expensive.

« Insufficient Environmental and Socioeconomic Modelling:
Current models mainly focus on technical optimization, often
overlooking ecological sensitivity, carbon emissions, and com-
munity impact. Incorporating sustainability metrics and socio-
environmental constraints will lead to more responsible route-
planning solutions.

+ Gap in Real-World Deployment and Validation: Many
proposed frameworks are validated on limited or simulated
datasets rather than actual field conditions. Future research

should involve real-world case studies, collaboration with
transportation authorities, and large-scale pilot implementa-

tions. Future works should explore light weight architectures,
parallel computing, and more efficient optimization strategies.
By addressing these challenges and advancing the integra-
tion of Al, geospatial analytics, and environmental modelling,
future highway route planning systems can become more
accurate, sustainable, and practically deployable.

X. CONCLUSION

Highway route optimization has become an interdisciplinary
field shaped by advances in satellite remote sensing, artificial
intelligence, and geospatial information systems. This survey
reviewed recent developments-across deep learning—based
image analysis, optimization algorithms, and GIS-integrated
workflows, emphasizing how these technologies improve ter-
rain interpretation, environmental assessment, and alignment
feasibility compared to traditional planning approaches.

Modern high-resolution satellite imagery from platforms
such as Sentinel-2, Landsat, Google Earth, and Bhoonidhi
enables planners to extract detailed information on vegeta- tion,
hydrology, terrain features, and built-up areas. Deep learning
models—including U-Net, CNNs, Vision Transform- ers,
DeepLabV3+, and GNNs—further enhance land-cover
classification, supporting accurate cost-map generation and
environmental sensitivity analysis. Optimization techniques
such as GAs, PSO, ACO, SA, NSGA-II, and NSGA-III allow
planners to balance multiple objectives, including construction
cost, ecological preservation, and route length, while GIS
frameworks integrate diverse datasets for comprehensive spa-
tial evaluation.

Environmental sustainability and socio-economic consid-
erations are increasingly incorporated into routing models,
reflecting the need to avoid ecologically sensitive areas, reduce
emissions, minimize displacement, and comply with policy
constraints. Despite this progress, challenges persist, including
limited availability of labeled datasets, high computational
demands, lack of standardized evaluation benchmarks, and
insufficient real-world validation.

Future research should focus on lightweight deep learning
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models,  multi-source  geospatial ~ fusion, scalable
optimization algorithms, and dynamic routing that adapts to
real-time environmental changes. Standardized geospatial
frameworks and policy-aware routing will also be essential
for large-scale deployment.

In summary, the integration of satellite imagery, Al-driven
segmentation, GIS analytics, and multi-objective optimization
represents a transformative step toward sustainable and intel-
ligent highway planning. As data accessibility and interdisci-
plinary collaboration continue to improve, these technologies
will enable more efficient, environmentally responsible, and
resilient transportation infrastructure.
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