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Abstract—Efficient highway route planning requires minimiz- 

ing construction cost, reducing environmental disturbance, and 

adapting to complex terrain conditions—tasks that traditional 
GIS-based and manual planning methods often struggle to ac- 

complish. This study presents a comprehensive review of satellite 
image–driven techniques for highway route optimization using 

high-resolution imagery collected from Google Earth. A set of 25 

peer-reviewed studies published between 2019 and 2024 are anal- 
ysed to examine advancements in deep learning–based semantic 

segmentation, terrain analysis, and multi-objective optimization 
algorithms. The survey highlights modern approaches such as U-

Net-based land cover classification, graph-based shortest-path 
algorithms, and multi-criteria decision-making frameworks that 

enable the identification of eco-friendly and cost-efficient high- 
way alignments. Key challenges—including data preprocessing 

complexity, regulatory constraints, and the lack of real-time 

adaptability—are discussed in detail. The findings also outline 
promising future directions in AI-driven geospatial modelling, 

automated environmental impact assessment, and sustainable 
route planning. This review serves as a valuable reference for 

researchers and policymakers seeking environmentally conscious 
and technically reliable highway route optimization solutions 

using satellite imagery from platforms like Google Earth. 

Index Terms—Highway Route Optimization, Google Earth, 

Satellite Imagery, Remote Sensing, Environmental Constraints, 
Deep Learning, GIS-Based Planning. 

 

I. INTRODUCTION 

Highway construction is a fundamental component of 

national infrastructure development, supporting economic 

growth, regional connectivity, and urban expansion. However, 

identifying an optimal highway alignment remains a complex 

task due to environmental constraints, terrain variations, and 

the challenges of modern urban planning. Traditional route 

selection approaches—often dependent on manual surveys, 

outdated maps, and subjective decision-making—frequently 

result in suboptimal alignments that increase environmental 

damage, construction cost, and long-term ecological impact. 

With the advancement of computer vision, remote sensing, and 

artificial intelligence (AI), satellite imagery has become a 

powerful tool for data-driven highway route planning. High- 

resolution images from platforms such as Google Earth pro- 

vide detailed information on land cover, terrain features, vege- 

tation density, water bodies, and expanding urban zones. When 

integrated with geospatial analysis techniques, these datasets 

allow planners to evaluate natural and man-made constraints 

more systematically. Recent studies highlight how deep learn- 

ing models—such as Convolutional Neural Networks (CNNs), 

U-Net architectures, and Vision Transformers—automate land- 

feature extraction and improve the accuracy of route evalua- 

tion. For example, Zhang et al. demonstrate how AI-based 

segmentation and terrain modelling can reduce ecological 

disturbances and enhance route feasibility by analyzing envi- 

ronmental features such as forests, wildlife corridors, wetlands, 

and flood-prone regions. Urban restrictions, including land- use 

patterns, population density, and existing infrastructure, also 

influence highway design. Multi-objective optimization 

techniques like NSGA-II have been widely applied to balance 

conflicting goals, such as minimizing cost while preserving 

environmentally sensitive regions. Similarly, genetic algo- 

rithms and heuristic search methods have shown significant 

potential in refining highway alignment decisions based on 

both environmental and urban constraints. The integration of 

AI, deep learning, and Geographic Information Systems (GIS) 

offers a transformative framework for sustainable highway 

planning. By combining satellite imagery with optimization 

algorithms and automated feature extraction, planners can 

determine routes that minimize ecological disruption while 

ensuring structural feasibility. The purpose of this paper is to 

provide a comprehensive examination of recent advancements 
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in satellite image–based highway route optimization. Through 

a detailed analysis of AI-based, GIS-supported, and multi- 

objective optimization techniques, this study emphasizes the 

importance of environmentally conscious and urban-aware 

highway routing. The insights gathered aim to support the de- 

velopment of intelligent decision-support systems that enable 

more accurate, sustainable, and cost-effective highway route 

selection. 

II. BACKGROUND AND FUNDAMENTAL 

CONCEPTS 

Satellite imagery–based highway route planning is an 

emerging interdisciplinary field integrating remote sensing, 

artificial intelligence (AI), multi-objective optimization, and 

geospatial analysis. This section introduces the essential tech- 

nical background, key terminologies, and foundational theories 

that support modern data-driven route optimization. 

A. Key Terminologies 

• Satellite Imaging: The process of capturing high-resolution 

images of the Earth’s surface using platforms such as Google 

Earth, Sentinel-2, and Landsat. These datasets provide essen- 

tial geospatial information for analyzing terrain, vegetation, 

and land-use patterns. 

• Remote Sensing: The acquisition and interpretation of 

Earth-surface data from a distance. It plays a major role in 

environmental monitoring, terrain assessment, and preliminary 

highway feasibility studies. 

• Geographic Information System (GIS): A framework used 

to collect, store, analyze, and visualize spatial data. GIS enables 

the integration of satellite imagery with environmental, urban, 

and terrain layers for route analysis. 

• Terrain Analysis: The study of landform characteris- 

tics—such as elevation, slope, aspect, and surface rough- 

ness—that influence highway alignment, construction feasi- 

bility, and cost. 

• Urban Constraints: Restrictions arising from land-use 

regulations, built-up areas, transportation networks, and pop- 

ulation density that guide or limit possible route alignments. 

• Environmental Constraints: Ecologically sensitive regions 

including protected forests, wildlife corridors, rivers, wetlands, 

and vegetation zones that must be preserved in sustainable 

route planning. 

• Multi-Objective Optimization: A computational method 

that evaluates multiple conflicting objectives (e.g., minimizing 

environmental impact, reducing construction cost, avoiding 

urban disturbance) to generate an optimal highway route. 

B. Fundamental Theories and Models 

• Remote Sensing and Satellite Data Processing Satellite 

imagery provides the foundational data needed for terrain eval- 

uation and land-use classification. Platforms such as Google 

Earth and Sentinel offer multispectral imagery suitable for 

detecting vegetation, urban density, water bodies, and elevation 

changes. Tools like the Normalized Difference Vegetation In- 

dex (NDVI) and Digital Elevation Models (DEMs) help iden- 

tify sensitive ecological zones and terrain complexity. Studies 

such as [3] and [5] highlight the importance of satellite- 

based environmental monitoring in sustainable infrastructure 

planning. 

• Geospatial Analysis for Route Optimization GIS enables 

spatial integration of satellite data with environmental and 

urban constraints. Using techniques like spatial overlay analy- 

sis, buffering, and cost-surface modeling, GIS helps planners 

evaluate alternative alignments while maintaining a balance 

between ecological preservation and urban accessibility. As 

demonstrated in study [12], GIS-integrated decision-support 

systems are highly effective for analyzing topography, vegeta- 

tion cover, and population density during initial route planning. 

• Machine Learning and AI in Route Selection Machine 

learning models—particularly Convolutional Neural Networks 

(CNNs), U-Net, and Vision Transformers—are widely adopted 

for extracting land-cover information from satellite imagery. 

Paper [4] demonstrates how AI automates land-use detection, 

while Feng et al. (2022) use Graph Neural Networks (GNNs) 

to model road connectivity. These methods significantly en- 

hance route selection by producing accurate land-classification 

maps and enabling data-driven decision-making. • Optimiza- 

tion Algorithms for Highway Planning Optimization tech- 

niques such as Genetic Algorithms (GAs) and the Non- 

Dominated Sorting Genetic Algorithm-II (NSGA-II) are used 

to evaluate multiple route alternatives and identify optimal 

alignments. Xu et al. (2020) applied GAs to improve terrain 

adaptability, while Kim and Park (2022) utilized NSGA-II 

to minimize ecological disturbance. These algorithms provide 

a structured approach for resolving trade-offs among cost, 

environmental preservation, and engineering feasibility. 

This background establishes a strong technical foundation 

for understanding satellite-image-based highway route opti- 

mization. The following sections explore how these techniques 

are applied in practice and evaluate their effectiveness in devel- 

oping environmentally and urban-conscious roadway designs. 

 

III. CLASSIFICATION OF EXISTING RESEARCH 

Existing research on satellite-image-based highway route 

optimization can be broadly categorized into three groups: 

(1) image-based analysis methods, (2) optimization-driven 

techniques, and (3) GIS-integrated hybrid approaches. Each 

category focuses on addressing terrain suitability, environmen- 

tal sensitivity, and urban restrictions using satellite-derived 

data. 

• Image-Based Analysis Computer vision and deep learning 

techniques have been widely applied to extract valuable infor- 

mation from satellite imagery. Models such as Convolutional 

Neural Networks (CNNs) and Vision Transformers (ViTs) are 

used to classify land cover, detect vegetation, and analyze 

expansion. Several studies demonstrate the use of ViTs for 

large-scale remote-sensing feature extraction, while CNNs 

have shown strong performance in identifying feasible routes 

across challenging terrain. The primary limitation of these 

methods is their reliance on high-resolution, labeled datasets, 

which are not readily available for many regions. 
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• Optimization Methods Optimization algorithms are fre- 

quently used to determine the most suitable highway alignment 

while satisfying multiple constraints such as cost, environ- 

mental impact, and urban interference. Multi-objective evolu- 

tionary algorithms—including NSGA-II [10], Particle Swarm 

Optimization (PSO) [1], and Genetic Algorithms (GAs)—are 

commonly adopted. These methods can effectively explore 

large search spaces and produce diverse optimal solutions. 

However, large-scale roadway planning often requires high 

computational resources due to the complexity of evaluating 

multiple terrain and environmental constraints. 

• Integrated GIS Techniques The integration of satellite 

imagery with GIS tools enables advanced spatial analysis for 

route selection. GIS-based reinforcement learning has been 

used, as demonstrated by Garcia and Martinez (2023), to 

identify routes with minimal ecological disturbance. Some re- 

searchers have also explored Graph Neural Networks (GNNs) 

embedded within GIS platforms to model road networks and 

connectivity patterns. 

While GIS-integrated methods provide strong spatial rea- 

soning, their effectiveness depends heavily on the availability 

of accurate and up-to-date geospatial datasets, which vary 

significantly by region. 

A. Comparison of AI and Optimization Techniques for High- 

way Route Optimization 

 
TABLE I 

COMPARISON OF AI TECHNIQUES FOR ECO-FRIENDLY ROUTING 

 
Technique Advantages Limitations 

Convolutional 
Neural Networks 
(CNNs) 

High accuracy in extracting 

terrain features 

Requires  large  la- 

beled datasets 

Vision 
Transformers 

(ViTs) 

Effective for large-scale im- 

age analysis 

High computational 

cost 

Reinforcement 

Learning (RL) 

Learns adaptive, dynamic 

routing strategies 

Requires extensive 

training data 

Graph Neural 
Networks 

(GNNs) 

Efficient for modeling road 

networks 

Needs structured 
graph data and long 

training time 

Genetic 
Algorithms 

(GAs) 

Finds diverse optimal solu- 
tions 

Slow convergence 

Particle  Swarm 
Optimization 

(PSO) 

Fast convergence for opti- 

mization tasks 
Prone to local optima 

Multi-Objective 
Evolutionary 

Algorithms 
(NSGA-II, 

NSGA-III) 

Balances multiple 
environmental and urban 

constraints 

Computationally ex- 

pensive 

Federated Learn- 
ing (FL) 

Enables privacy-preserving 
collaborative model training 

High communication 
and synchronization 

costs 

GIS-Integrated 

Methods 

Strong spatial analysis and 

visualization 

Dependent on 
accurate geospatial 

datasets 

 

 

B. Trends in Research 

Recent work shows a significant shift toward AI-based 

feature extraction, including CNNs, ViTs, and reinforcement 

learning for dynamic route selection. Multi-objective opti- 

mization techniques—especially NSGA-II—remain dominant 

due to their ability to balance conflicting constraints. GIS- 

integrated approaches continue to be essential for spatial rea- 

soning, though their performance depends on reliable satellite 

data sources. 

C. Comparative Analysis 

CNNs and ViTs provide high accuracy in land classification 

but require high-quality training datasets. Optimization algo- 

rithms such as NSGA-II perform well for balancing costs and 

environmental impact but incur high computational overhead. 

GNNs and RL methods offer improved modelling of spatial 

relationships and adaptation but suffer from long training times 

and data requirements. 

D. Research Gaps 

Despite substantial progress, several gaps remain: • Limited 

availability of high-resolution, annotated satellite datasets for 

many geographic regions. 

• Need for hybrid models combining AI, GIS, and optimiza- 

tion to improve accuracy and robustness. 

• Requirement for computationally efficient optimization 

algorithms capable of handling large geospatial datasets. 

• Lack of scalable systems leveraging distributed or parallel 

computing for accelerating route-planning computations. 

IV. CRITICAL ANALYSIS AND DISCUSSION 

Key trends, constraints, and gaps that need to be filled for 

future developments are shown by a study of the literature 

on highway route optimization using satellite images. The 

majority of studies use AI and optimization-based methods to 

enhance route selection; nonetheless, there are still significant 

issues with computational efficiency, model generalization, 

and data availability. 

V. METHODOLOGY 

The proposed methodology integrates satellite image anal- 

ysis, deep learning–based land segmentation, and pathfinding 

algorithms to generate efficient and environmentally sensitive 

highway routes. The workflow consists of six major stages, as 

described below. 

A. Dataset Collection 

The first step involves gathering and organizing the raw data 

required for route planning. The dataset includes: 

• RGB Satellite Images: High-resolution Google Earth im- 

ages of the study area, containing visible-spectrum informa- 

tion (R, G, B). These images capture land features such as 

vegetation, water bodies, built-up areas, and open land. 

• Segmentation Masks: Pixel-wise labeled images that clas- 

sify each region into land-type categories (e.g., forest, water, 

urban, barren land, roads). These serve as ground truth for 

supervised model training. 
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B. Data Preprocessing 

Prepare the satellite imagery for deep learning, several 

preprocessing operations are applied: 

• Normalization: Pixel values are scaled to a uniform range 

(e.g., 0–1), improving network convergence and stability. 

• Resizing and Tiling: Large satellite images are resized 

or divided into smaller patches (typically 256×256) to reduce 

computational load and enable efficient GPU processing. 

• Mask Generation (if required): If ground-truth masks are 

unavailable, manual or semi-automated tools are used for 

annotation. 

C. Deep Learning Segmentation 

Segmentation is performed to classify each pixel into its 

corresponding land category. 

• Model-selection U-Net: 

A U-Net architecture is used due to its encoder–decoder 

structure, which captures both high-level context and fine 

spatial details. 

• Land-Type Classification: 

The model identifies and labels: 

– Roads 

– Vegetation / Forest 

– Water bodies 

– Buildings 

– Urban areas 

– Open or barren land 

• Output: 

A segmentation map that highlights all land types within 

the satellite image. This map is used to estimate construc- 

tion difficulty. 

D. Feature Classification 

After segmentation, the output is processed to obtain mean- 

ingful classes for analysis. 

• Pixel-wise Translation: Segmented pixels are converted 

into discrete land-type labels. 

• Integration of Terrain Data: Elevation and slope informa- 

tion are overlaid to refine land classification. 

• For example: Flat roads are preferable, Dense forests or 

steep slopes increase construction difficulty. This ensures that 

both environmental and geographical factors are incorporated. 

E. Cost Map Generation 

The cost map transforms the segmented terrain into a 

numerical representation reflecting traversal difficulty. 

• Assigning Weights: Each land type is assigned a cost value 

depending on construction difficulty or environmen- tal 

impact: 

– Roads → Low cost 

– Urban areas → Medium cost 

– Forests / Water bodies → High cost 

• Terrain and Ecology Modifiers: Factors such as slope, 

elevation, and ecological sensitivity further adjust the cost. 

This cost map forms the primary input for the optimization 

algorithm. 

F. Route Optimization 

The final stage computes the optimal highway alignment 

using the cost map. 

• Pathfinding Algorithm: The A* algorithm is used to 

compute the most efficient path, considering both distance and 

terrain cost. 

• Evaluation of Alternatives: Multiple paths are compared 

based on Total distance, Environmental impact, Construction 

feasibility. 

• Optimization Objective: To minimize distance, reduce 

ecological disturbance, and avoid high-cost terrain, resulting in 

a practical and sustainable highway route. 

VI. SYSTEM ARCHITECTURE 

The proposed system processes raw satellite imagery and 

generates an optimal highway route through a sequence of 

automated stages. First, the input satellite images are pre- 

processed through resizing, normalization, tiling, and noise 

reduction to ensure uniformity and suitability for analysis. A 

deep learning–based segmentation model, such as U-Net or 

DeepLab, is then applied to classify each pixel into specific 

land categories including roads, forests, water bodies, urban 

regions, and open land. The segmented output is transformed 

into a cost map, where each land type is assigned a numerical 

cost based on construction difficulty and environmental sen- 

sitivity. High-cost regions include forests, water bodies, and 

steep terrain, while low-cost areas such as plains and existing 

roads are preferred for route alignment. 

A pathfinding algorithm—typically the A* algorithm—uses 

this cost map to compute the least-cost route between selected 

start and end points. The final optimal path is visualized on top 

of the segmented image and original satellite map, enabling 

clear interpretation of terrain suitability and the environmental 

impact of the proposed route. 

 

Fig. 1. System Architecture 
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VII. METRICS 

This section describes the evaluation metrics used to assess 

the accuracy of the land-cover segmentation model and the 

efficiency of the computed highway route. 

A. Segmentation Metrics 

These metrics are used to evaluate the performance of the U- 

Net segmentation model, which classifies different land-cover 

types from satellite imagery. 

• Pixel Accuracy (PA): Measures the ratio of correctly 

predicted pixels to total pixels: 

where e(xi, yi) ∈ [0, 1] is an ecological penalty value 

representing forests, wetlands, water bodies, or protected 
zones. Higher values indicate increased ecological im- 

pact. 

• Construction Feasibility Score A slope-based penalty 

capturing terrain difficulty: 

Feasibility = 
Σ 

f (∇hi) (8) 
i=1 

where ∇hi = |hi+1 − hi| is the elevation change between 

consecutive points. Higher slope → higher construction 

 

PA = 
N 
i=1 1(yi = ŷ i) 

N 

 
(1) 

difficulty. 

• Multi-Route Comparison Score A composite decision 

metric combining all cost factors: 

where yi = ground truth label, yˆi = predicted label, N = 

total number of pixels, 1(·) = indicator function. 
• Intersection over Union (IoU): Evaluates the overlap 

between prediction and ground truth for each class: 

Score = αD + βC + γImpact + δFeasibility (9) 

where α, β, γ, δ are user-defined weights representing 

environmental, economic, or practical priorities. 

|P ∩ G| 
IoU = 

|P ∪ G| 
(2) These metrics ensure that the segmentation model produces 

accurate land classification and that the route optimization se- 

where P = predicted region, G = ground truth region. 
• Dice Coefficient (F1-Score): A similarity score empha- 

sizing overlap: 

lects practical, cost-effective, and environmentally sustainable 

paths. 

VIII. RESULTS 

2|P ∩ G| 
Dice = 

|P | + |G| 
(3) The proposed framework combines satellite imagery, deep- 

learning segmentation, cost-map generation, and route opti- 

It may also be expressed using true positives (TP), false 

positives (FP), and false negatives (FN): 

mization to create efficient and environmentally sustainable 

highway routes. It identifies key land features and applies 
terrain constraints to ensure practical, eco-friendly paths. The 

2TP 
Dice = 

2TP + FP + FN 

B. Route Optimization Metrics 

(4) generated cost maps help compute optimal routes that balance 

distance, impact, and construction feasibility, demonstrating 

the effectiveness of the approach. 

These metrics evaluate how suitable and efficient the com- 

puted route is. 

• Total Route Distance The total length of the computed 

path is: 

A. Original and Segmented Land Cover 

The left image shows the raw satellite input, while the 

right image displays the segmented land cover, highlighting 

forest and non-forest areas used for further route planning. A 

k−1 

D = (x 
i=1 

 

i+1 — xi)2 + (y 
 

i+1 — yi)2 (5) 
filtered feature map is then extracted, highlighting only the key 

classes—Water, Forest, and Urban—which are essential for 

cost-map generation and route planning. 

where k = number of points in the path, (xi, yi) = 

coordinates of each point, and distance may be measured 

in pixels or meters (if georeferenced). 

• Total Route Cost The cumulative environmental and 

construction cost of the route: 

C = 
Σ 

w(xi, yi) (6) 

i=1 

where w(xi, yi) is the cost assigned to pixel (xi, yi). 
• Ecological Impact Score Measures ecological distur- 

bance along the path: 

Impact = 
Σ 

e(xi, yi) (7) 

i=1

Σ 
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Fig. 2. Original Image and Segmented Land Cover 

 

B. Segmented Terrain and Cost Heatmap 

The left image shows the segmented terrain highlighting 

major land types. The right image presents the corresponding 

construction cost heatmap. 

 

Fig. 3. Land-Cover Segmentation and Cost Map 

 

C. Optimal Route on Cost Map and Satellite Image 

The left image overlays the computed optimal path on the 

construction cost map, showing how the algorithm avoids high-

cost regions. The right image visualizes the same route on the 

original satellite imagery, confirming that the path follows 

feasible terrain while minimizing environmental impact. 

 

Fig. 4. Route Overlay on Cost Map and Satellite Terrain 

 

IX. OPEN CHALLENGES AND FUTURE 

DIRECTIONS 

Despite notable progress in AI-driven highway route opti- 

mization, several challenges must still be addressed to enhance 

the reliability and real-world applicability of current methods. 

• Limited Access to High-Resolution Satellite Data: High- 

quality imagery is essential for accurate land classification and 

terrain analysis; however, many regions—especially in 

developing countries—lack detailed satellite coverage. Future 

research should focus on improving data accessibility through 

open-source geospatial platforms, collaborations with space 

agencies, and next-generation imaging technologies. 

• Need for Multi-Source Data Integration: Most existing 

studies rely on a single dataset, which limits their ability to 

capture complex environmental, urban, and terrain conditions. 

Integrating multi-source geospatial data such as LiDAR, drone 

imagery, and SAR can significantly improve route accuracy 

and robustness. 

• Computational Complexity and Scalability Issues: Deep 

learning models and multi-objective optimization algorithms 

often demand substantial processing power, making large-scale 

route planning computationally expensive. 

• Insufficient Environmental and Socioeconomic Modelling: 

Current models mainly focus on technical optimization, often 

overlooking ecological sensitivity, carbon emissions, and com- 

munity impact. Incorporating sustainability metrics and socio- 

environmental constraints will lead to more responsible route- 

planning solutions. 

• Gap in Real-World Deployment and Validation: Many 

proposed frameworks are validated on limited or simulated 

datasets rather than actual field conditions. Future research 

should involve real-world case studies, collaboration with 

transportation authorities, and large-scale pilot implementa- 

tions. Future works should explore light weight architectures, 

parallel computing, and more efficient optimization strategies. 

By addressing these challenges and advancing the integra- 

tion of AI, geospatial analytics, and environmental modelling, 

future highway route planning systems can become more 

accurate, sustainable, and practically deployable. 

X. CONCLUSION 

Highway route optimization has become an interdisciplinary 

field shaped by advances in satellite remote sensing, artificial 

intelligence, and geospatial information systems. This survey 

reviewed recent developments across deep learning–based 

image analysis, optimization algorithms, and GIS-integrated 

workflows, emphasizing how these technologies improve ter- 

rain interpretation, environmental assessment, and alignment 

feasibility compared to traditional planning approaches. 

Modern high-resolution satellite imagery from platforms 

such as Sentinel-2, Landsat, Google Earth, and Bhoonidhi 

enables planners to extract detailed information on vegeta- tion, 

hydrology, terrain features, and built-up areas. Deep learning 

models—including U-Net, CNNs, Vision Transform- ers, 

DeepLabV3+, and GNNs—further enhance land-cover 

classification, supporting accurate cost-map generation and 

environmental sensitivity analysis. Optimization techniques 

such as GAs, PSO, ACO, SA, NSGA-II, and NSGA-III allow 

planners to balance multiple objectives, including construction 

cost, ecological preservation, and route length, while GIS 

frameworks integrate diverse datasets for comprehensive spa- 

tial evaluation. 

Environmental sustainability and socio-economic consid- 

erations are increasingly incorporated into routing models, 

reflecting the need to avoid ecologically sensitive areas, reduce 

emissions, minimize displacement, and comply with policy 

constraints. Despite this progress, challenges persist, including 

limited availability of labeled datasets, high computational 

demands, lack of standardized evaluation benchmarks, and 

insufficient real-world validation. 

Future research should focus on lightweight deep learning 
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models, multi-source geospatial fusion, scalable 

optimization algorithms, and dynamic routing that adapts to 

real-time environmental changes. Standardized geospatial 

frameworks and policy-aware routing will also be essential 

for large-scale deployment. 

In summary, the integration of satellite imagery, AI-driven 

segmentation, GIS analytics, and multi-objective optimization 

represents a transformative step toward sustainable and intel- 

ligent highway planning. As data accessibility and interdisci- 

plinary collaboration continue to improve, these technologies 

will enable more efficient, environmentally responsible, and 

resilient transportation infrastructure. 
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