

SOFT GENERALIZED CLOSED MAPPINGS AND HOMEOMORPHISM IN SOFT GRILL TOPOLOGICAL SPACES

^{1*}P.Nithya, ²N. Chandramathi and ³V.Kiruthika

¹*Research scholar, Department of mathematics, Government Arts College, Udu malpet, Tamilnadu, India.

²Assistant Professor, Department of mathematics, Government Arts College, Udu malpet, Tamilnadu, India.

³Research scholar, Department of mathematics, Government Arts College, Udu malpet, Tamilnadu, India.

Abstract: In this article we introduce, in terms of with soft grill ζ_S , the concepts soft $\zeta_S - G$ closed map, $\zeta_S - G$ open map and $\zeta_S - G$ homeomorphism in soft grill topological spaces (X, τ_S, ζ_S, A) . Several related results and properties of these concepts are investigated.

Keywords: Soft sets, soft homeomorphism, $\zeta_S - G$ closed set, $\zeta_S - G$ closed map, $\zeta_S - G$ open map, $\zeta_S - G$ closed set homeomorphism

I. INTRODUCTION

The concept of soft grill topological spaces was first introduced by Rodyna A, et-al[8]. The concept of soft grill topological spaces was first introduced by Rodyna A, et-al[9]. We introduced [1] soft generalized closed set in soft grill topological spaces. In this paper we are going to introduce a $\zeta_S - G$ Homeomorphism. Further we are going to study their properties in detail.

II. PRELIMINARIES

2.1 Definition[10]

Let \mathcal{X} be an initial universe set and \mathcal{A} be a set of parameters. Let $P(\mathcal{X})$ denote the power set of \mathcal{X} and \mathcal{B} be a non empty subset of \mathcal{A} . A pair $(\mathcal{F}, \mathcal{B})$ is denoted by $\mathcal{F}_{\mathcal{B}}$ is said to be soft set over \mathcal{X} , where $\mathcal{F}_{\mathcal{B}}$ is mapping given by $\mathcal{F}: \mathcal{B} \rightarrow P(\mathcal{X})$. In other words, a soft set over \mathcal{X} is a parameterized family of subsets of the universe \mathcal{X} .

i.e., $\mathcal{F}_{\mathcal{B}} = \{ \mathcal{F}(a) : a \in \mathcal{B} \subseteq \mathcal{A}, \mathcal{F}(a) = \emptyset \text{ if } a \notin \mathcal{B} \}$. If $SS(\mathcal{X}, \mathcal{A})$ denote is the family of all soft subsets over \mathcal{X} .

2.2 Definition[11]

Let τ_S be the collection of soft sets over \mathcal{X} , then τ_S is said to be a soft topology on \mathcal{X} . If the following axioms:

- (i) $\widetilde{\emptyset}_{\mathcal{A}}, \widetilde{\mathcal{X}_{\mathcal{A}}}$ belong to τ_S
- (ii) The union of any number of soft sets in τ_S belongs to τ_S .
- (iii) The intersection of any two number of soft sets in τ_S belongs to τ_S .

The triplet $(\mathcal{X}, \tau_S, \mathcal{A})$ is said to be a soft topological space or soft space.

2.3 Definition[13]

A non empty collection $\mathcal{G} \subseteq SS(X, A)$ of soft sets over X is called a soft grill, if the following conditions hold:

- (i) If $\mathcal{F}_A \in \mathcal{G}$ and $\mathcal{F}_A \subseteq \mathcal{H}_A$, which implies $\mathcal{H}_B \in \mathcal{G}$.
- (ii) If $\mathcal{F}_A \subseteq \mathcal{H}_A \in \mathcal{G}$, which implies $\mathcal{F}_A \in \mathcal{G}$ or $\mathcal{H}_A \in \mathcal{G}$.

The quadruplet $(X, \tau, A, \mathcal{G})$ is said to be soft grill topological space.

2.4 Definition[3]

Let ζ_S be a soft grill over a soft topological space (X, τ_S, A) . A soft set \mathcal{F}_B is called ζ_S generalized closed set (briefly $\zeta_S - \mathcal{G}$ closed set), if $\chi_{\zeta}(\mathcal{F}_B) \subseteq \mathcal{U}_A$, whenever $\mathcal{F}_B \subseteq \mathcal{U}_A$ and \mathcal{U}_A is soft open in (X, τ_S, A) . The complement of such set will be called $\zeta_S - \mathcal{G}$ open set (resp. $\zeta_S - \mathcal{G}$ open set).

2.5 Definition[4]

A function $\delta_{pu}: (X, \tau_S, \zeta_S, A) \rightarrow (Y, \sigma_S, B)$ is called soft generalized continuous functions in soft grill topological spaces (shortly $\zeta_S - \mathcal{G}$ continuous) if for soft closed set L_B of (Y, σ_S, B) , $\delta_{pu}^{-1}(L_B) \in \zeta_S - \mathcal{GC}(X, \tau_S, \zeta_S, A)$.

2.6 Definition[6]

A bijection $f: (X, \tau, E) \rightarrow (Y, \sigma, K)$ is called Soft homeomorphism if f is both Soft continuous and Soft open map.

2.7 Definition[7]

A bijection $f: (X, \tau, E) \rightarrow (Y, \sigma, K)$ is called Soft g homeomorphism if f is both Soft g continuous and Soft g open map.

III. SOFT GENERALIZED CLOSED AND OPEN MAPPINGS IN SOFT GRILL TOPOLOGY

In this section, we define a novel category of $\zeta_S - \mathcal{G}$ closed and open mapping within the framework of soft grills as follows:

3.1 Definition

A mapping $\delta_{pu}: (X, \tau_S, A) \rightarrow (Y, \sigma_S, \zeta_S, B)$ is said to be $\zeta_S - \mathcal{G}$ closed map (res. $\zeta_S - \mathcal{G}$ open map) if the image of every soft closed set (res. soft open) in X is $\zeta_S - \mathcal{G}$ closed set (res. $\zeta_S - \mathcal{G}$ open set) in Y.

3.2 Example

Let $X = \{v_1, v_2, v_3, v_4\} = Y$ and $A = B = \{\alpha_1, \alpha_2\}$, $\tau_S = \{\emptyset, \tilde{X}, K_1, K_2, K_3\}$, $\zeta_S^1 = \{K_4, K_5, K_6, \tilde{X}\}$, $\sigma_S = \{\emptyset, \tilde{X}, S_1, S_2, S_3\}$ and $\zeta_S^2 = \{S_5, S_6, S_7, \tilde{X}\}$ where $K_1, K_2, K_3, K_4, K_5, K_6, S_1, S_2, S_3, S_4, S_5, S_6, S_7$ are soft subsets over X_A , we get the following
 $K_1 = \{\{v_1, v_2\}, \{v_3, v_4\}\}$, $K_2 = \{\{v_3\}, \{v_1\}\}$, $K_3 = \{\{v_1, v_2, v_3\}, \{v_1, v_3, v_4\}\}$,
 $K_4 = \{\{v_1\}, \{v_4\}\}$, $K_5 = \{\{v_1, v_2, v_3\}, \{v_1, v_2, v_4\}\}$, $K_6 = \{\{v_1, v_3\}, \{v_2, v_4\}\}$,
 $S_1 = \{\{v_1, v_2\}, \{v_2, v_3\}\}$, $S_2 = \{\{v_2, v_3\}, \{v_3, v_4\}\}$, $S_3 = \{\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}\}$,
 $S_4 = \{\{v_1\}, \{v_1, v_2, v_3\}\}$, $S_5 = \{\{v_2\}, X\}$, $S_6 = \{\{v_1, v_2\}, X\}$, $\delta_{pu}(K_2) = S_2$, $\delta_{pu}(K_1) = S_1$,
 $\delta_{pu}(K_3) = S_3$. Hence δ_{pu} is $\zeta_S - \mathcal{G}$ closed set in Y.

3.3 Theorem

Every soft closed map is $\zeta_S - \mathcal{G}$ closed map.

Proof

Let $\delta_{pu}: (X, \tau_S, A) \rightarrow (Y, \sigma_S, \zeta_S, B)$ is a closed map and F_A^C be a soft closed set in X. Then $\delta_{pu}(F_A^C)$ is soft closed in Y. Since every soft closed set is $\zeta_S - \mathcal{G}$ closed set. So $\delta_{pu}(F_A^C)$ is $\zeta_S - \mathcal{G}$ closed set in Y. Hence δ_{pu} is $\zeta_S - \mathcal{G}$ closed map.

3.4 Theorem

Every soft open map is $\zeta_S - \mathcal{G}$ open map.

Proof

Let $\delta_{pu}: (X, \tau_S, A) \rightarrow (Y, \sigma_S, \zeta_S, B)$ is a open map and F_A be an soft open set in X . Then $\delta_{pu}(F_A)$ is soft open in Y . So $\delta_{pu}(F_A)$ is $\zeta_S - \mathcal{G}$ open set in Y . Hence δ_{pu} is $\zeta_S - \mathcal{G}$ open map.

3.5 Theorem

A map $\delta_{pu}: (X, \tau_S, A) \rightarrow (Y, \sigma_S, \zeta_S, B)$ in $\zeta_S - \mathcal{G}$ closed map if and only if soft subset E_B of Y and for each soft open set in U_A containing $\delta_{pu}^{-1}(E_B)$ there is a $\zeta_S - \mathcal{G}$ closed set F_B of Y such that $E_B \subseteq F_B$ and $\delta_{pu}^{-1}(F_B) \subseteq U_A$.

Proof

Suppose δ_{pu} is $\zeta_S - \mathcal{G}$ closed map. Let soft subset E_B of Y and U_A be an soft open set of X such that $\delta_{pu}^{-1}(E_B) \subseteq U_A$ then $F_B = Y - \delta_{pu}(X - U_A)$ is a $\zeta_S - \mathcal{G}$ open set containing E_B such that $\delta_{pu}^{-1}(F_B) \subseteq U_A$.

Conversely, suppose that E_A is soft closed of X . Then $\delta_{pu}^{-1}(Y - \delta_{pu}(E_A)) \subseteq X - E_A$ and $X - E_A$ is soft open. By hypothesis, there is a $\zeta_S - \mathcal{G}$ open set F_B of Y such that $Y - \delta_{pu}(E_A) \subseteq F_B$ and $\delta_{pu}^{-1}(F_B) \subseteq X - E_A$. Therefore, $E_A \subseteq X - \delta_{pu}^{-1}(F_B)$. Hence $Y - F_B \subseteq \delta_{pu}(E_A) \subseteq \delta_{pu}(X - \delta_{pu}^{-1}(F_B)) \subseteq Y - F_B$ which implies $\delta_{pu}(E_A) = Y - F_B$. Since $Y - F_B$ is $\zeta_S - \mathcal{G}$ closed set, $\delta_{pu}(E_A)$ is $\zeta_S - \mathcal{G}$ closed and thus δ_{pu} is $\zeta_S - \mathcal{G}$ closed map.

3.6 Theorem

If a map $\delta_{pu}: X \rightarrow Y$ is soft continuous and $\zeta_S - \mathcal{G}$ closed and E_A is $\zeta_S - \mathcal{G}$ closed set of X , $\delta_{pu}(E_A)$ is $\zeta_S - \mathcal{G}$ closed in Y .

Proof

Let $\delta_{pu}(E_A) \subseteq U_A$, when U_A is a soft open set of Y . Since δ_{pu} is continuous $\delta_{pu}^{-1}(U_A)$ is a soft open set containing E_A . Hence $\chi_{\zeta}(E_A) \subseteq \delta_{pu}^{-1}(U_A)$ as E_A is $\zeta_S - \mathcal{G}$ closed set. Since δ_{pu} is $\zeta_S - \mathcal{G}$ closed. $\delta_{pu}(\chi_{\zeta}(E_A))$ is $\zeta_S - \mathcal{G}$ closed set contained in the soft open set U_A , which implies $\chi_{\zeta}(\delta_{pu}(\text{cl}(E_A))) \subseteq U_A$ and hence $\chi_{\zeta}(\delta_{pu}(E_A)) \subseteq U_A$. So, $\delta_{pu}(E_A)$ is $\zeta_S - \mathcal{G}$ closed in Y .

IV. SOFT GENERALIZED HOMEOMORPHISM IN SOFT GRILL TOPOLOGY

In this section we introduce and study a new homeomorphism known as called soft generalized homeomorphism in soft grill topological spaces and we workout some basic theorem.

4.1 Definition

A bijective mapping $\delta_{pu}: (X, \tau_S, \zeta_S^1, A) \rightarrow (Y, \sigma_S, \zeta_S^2, B)$ is called soft generalized homeomorphism in soft grill topological spaces (shortly $\zeta_S - \mathcal{G}$ homeomorphism) if δ_{pu} is both $\zeta_S - \mathcal{G}$ continuous and $\zeta_S - \mathcal{G}$ closed map.

4.2 Example

Let $X = \{a_1, a_2, a_3\}$, $Y = \{b_1, b_2, b_3\}$ and $\mathcal{A} = B = \{\alpha_1, \alpha_2\}$, $\tau_S = \{\emptyset, \tilde{X}, K_1, K_2, K_3, K_4, K_5\}$, $\zeta_S^1 = \{K_3, K_4, K_5, \tilde{X}\}$, $\sigma_S = \{\emptyset, \tilde{Y}, S_1, S_2, S_3, S_4, S_5\}$ and $\zeta_S^2 = \{S_3, S_4, S_5, \tilde{X}\}$ where $K_1, K_2, K_3, K_4, K_5, K_6, S_1, S_2, S_3, S_4, S_5$, are soft subsets over X_A , we get the following : $K_1 = \{\{a_1\}, \{a_2\}\}$, $K_2 = \{\{a_2\}, \{a_3\}\}$, $K_3 = \{\{a_1, a_2\}, X\}$, $K_4 = \{\{a_1, a_2\}, \{a_2, a_3\}\}$, $K_5 = \{X, \{a_1, a_2\}\}$, $S_1 = \{\{b_2, b_3\}, Y\}$, $S_2 = \{\{b_2\}, \{b_3\}\}$, $S_3 = \{\{b_3\}, \{b_1\}\}$, $S_4 = \{\{b_2, b_3\}, \{b_1, b_3\}\}$, $S_5 = \{Y, \{b_1, b_3\}\}$.
let $\delta_{pu}: (X, \tau_S, \zeta_S^1, A) \rightarrow (Y, \sigma_S, \zeta_S^2, B)$ is a $\zeta_S - \mathcal{G}$ homeomorphism.

4.3 Theorem

If a bijective mapping $\delta_{pu}: (X, \tau_S, \zeta_S^1, A) \rightarrow (Y, \sigma_S, \zeta_S^2, B)$. Then δ_{pu} is a $\zeta_S - \mathcal{G}$ homeomorphism if and only if δ_{pu} is $\zeta_S - \mathcal{G}$ closed map and $\zeta_S - \mathcal{G}$ continuous.

Proof

Let $\delta_{pu}: (X, \tau_S, \zeta_S^{-1}, A) \rightarrow (Y, \sigma_S, \zeta_S^2 B)$ is a soft $\zeta_S - \mathcal{G}$ homeomorphism, then both δ_{pu} and δ_{pu}^{-1} soft $\zeta_S - \mathcal{G}$ continuous. For any soft $\zeta_S - \mathcal{G}$ closed set $F_A \subseteq X_A$, $\delta_{pu}(F_A) = (\delta_{pu}^{-1})^{-1}(F_A)$ soft $\zeta_S - \mathcal{G}$ closed in $(Y, \sigma_S, \zeta_S^2 B)$. Hence δ_{pu} is a soft $\zeta_S - \mathcal{G}$ closed map.

Conversely, if δ_{pu} is $\zeta_S - \mathcal{G}$ closed map and $\zeta_S - \mathcal{G}$ continuous, then any soft $\zeta_S - \mathcal{G}$ closed $F_A \subseteq X_A$, $(\delta_{pu}^{-1})^{-1}(F_A) = \delta_{pu}(F_A)$ is a soft $\zeta_S - \mathcal{G}$ closed in $(Y, \sigma_S, \zeta_S^2 B)$, so δ_{pu}^{-1} is a soft $\zeta_S - \mathcal{G}$ continuous. Thus δ_{pu} is a soft $\zeta_S - \mathcal{G}$ homeomorphism.

4.4 Theorem

If a bijective mapping $\delta_{pu}: (X, \tau_S, \zeta_S^{-1}, A) \rightarrow (Y, \sigma_S, \zeta_S^2 B)$. Then the following are equivalent.

- 1) The inverse mapping $\delta_{pu}^{-1}: (X, \tau_S, \zeta_S^{-1}, A) \rightarrow (Y, \sigma_S, \zeta_S^2 B)$ is $\zeta_S - \mathcal{G}$ continuous map.
- 2) δ_{pu} is $\zeta_S - \mathcal{G}$ open map.
- 3) δ_{pu} is $\zeta_S - \mathcal{G}$ closed map.

Proof

(1) \rightarrow (2): Let F_A be a soft open in $(X, \tau_S, \zeta_S^{-1}, A)$. So $(\delta_{pu}^{-1})^{-1}(F_A) = \delta_{pu}(F_A)$ is soft open in $(Y, \sigma_S, \zeta_S^2 B)$. Therefore $\delta_{pu}(F_A)$ is $\zeta_S - \mathcal{G}$ open map $(Y, \sigma_S, \zeta_S^2 B)$.

(2) \rightarrow (3): Let E_A be a soft $\zeta_S - \mathcal{G}$ closed set in $(X, \tau_S, \zeta_S^{-1}, A)$. Then $(E_A)^c$ is soft $\zeta_S - \mathcal{G}$ open set in $(X, \tau_S, \zeta_S^{-1}, A)$. By assumption $\delta_{pu}((E_A)^c)$ is $\zeta_S - \mathcal{G}$ open map in $(Y, \sigma_S, \zeta_S^2 B)$. $\delta_{pu}((E_A)^c) = (\delta_{pu}(E_A))^c$ is $\zeta_S - \mathcal{G}$ open map in $(Y, \sigma_S, \zeta_S^2 B)$. $\delta_{pu}(E_A)$ is $\zeta_S - \mathcal{G}$ closed map $(Y, \sigma_S, \zeta_S^2 B)$.

(3) \rightarrow (1): Let E_A be a soft $\zeta_S - \mathcal{G}$ closed set in $(X, \tau_S, \zeta_S^{-1}, A)$. $\delta_{pu}(E_A)$ is $\zeta_S - \mathcal{G}$ closed map in $(Y, \sigma_S, \zeta_S^2 B)$. $\delta_{pu}(E_A) = (\delta_{pu}^{-1})^{-1}(E_A)$ is $\zeta_S - \mathcal{G}$ is closed in Y . Hence δ_{pu}^{-1} is $\zeta_S - \mathcal{G}$ continuous map.

4.5 Theorem

If a bijective mapping $\delta_{pu}: (X, \tau_S, \zeta_S^{-1}, A) \rightarrow (Y, \sigma_S, \zeta_S^2 B)$ be a soft $\zeta_S - \mathcal{G}$ homeomorphism, then $\delta_{pu}^{-1}: (Y, \sigma_S, \zeta_S^2 B) \rightarrow (X, \tau_S, \zeta_S^{-1}, A)$ is also a soft $\zeta_S - \mathcal{G}$ homeomorphism.

Proof

By definition of a soft $\zeta_S - \mathcal{G}$ homeomorphism is bijective δ_{pu} with both δ_{pu} and δ_{pu}^{-1} are soft $\zeta_S - \mathcal{G}$ continuous. Let δ_{pu}^{-1} is soft $\zeta_S - \mathcal{G}$ continuous, and the inverse of δ_{pu} and δ_{pu}^{-1} , which soft $\zeta_S - \mathcal{G}$ continuous by hypothesis. Hence δ_{pu}^{-1} satisfies the Definition 4.1 and it is a soft $\zeta_S - \mathcal{G}$ homeomorphism.

By above example 4.2 is satisfied to Theorem 4.5.

4.6 Theorem

If a bijective mapping $\delta_{pu}: (X, \tau_S, \zeta_S^{-1}, A) \rightarrow (Y, \sigma_S, \zeta_S^2 B)$ be a soft $\zeta_S - \mathcal{G}$ homeomorphism if and only if δ_{pu} and δ_{pu}^{-1} each map soft $\zeta_S - \mathcal{G}$ open sets to soft $\zeta_S - \mathcal{G}$ open sets.

Proof

Let δ_{pu} is a soft $\zeta_S - \mathcal{G}$ homeomorphism, then δ_{pu} and δ_{pu}^{-1} are soft $\zeta_S - \mathcal{G}$ continuous. For any soft $\zeta_S - \mathcal{G}$ open $U_A \subseteq X_A$, $U_A = X_A - E_A$ for some soft $\zeta_S - \mathcal{G}$ closed set in $(X, \tau_S, \zeta_S^{-1}, A)$, then $\delta_{pu}(U_A) = Y_B - \delta_{pu}(E_A)$. Because δ_{pu} (or δ_{pu}^{-1}) is soft $\zeta_S - \mathcal{G}$ continuous, so $\delta_{pu}(U_A)$ is a soft $\zeta_S - \mathcal{G}$ open set.

Conversely, if δ_{pu} and δ_{pu}^{-1} each map soft $\zeta_S - \mathcal{G}$ open sets to soft $\zeta_S - \mathcal{G}$ open sets. Then for any soft $\zeta_S - \mathcal{G}$ closed set $D_B \subseteq Y_B$, $\delta_{pu}^{-1}(D_B) = X_A - \delta_{pu}^{-1}(Y_B - D_B)$ is a complement of the image under δ_{pu}^{-1} of a soft $\zeta_S - \mathcal{G}$ open set, by hypothesis that is soft $\zeta_S - \mathcal{G}$ open set, so $\delta_{pu}^{-1}(D_B)$ is a soft $\zeta_S - \mathcal{G}$ closed. Hence δ_{pu}^{-1} is a soft $\zeta_S - \mathcal{G}$ continuous. Similarly δ_{pu} is soft $\zeta_S - \mathcal{G}$ continuous. Therefore δ_{pu} is soft $\zeta_S - \mathcal{G}$ is homeomorphism.

4.7 Theorem

Every soft homeomorphism is soft $\zeta_S - \mathcal{G}$ homeomorphism.

Proof

Let δ_{pu} be a soft homeomorphism. Then δ_{pu} and δ_{pu}^{-1} are soft continuous and δ_{pu} is bijective. Since every soft continuous function is $\zeta_S - \mathcal{G}$ continuous, we have δ_{pu} and δ_{pu}^{-1} are $\zeta_S - \mathcal{G}$ continuous. Therefore δ_{pu} is $\zeta_S - \mathcal{G}$ homeomorphism.

4.8 Remark

The converse of the above theorem is not true as seen from the following example.

4.9 Example

Let $X = \{1, 2, 3, 4\} = Y$, $A = B = \{m, n\}$. Let $H_1, H_2, H_3, H_4, H_5, H_6$ functions defined from A to $P(X)$ as follows, $H_1 = \{\{3\}, \{1\}\}$, $H_2 = \{\{4\}, \{2\}\}$, $H_3 = \{\{3, 4\}, \{1, 2\}\}$, $H_4 = \{\{1, 4\}, \{2, 4\}\}$, $H_5 = \{\{2, 3, 4\}, \{1, 2, 3\}\}$, $H_6 = \{\{1, 3, 4\}, \{1, 2, 4\}\}$.

Then $\tau_S = \{\emptyset_S, X_S, H_1, H_2, H_3, H_4\}$ and $\zeta_S^{-1} = \{X_S, H_3, H_4, H_5, H_6\}$ is soft grill topology on X . Let I_1, I_2, I_3, I_4 functions defined from B to $P(Y)$ as follows, $I_1 = \{\{a\}, \{d\}\}$, $I_2 = \{\{a\}, \{c\}\}$, $I_3 = \{\{a, b\}, \{c, d\}\}$, $I_4 = \{\{b, c, d\}, \{a, b, c\}\}$.

Then $\sigma_S = \{\emptyset_S, X_S, I_1, I_2, I_3, I_4\}$ and $\zeta_S^2 = \zeta_S^{-1}$ is soft grill topology on Y . Let δ_{pu} is a soft $\zeta_S - G$ homeomorphism but not soft homeomorphism.

4.10 Theorem

Every soft generalized homeomorphism is soft $\zeta_S - G$ homeomorphism.

Proof

Let δ_{pu} be a soft G homeomorphism. Then δ_{pu} and δ_{pu}^{-1} are soft ζ_S continuous and δ_{pu} is bijective. Since every soft generalized continuous mapping is $\zeta_S - G$ continuous, we have δ_{pu} and δ_{pu}^{-1} are $\zeta_S - G$ continuous. Therefore δ_{pu} is $\zeta_S - G$ homeomorphism.

4.11 Remark

The converse of the above theorem is not true as seen from the following example.

4.12 Example

Let $X = Y = \{\alpha_1, \alpha_2, \alpha_3\}$, $A = B = \{a_1, a_2\}$, $\tau_S = \{\emptyset, \widetilde{X}, K_1, K_2, K_3, K_4, K_5, K_6, K_7\}$, $\zeta_S^{-1} = \zeta_S^2 = \tau_S - \emptyset$, $\sigma_S = \{\emptyset, \widetilde{Y}, S_1, S_2, S_3, S_4, S_5, S_6, S_7\}$ and where $K_1, K_2, K_3, K_4, K_5, K_6, K_7, S_1, S_2, S_3, S_4, S_5, S_6, S_7$ are soft subsets over \mathcal{X}_A , we get the following: $K_1 = \{\{\alpha_1\}, \{\alpha_2\}\}$, $K_2 = \{\{\alpha_1\}, \{\alpha_2, \alpha_3\}\}$, $K_3 = \{\{\alpha_1\}, \{\alpha_1, \alpha_2\}\}$, $K_4 = \{\{\alpha_1, \alpha_2\}, \{\alpha_3\}\}$, $K_5 = \{\{\alpha_1, \alpha_2\}, \{\alpha_1, \alpha_2\}\}$, $K_6 = \{\{\alpha_2\}, \{\alpha_2, \alpha_3\}\}$, $K_7 = \{\{\alpha_2, \alpha_3\}, \{\alpha_2, \alpha_3\}\}$, $S_1 = \{\{\alpha_2\}, \{\alpha_3\}\}$, $S_2 = \{\{\alpha_2\}, \{\alpha_1, \alpha_3\}\}$, $S_3 = \{\{\alpha_3\}, \{\alpha_1, \alpha_2\}\}$, $S_4 = \{\{\alpha_2, \alpha_3\}, \{\alpha_3\}\}$, $S_5 = \{\{\alpha_2\}, \{\alpha_2, \alpha_3\}\}$, $S_6 = \{\{\alpha_2\}, \{\alpha_1\}\}$, $S_7 = \{\{\alpha_2, \alpha_3\}, \{\alpha_2, \alpha_3\}\}$. So δ_{pu} is a soft $\zeta_S - G$ homeomorphism, but not soft generalized homeomorphism.

4.13 Theorem

Let $\delta_{pu}: (X, \tau_S, \zeta_S^{-1}, A) \rightarrow (Y, \sigma_S, \zeta_S^2, B)$ be a soft bijective and soft $\zeta_S - G$ continuous, the following statement are equivalent.

- 1) δ_{pu} is soft $\zeta_S - G$ open map.
- 2) δ_{pu} is soft $\zeta_S - G$ homeomorphism.
- 3) δ_{pu} is soft $\zeta_S - G$ closed map.

Proof

(1) \rightarrow (2): Let δ_{pu} is soft bijective and soft $\zeta_S - G$ continuous and $\zeta_S - G$ open map, By definition 4.1, δ_{pu} is soft $\zeta_S - G$ homeomorphism.

(2) \rightarrow (3): Let δ_{pu} is soft $\zeta_S - G$ homeomorphism and soft $\zeta_S - G$ open map. Let F_A be a soft ζ_S closed in $(X, \tau_S, \zeta_S^{-1}, A)$. Then F_A^C is a soft ζ_S open set in $(X, \tau_S, \zeta_S^{-1}, A)$. By assumptions $\delta_{pu}(F_A^C)$ is soft $\zeta_S - G$ open in $(Y, \sigma_S, \zeta_S^2, B)$. That is $\delta_{pu}(F_A^C) = (\delta_{pu}(F_A))^C$ is a soft $\zeta_S - G$ open set in $(Y, \sigma_S, \zeta_S^2, B)$ and $\delta_{pu}(F_A)$ is soft $\zeta_S - G$ closed in $(Y, \sigma_S, \zeta_S^2, B)$. Hence δ_{pu} is soft $\zeta_S - G$ closed map.

(3) \rightarrow (1): Let E_A be a soft ζ_S open in $(X, \tau_S, \zeta_S^{-1}, A)$. Then E_A^C be a soft ζ_S closed in $(X, \tau_S, \zeta_S^{-1}, A)$. By the given hypothesis, $\delta_{pu}(E_A^C)$ is soft $\zeta_S - G$ closed in $(Y, \sigma_S, \zeta_S^2, B)$. Now $\delta_{pu}(E_A^C)^C$ is soft $\zeta_S - G$, (i.e) $\delta_{pu}(E_A)$ is a soft $\zeta_S - G$ open in $(Y, \sigma_S, \zeta_S^2, B)$ for every soft ζ_S open set E_A in $(X, \tau_S, \zeta_S^{-1}, A)$. Hence δ_{pu} is soft $\zeta_S - G$ open map.

V. ACKNOWLEDGMENT

I would like to express sincere gratitude to Dr. N. Chandramathi, Department of Mathematics, Government Arts college Udumalpet, for her valuable guidance, constant encouragement and insightful suggestions throughout the course of this work.

REFERENCES

- [1] Cagman. N , Karata. S and S. Enginoglu (2011), Soft topology, Computers and Mathematics with Applications 62(1),351-358.
- [2] Chandramathi. N(2016), New class of generalized closed sets using grills, Int. J. Math. Archive, 7(7),66-71.
- [3] Chandramathi. N and Nithya. P (2024), Soft generalized closed sets in soft grill topological spaces, Indian Journal of Natural sciences, Vol.15/issue 87, ISSN 0976-0997, 86539-86543.
- [4] Chandramathi. N and Nithya. P (2025), Soft generalized continuous mapping and irresolute in soft grill topological spaces, Gongcheng Kexue Yu Jishu/Advanced Engineering Science, Vol 57, Issue 02, 291-297.
- [5] Chandramathi. N and Rajeshwaran N(2023), Generalized semi pre homeomorphisms in neutrosophic topological spaces, Nonlinear studies, Vol.30, No.2, pp.437-443.
- [6] Jackson.S and Chitra. S, New class of Homeomorphism in soft topological spaces, ISBN : 978-93-5578-172-7,111-121.
- [7] Janaki.C and Sredja. D(2012), New class of homeomorphism in soft topological spaces, International journal of Science and Research 3(6),810-814.
- [8] Kannan. K (2012), Soft generalized closed sets in soft topological spaces, Journal of Theoretical and Applied Information Technology, Vol.37 No.1,17-21.
- [9] Kiruthika. V, Chanramathi. N and Nithya.P(2025), Soft $\alpha\omega\tilde{I}_s$ - Homeomorphism in soft ideal topological spaces, International Journal of Creative Research Thoughts, Vol. 13, Issue 10, f706-f711.
- [10] Molodtsov.D (1999), Soft set theory First results, Comp. Math. Appl.37, 19-31.
- [11] M.Shabir and M.Naz (2011), On soft topological spaces , Computers and Mathematics with Applications 61(7), 1786-1799.
- [12] P.K. Maji, R.Biswas and A.R, Roy (2003), Soft set theory, Computers and Mathematics with Applications 37(4)(2003) 555-562.
- [13] Rodyn A. Hosny (2014), Remark on soft topological spaces with soft grill, Fr East Journal of Mathematical science, 86(1), 111-128.
- [14] Rodyn A. Hosny and A.M. Abd El-Latif (2016), Soft G compactness in soft topological spaces, Annals of Fuzzy Mathematics and Informatics Vol 11, No 6, 973-987.
- [15] Sujithra .J.R and Chandramathi. N(2020), A note on homeomorphism using grills, Advances in Mathematics: Scientific Journal , 9 no.4. 2279-2283 ISSN: 1857-8438.