IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

New Maps In Fuzzy Topological Spaces

Mahesh K Bhat

Associate Professor & HOD Department of Mathematics SDM College of Arts, Science and Commerce, Prabhat Nagar Honnavar, Uttara Kannada-581343, Karnataka, India.

ABSTRACT:The aim of this paper is to introduce a new type of maps called Fuzzy wgrα-irresolute maps, strongly Fuzzy wgrα-continuous maps and study some of these properties.

Keywords: Fuzzy wgrα-closed-sets, Fuzzy wgrα-open-sets, Fuzzy wgrα-continuous-maps, Fuzzy wgrα-irresolute maps, strongly Fuzzy wgrα-continuous maps.

AMS Mathematical Subject classification(2010):54A05,54C05.

1.INTRODUCTION:

The concept of irresolute map was introduced by Hildebrand[5] and strongly continuous functions was introduced by Levine[6]. Later Wali and Benchalli[2] introduced and studiedrw-irresolute maps and strongly rw-continuous maps. In this section we introduce the concept of Fuzzy wgrα –irresolute maps and strongly Fuzzy wgrα-continuous maps in topological space and investigate some of their properties.

2.PRELIMINARIES

Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), A^c,P-Cl(A) and P-int(A) denote the Closure of A, Interior of A, Compliment of A, pre-closure of A and pre-interior of (A) in X respectively.

Definition 2.1: A subset A of a topological space (X, τ) is called

- (i)Semi-open set [1] if $A \subseteq cl(int(A))$ and semi-closed set if $int(cl(A)) \subseteq A$.
- (ii)Regular ω closed (briefly $r\omega$ -closed)set [2] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is regular semi- open in X.
- (iii) Pre generalized pre regular ω eakly closed set[3](briefly pgpr ω -closed set) if pCl(A) \subseteq U whenever A \subseteq U and U is rg α open in (X, τ).
- (iv)pre generalized pre-regular ω eakly open(briefly pgpr ω -open)[4]set in X if A^c is pgpr ω -closed in X.

Definition 2.2A map $f: (X,\tau) \rightarrow (Y,\sigma)$ is said to

- (i)Semi continuos map[1] if $f^{-1}(V)$ is a semi-closed of (X,τ) for every closed set of (Y,σ) .
- (ii)irresolute map [5] if f⁻¹(V) is semi-closed in X for every semi-closed subset V of Y.
- (iii)Strongly-continuousmap[6]if f⁻¹(V) is Clopen (both open and closed) in X for every subset V of Y.
- (iv)A function f from a topological space X into a topological space Y is called Fuzzy wgr α -continuous map(Fuzzy wgr α -Continuous)[7] if $f^{-1}(V)$ is Fuzzy wgr α -Closed set in X for every closed set V in Y.

3. Fuzzy wgra-irresolute and Strongly Fuzzy wgra-Continuous functions

Definition 3.1: A function f from a topological space X into a topological space Y is called Fuzzy wgra-irresolute (Fuzzy wgra-irresolute) map if $f^{-1}(V)$ is Fuzzy wgra-Closed set in X for every Fuzzy wgra-closed set V in Y.

Definition 3.2: A function f from a topological space X into a topological space Y is called strongly Fuzzy wgr α continuous (strongly Fuzzy wgr α -continuous) map if $f^{-1}(V)$ is closed set in X for every Fuzzy wgr α -closed set V in Y.

Theorem 3.3: If A map $f: (X,\tau) \rightarrow (Y,\sigma)$ is Fuzzy wgr α -irresolutemap, if and only if the inverse image $f^{-1}(V)$ is Fuzzy wgr α -open set in X for every Fuzzy wgr α -open set V in Y.

Proof: Assume that $f: X \rightarrow Y$ is Fuzzy $wgr\alpha$ -irresolute map. Let G be Fuzzy $wgr\alpha$ -open in Y. The G^c is Fuzzy $wgr\alpha$ -closed in Y. Since f is Fuzzy $wgr\alpha$ - irresolute, $f^{-1}(G^c)$ is Fuzzy $wgr\alpha$ -closed in X. But $f^{-1}(G^c) = X - f^{-1}(G)$. Thus $f^{-1}(G)$ is Fuzzy $wgr\alpha$ -open in X. Converserly, Assume that the inverse image of each open set in Y is Fuzzy $wgr\alpha$ -open in X. Let F be any Fuzzy $wgr\alpha$ -closed set in Y. By assumption $f^{-1}(F^c)$ is Fuzzy $wgr\alpha$ -open in X. But $f^{-1}(F^c) = X - f^{-1}(F)$. Thus $X - f^{-1}(F)$ is Fuzzy $wgr\alpha$ -open in X and so $f^{-1}(F)$ is Fuzzy $wgr\alpha$ -closed in X. Therefore f is Fuzzy $wgr\alpha$ - irresolute map.

Theorem 3.4: If A map $f: (X,\tau) \rightarrow (Y,\sigma)$ is Fuzzy wgra–irresolute map, then it is Fuzzy wgra–continuous map but not conversely.

Proof: Let $f: X \to Y$ be Fuzzy $wgr\alpha$ -irresolute map. Let F be any closed set in Y. Then F is Fuzzy $wgr\alpha$ -closed in Y. Since f is Fuzzy $wgr\alpha$ -irresolute map, the inverse image $f^{-1}(F)$ is Fuzzy $wgr\alpha$ -closed set in X. Therefore f is Fuzzy $wgr\alpha$ -continuous map.

The converse of the above theorem need not be true as seen from the following example.

Let map $f: X \to Y$ defined by , f(a)=b , f(b)=a , f(c)=a , f(d)=c then f is Fuzzy $wgr\alpha$ -continuous map but f is not Fuzzy $wgr\alpha$ -irresolute map, as Fuzzy $wgr\alpha$ -closed set $F=\{b\}$ in Y, then $f^{-1}(F)=\{a\}$ in X, which is not Fuzzy $wgr\alpha$ -closed set in X.

Theorem 3.6: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two maps. Then

- (i) g o $f:(X, \tau) \rightarrow (Z, \eta)$ is Fuzzy wgra-irresolute map if g is Fuzzy wgra-irresolute map and f is Fuzzy wgra-irresolute map.
- (ii) g o f: $(X, \tau) \rightarrow (Z, \eta)$ is Fuzzy wgra–continuous map if g is Fuzzy wgra–continuous map and f is Fuzzy wgra–irresolute map.

Proof:

- (i) Let U be a Fuzzy wgr α -open set in (Z, η) . Since g is Fuzzy wgr α -irresolute map, $g^{-1}(U)$ is Fuzzy wgr α -open set in (Y, σ) . Since f is Fuzzy wgr α -irresolute map, $f^{-1}(g^{-1}(U))$ is aFuzzy wgr α -open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an Fuzzy wgr α -open set in (X, τ) and hence gof is Fuzzy wgr α -irresolute map.
- (iii) Let U be a open set in (Z, η) . Since g is continuous map, $g^{-1}(U)$ is open set in (Y, σ) . As every open set is Fuzzy wgr α -open, $g^{-1}(U)$ is Fuzzy wgr α -open set in (Y, σ) . Since f is Fuzzy wgr α irresolute map, $f^{-1}(g^{-1}(U))$ is an Fuzzy wgr α -open set in (X, τ) . Thus $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an Fuzzy wgr α -open set in (X, τ) and hence gof is Fuzzy wgr α -continuous map.

Theorem 3.7: Let $f: (X,\tau) \to (Y,\sigma)$ be a map. Both (X,τ) and (Y,σ) are Topological-space .Where "every Fuzzy wgra closed subset is closed" Then the following are equivalent:

- (i) f is Fuzzy wgrα-irresolute map
- (ii) f is Fuzzy wgrα-continuous map.

Proof:

- (i) implies (ii) follows from theorem 3.4
- (ii) implies (i) Let F be a Fuzzy wgra closed set in (Y,σ) then F is a closed set in (Y,σ) by hypothesis. Since f is a Fuzzy wgra-continuousmap, $f^{-1}(F)$ is a Fuzzy wgra closed set in (X,τ) , Therefore f is Fuzzy wgra-irresolute map.

j53

Remark 3.8: The following examples show that the notation of irresolute maps and Fuzzy $wgr\alpha$ -irresolute maps are independent.

Example: $X = \{a,b,c\}, Y = \{a,b,c\} \tau = \{X, \phi,\{a\}\} \& \sigma = \{Y, \phi,\{a\},\{b\},\{a,b\}\},\{a,b\}\},\{a,b\}\}$

then the identity map $f:(X, \tau) \rightarrow (Y, \sigma)$ is Fuzzy wgr α -irresolute map but it is not-irresolute map as inverse image of the semi-open set $\{b\}$ in (Y, σ) is $\{b\}$ in X, which is not semi-open set in (X, τ)

Example: $X = \{a,b,c\}, Y = \{a,b,c\} \tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\} \sigma = \{Y, \phi, \{a\}\}, \{a,b\}, \{a,$

then the identity map $f:(X, \tau) \rightarrow (Y, \sigma)$ is—irresolute map but it is not Fuzzy wgra-irresolute map, as inverse image of the Fuzzy wgra-closed set $\{b\}$ in (Y,σ) is $\{b\}$ in X, which is not Fuzzy wgra closed set in (X,τ) .

Theorem 3.9: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ is strongly Fuzzy wgr α -continuous map if and only if $f^{-1}(G)$ is open set in X for every Fuzzy wgr α -open set G in Y.

Proof: Assume that f: $X \rightarrow Y$ is strongly Fuzzy $wgr\alpha$ —continuous map. Let G be Fuzzy $wgr\alpha$ —open in Y. The G^c is Fuzzy $wgr\alpha$ —closed in Y. Since f is strongly Fuzzy $wgr\alpha$ —continuous map, $f^{-1}(G^c)$ is closed in X. But $f^{-1}(G^c) = X - f^{-1}(G)$, Thus $f^{-1}(G)$ is open in X. Converserly, Assume that the inverse image of each open set in Y is Fuzzy $wgr\alpha$ —open in X. Let F be any Fuzzy $wgr\alpha$ —closed set in Y. By assumption F^c is Fuzzy $wgr\alpha$ —open in X. But $f^{-1}(F^c) = X - f^{-1}(F)$. Thus $X - f^{-1}(F)$ is open in X and so $f^{-1}(F)$ is closed in X. Therefore f is strongly Fuzzy $wgr\alpha$ —continuous map.

Theorem 3.10: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ is strongly Fuzzy wgr α -continuous map then it is continuous map.

Proof: Assume that $f: (X, \tau) \rightarrow (Y, \sigma)$ is strongly Fuzzy $wgr\alpha$ —continuous map, Let F be closed set in Y. As every closed is Fuzzy $wgr\alpha$ —closed, F is Fuzzy $wgr\alpha$ —closed in Y. Since f is strongly Fuzzy $wgr\alpha$ —continuous mapthen $f^{-1}(F)$ is closed set in X. Therefore f is continuous map.

Example 3.11: $X=Y=\{a,b,c,d\}, \tau=\{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}\}$

 $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}\}$. Let map $f: X \to Y$ defined by , f(a)=a , f(b)=b , f(c)=b, f(d)=b. then f is continuous but f is not strongly Fuzzy wgr α -continuous, since for Fuzzy wgr α -closed set $F=\{a,c,d\}$ in Y, then $f^{-1}(F)=\{a\}$ in X, which is not closed set in X.

Theorem: 3.12:Let $f: (X,\tau) \to (Y,\sigma)$ be a map. Both (X,τ) and (Y,σ) are Topological-space .Where "every Fuzzy wgra closed subset is closed" Then the following are equivalent:

- (i) f is strongly Fuzzy wgrα-continuous map
- (ii) f is continuous map.

Proof:

(i) =>(ii) Let U be any open set in (Y,σ) . Since every open set is Fuzzy wgr α -open, U is Fuzzy wgr α -open in (Y,σ) . Then $f^{-1}(U)$ is open in (X,τ) . Hence f is continuous map.

(ii) =>(i) Let U be any Fuzzy wgr α -open set in (Y,σ) . Since (Y,σ) is a topoogical-space, U is open in (Y,σ) . Since f is continuous map. Then $f^{-1}(U)$ is open in (X,τ) . Hence f is strongly Fuzzy wgr α -continuous map.

Theorem 3.13:Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly continuous map then it is strongly Fuzzy wgr α -continuous map.

Proof: Assume that $f: X \to Y$ is strongly continuous map. Let G be Fuzzy wgr α -open in Y and also it is any subset of Y since f is strongly continuous map, $f^{-1}(G)$ is open (and also closed) in X. $f^{-1}(G)$ is open in X. Therefore f is strongly Fuzzy wgr α -continuous map.

Theorem 3.14:Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly Fuzzy wgra–continuous map then it is Fuzzy wgra–continuous map.

Proof: Let G be open in Y, every open is Fuzzy wgr α -open, G is Fuzzy wgr α -open in Y, since f is strongly Fuzzy wgr α -continuous map, $f^{-1}(G)$ is open in X. and therefore $f^{-1}(G)$ is pgpr α -open in X. Hence f is Fuzzy wgr α -continuous map.

Theorem 3.15:In discrete space, a map $f: (X, \tau) \rightarrow (Y, \sigma)$ is strongly Fuzzy wgr α -continuous map then it is strongly continuous map.

Proof: F be any subset of Y, in discrete space, Every subset F in Y is both open and closed, then subset F is both Fuzzy wgr α -open or Fuzzy wgr α -closed, i) let F is pgpr ω -closed in Y, since f is strongly pgpr ω -continuous map, then $f^{-1}(F)$ is closed in X. ii) let F is Fuzzy wgr α -open in Y, since f is strongly Fuzzy wgr α -continuous map, then $f^{-1}(F)$ is open in X. Therefore $f^{-1}(F)$ is closed and open in X. Hence f is strongly continuous map.

Theorem 3.16: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then

(i) g o $f:(X,\tau)\to(Z,\eta)$ is strongly Fuzzy wgr α -continuous map if g is strongly Fuzzy wgr α -continuous map and f is strongly Fuzzy wgr α -continuous map.

(ii) g o f: $(X, \tau) \rightarrow (Z, \eta)$ is strongly Fuzzy wgra–continuous map if g is strongly Fuzzy wgra–continuous map and f is continuous map.

(iii) g o f: $(X, \tau) \rightarrow (Z, \eta)$ is Fuzzy wgra–irresolute map if g is strongly Fuzzy wgra–continuous map and f is Fuzzy wgra–continuous map.

(iv) g o $f:(X,\tau)\to(Z,\eta)$ is continuous map if g is Fuzzy wgra–continuous map and f is strongly Fuzzy wgra–continuous map.

Proof:

- (i)Let U be a Fuzzy wgr α -open set in (Z,η) . Since g is strongly Fuzzy wgr α -continuous map, $g^{-1}(U)$ is open set in (Y,σ) . As every open set is Fuzzy wgr α -open, $g^{-1}(U)$ is Fuzzy wgr α -open set in (Y,σ) . Since f is strongly Fuzzy wgr α -continuous map $f^{-1}(g^{-1}(U))$ is an open set in (X,τ) . Thus $(gof)^{-1}(U)=f^{-1}(g^{-1}(U))$ is an open set in (X,τ) and hence gof is strongly Fuzzy wgr α -continuous map.
- (ii)Let U be a Fuzzy $wgr\alpha$ -open set in (Z, η) . Since g is strongly Fuzzy $wgr\alpha$ -continuous map, $g^{-1}(U)$ is open set in (Y, σ) . Since f is continuous map $f^{-1}(g^{-1}(U))$ is an open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is strongly Fuzzy $wgr\alpha$ -continuous map.
- (iii)Let U be a Fuzzy wgr α -open set in (Z,η) . Since g is strongly Fuzzy wgr α -continuous map, $g^{-1}(U)$ is open set in (Y,σ) . Since f is Fuzzy wgr α -continuous map $f^{-1}(g^{-1}(U))$ is an Fuzzy wgr α -open set in (X,τ) . Thus $(gof)^{-1}(U)=f^{-1}(g^{-1}(U))$ is an Fuzzy wgr α -open set in (X,τ) and hence gof is Fuzzy wgr α -irresolute map.
- (iv)Let U be open set in (Z, η) . Since g is Fuzzy wgr α -continuous map, $g^{-1}(U)$ is Fuzzy wgr α -open set in (Y, σ) . Since f is strongly Fuzzy wgr α -continuous map $f^{-1}(g^{-1}(U))$ is an open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is continuous map.

REFERENCES:

- 1. N.Levine, Semi-open sets and semi-continuity in topological spaces, 70(1963), 36-41.
- 2. R.S.Wali, on some topics in general and fuzzy topological spaces; ph.d thesis, K.U.Dharwad (2007).
- 3.R.S.Wali& Vivekananda Dembre,On Weakly Generalized regular alphaClosed Sets in Topological Spaces; Journal of Computer and Mathematical Sciences, Vol.6(2),113-125, February 2015.
- 4. R.S.Wali& Vivekananda Dembre, On Weakly Generalized regular alphaOpen Sets and Pre Generalized Pre Regular Weakly Neighbourhoods inTopological SpacesAnnals of Pure and Applied Mathematics ,Vol. 10, No.1, 2015;Published on 12 April 2015.
- 5.S.G.crossley and S.K.Hildebrand, Semi topological properties, Fund. math, 74(1972), 233-254.
- 6.N.Levine, Strongly continuity in topological spaces, amer. math.palermo, 19(1978), 20-28
- 7.R.S.Wali& Vivekananda Dembre, On Weakly Generalized regular alphaContinuous in Topological Spaces.