IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Water Audit Of Vvp College Campus

¹Prof. Sanjay Ramkrushna Bugade, ²Mr. Aditya Amol Chavan, ³Mr. Onkar Pradip Asabe

⁴Samarth Padmakar Mane, ⁵Mr. Shrihari Devidas Potdar,

¹ Assistant Professor, ²Student, ³Student, ⁴Student, ⁵Student

¹⁻⁵Department of Civil Engineering,

¹⁻⁵Vidya Vikas Prastishthan Institute of Engineering Technology, Solapur, India

Abstract: To counter the depleting water resources and ill usage of water by identification of the problems, leak points, losses, wastage and giving suggestions to minimize the same. The evaluation of water sources which pumped water throughout the campus was the foremost step of the water audit of the campus and then water meters were installed at suitable distribution points to measure the usage. Water meter indicates the measured value of water usage at that particular location.

Index Terms - Inlet, Outlet, Storages, Water Requirement, Suggestion,

I. INTRODUCTION

Water is a precious natural national resource with almost fixed quantum of availability. With continuous growth in country's population, per capita availability of utilizable water is going down, whereas with ever-rising standard of living of people and all around rapid industrialization and urbanization, demand of fresh water is going upcontinuously. Unabated discharge of industrial effluents into water bodies is further aggravating the situation of scarcity of water of acceptable quality. In spite of the fact that fresh water is rapidly becoming scarce, it is continued to be used wastefully.

Declaring water conservation a national mission, in June 2003, the Prime Ministerof India, appealed to all countrymen to collectively address the problem of alarminglyprogressing water shortage, by conserving every drop of water and suggested forconducting water audit for all sectors of water use.

OBJECTIVES OF WATER AUDIT:

Objectives of water audit is to find out physical losses due to pipe leakage and over flow, losses due to metering errors, unauthorized connections and free water supply given by Municipal authority for public stand post and park in the distribution system.

II. METODOLOGY

- American Water Works Association (AWWA) method :
 - The AWWA method is basically divided into the following tasks:
- 1. Measuring the supply: The water sources are identified and the water output ismeasured from each source.
- 2. Measuring the Authorized metered use: The metered locations are identified andthe metered water uses are calculated..
- 3. Measuring the Authorized Unmetered use: The unmetered consumers are identified and the amount of water used by them is calculated. The uses could be composed of fire fighting and training, flushing mains, storm sewers and sanitary sewers.

4. Measure Water losses: The volumes of water that does not fit in the above three categories are the loss in the system. These losses can include accounting errors, unauthorized connections, evaporation of stored water, reservoir overflows, leaks or losses due to malfunctioning of the system.

System Input	Authorised Use	Billed Authorised Use	Revenue Water	Billed Metered Consumption
				Billed Unmetered Consumption
		Unbilled Authorised Use	Non Revenue Water	Unbilled Metered Use
				Unbilled Unmetered Use
	Water Losses	Apparent Losses		Metering Inaccuracies
				Unauthorized Use
				Leakage on Mains
		Real Losses		Overflow on Storages
				Leakage on Service Connections

5. Analyze Audit Results: Audit result comprises of calculation of two quantities, whichare potential water system leakage, i.e., difference between total water loss and allmeasured losses. The second quantity calculated is the recoverable leakage, which is halfof all the potential leaks that can be discovered and repaired.

International Water Association (IWA) Audit Method:

The IWA method can be represented with the help of a water balance diagram in which each column is a different notation for describing the same volume of water at some point of the delivery cycle of utility system. The aligned row totals the same volume of water. When we perform IWA audit, we quantify each entry i.e. volume of water. The IWA auditing is a "bottom up" approach. This type of audit requires sorting the most basic information that is gathered by a utility which is billing records, leak reports, information gathered during field visits etc. It is a costly affair and takes a lot of time but is able to identify all losses and is a highly efficient method.

III. CALCULATION OF PER CAPITA AND TOTAL WATER REQUIREMENT:

The per capita water requirement was calculated with the help of set standards by WHO, for domestic use and using estimated values for irrigation purposes and dairy. The total water requirements were obtained by multiplying the number of people in the distribution point, with the per capita water requirement for domestic purposes. For irrigation purposes, the total water requirement was obtained by multiplying the area of irrigation with the water requirement per area of the distribution point.

The total water requirement gave the ideal amount of water that needed to be pumped into the system and was calculated by following steps,

- Survey of the distribution points of campus.
- Finding the number of people contributing to water usage at every distribution point
- Finding out the areas of irrigated distribution points like farm.
- Finding out the number of animals in the farm dairy
- Finding out the standard values for domestic and irrigation uses
- Calculation of total water requirements with above data.

25

The standard values were obtained from the prescribed values of World Health Organization (WHO) and average irrigation requirements for shade houses and poly houses. The standard values of dairy were also obtained by per animal requirement values.

The standard values for domestic uses were as follows:

Washing

utensils

Table 5.1 Trescribed Water Requirement Standards						
Type of Usage	Minimum water Requirement (lpcd)	Maximum water Requirement (lpcd)	Average water Requirement (lpcd)			
Drinking	2	8	5			
Sanitation	30	50	40			
Cooking	2	6	4			
Bathing	8	32	20			
Washing clothes	10	30	20			

35

Table 3.1 Prescribed Water Requirement Standards

Average amount of water required for irrigation by drip systems in rain shelters and shade house was found out to be 1.5 mm per day on an average. For garden use, it was taken as 2 mm per day. For the farm dairy, average water requirement per animal was found out to be 135 liters per day, including the drinking and washing purpose.

Thus, the ideal water requirement for the campus was found out and a comparison was made between the actual water usage, ideal water requirement and the amount of water supplied.

IV. RESULTS:

Water is a basic nutrient of the human body and is critical to human life. It supports the digestion of food, adsorption, transportation and use of nutrients and the elimination of toxins and wastes from the body (Kleiner, 1999). Water is also essential for the preparation of foodstuffs and requirements for food preparation are included in the discussion of consumption requirements. Domestic water supplies are one of the fundamental requirements for human life. Without water, life cannot be sustained beyond a few days and the lack of access to adequate water supplies leads to the spread of disease. Children bear the greatest health burden associated with poor water and sanitation.

It is important to distinguish quantities of water required for domestic purposes (which primarily influence health and productivity), and quantities of water required for other purposes (such as agriculture, industry, commerce, transport, energy and recreation). Overall, the requirements for domestic supply typically constitute a very minor component of total water withdrawals (Gleick, 1993; 1996).

In the WHO Guidelines for Drinking-Water Quality, Guideline Values for chemical contaminants are based on the assumption of a 60 kg adult consuming 2 liters per day from drinking water, which would be equivalent to 3 liters per capita per day including food consumption (if the ratio cited by Kleiner were applied) as shown in Table 4.1. Where specific guidance is needed for vulnerable populations, a figure of 1 liter per day for a 10kg child or 0.75 liter per day for a 5kg child is used (WHO, 1993; p31).

Table 4.1 Daily fluid intake reference values in litres per capita (IPCS, 1994)

	Normal conditions	High average temp.	Moderate activity
Adults	1.0-2.4, average 1.9 (including milk); 1.4 (excluding milk)	2.8-3.4	3.7
Adult male	2	-	-
Adult female	1.4	-	-
Child (10 years)	1.0	-	-

To prepare rice using the adsorption method (i.e., only sufficient water to cook the rice is added), 1.6 liters is required for 600 g per capita per day.

More water may be required to ensure that other foodstuffs can be cooked, although defining minimum quantities is difficult as this depends on the nature of the food being prepared. For instance, Gleick (1996) suggests that on average 10 liters per capita per day is required for food preparation, whilst Thompson et al. (2001) show that in East Africa only 4.2 liters per capita per day were used for both drinking and cooking for households with a piped connection and even less (3.8 liters per capita per day) for households without a connection. Taking into account drinking needs, this suggests that between 1.5 and 2 liters per capita per day is used for cooking.

CALCULATION OF THE ACTUAL WATER SUPPLY AND USE:

The water use by various users in the campus was estimated based on the standards given by World Health Organization (WHO) as given in Table 4.2.

Table 4.2 Per capita water requirement as per WHO.

Table 4.2 Tel capita water requirement as per W110							
Litre per capita per day (lpcd) minimum, maximum and average water requirement as per World Health Organization (WHO) -							
	Minimum water	Maximum water	Average water				
	requirement	requirement	requirement				
Type of Usage	(lpcd)	(lpcd)	(lpcd)				
Drinking	2	8	5				
Cooking	2	6	4				
Bathing	8	32	20				
Sanitation	30	50	40				
Washing of clothes	10	30	20				
Washing of utensils	15	35	25				
Average Per Capita	114						
Minimum Per Capita	67						
Maximum Per Capita	161						

Calculation of the main supply

There are 2 main supplies

- 1) 3 Bore wells
- 2) Corporation connection

Discharge of the bore wells are 20 liter for 15 second

Calculation of discharge in men's hostel water tanks

No. of tanks = 3

Storage of tank = 5000 liter

Estimation of water requirement

Number of Inmates of Men's Hostel = 197

Total Average Water Requirement in liter per day for Men's Hostel = 197 x 114 = 22,4581 Lit.

Calculation of discharge in ladies hostel water tanks

No. of tanks = 2

Storage of tank = 10,000 liter

Estimation of water requirement

No. of inmates in LH = 110

Average per capita water requirement per day = $100 \, l$

Total Average Water Requirement in liter per day for Ladies' Hostel = $110 \times 114 = 12,540 \text{ l Lit.}$

Canteen

No of Tanks = 2

Storage of tank = 3000 liter

Estimation of water requirement

No of inmates in canteen = 125

Total Average water requirement in liter per day for canteen = 125*188 = 23,500 liter

Degree and Diploma Building

No of Tanks = 4

Storage of tank = 50,335 liter

No of inmates in Degree and Diploma Building = 1860*45

Total Average water requirement in liter per day for degree and diploma building = 83,700 liter

> SUGGESTIONS TO MINIMISE LOSSES:

• Inspection of complete water distribution system to detect leakage

Leakage on main line can be calculated by taking the difference between the system supply and the discharge received by the main tank. The leakage and losses in the intermediary distribution lines can be similarly found out by subtracting the discharge of water received by all the small tanks in various buildings from the supply of main tank. The amount of effort needed to perform a leak detection survey depends heavily on the information available, such as system aps, inventory of pipes and fittings, and history of repairs.

• Replacement of old fittings and joints

If the fittings and joints in the pipelines are too old, they have to be replaced in order to mitigate losses due to leakage.

• Replacement of corroded pipes

If it is seen that the pipes are corroded, they have to be replaced immediately so that leakage losses are prevented.

• Recycling the waste water for further use

Waste water, for instance the water used for washing the floors of the dairy barn, can be recycled and used again.

• Spread awareness among workers, staff and students

This is important as if awareness is spread about the loss of water in our campus among all the people who are a part of it, losses due to over usage of water can be prevented to a great extent.

Close the outflow valves of the OH tank during the night time

It has been estimated that about 21000 I of water leaves the OH tank from 11 pm to 4.30 am when there is only little usage of water. The valves can 4 be closed during this time period and opened again at the time of pumping in the morning.

> CONCLUSION:

Water as we know is the most important entity required for the existence of life on the planet. Globalization and technological development have taken mankind leaps and bounds in most of the aspects but have also deteriorated the natural resources, essential for life, one of them being water. The project of water audit carried out in the VVP College Campus, Solapur. Aims to counter the depleting water resources and ill usage of water by identification of the problems, leak points, losses, wastage and giving suggestions to minimize the same.

The evaluation of water sources which pumped water throughout the campus was the foremost step of the water audit of the campus. The source of water in the campus were mainly wells (both open and filter point wells) and there was no supply from outside. The evaluation of water sources helped in the identification of the heart of distribution system and helped learn the nature of supply in the campus. The open well was the major source of water, operational for most part of the year and pumped water into the overhead tank near the ladies' hostel. The underground tank and above ground tank supplies water to most of the distribution points in the campus including men's hostel, farm nursery and gardening, degree and diploma building, ladies hostel.

The water supply, usage and requirement were required to be measured at distribution points. The methods used were metering the supply and calculation of water usage by falling and increasing depth of water in storage tanks while pumping and no pumping. A total of six Class 'B' single jet, 15 mm water meters were used in order to meter the supply to canteen, , farm nursery and gardening ,diploma and degree building . The readings of these water meters were taken at an interval of 24 hours, for a time period of 1 month. At other points like the ladies' and men's hostel and the overhead tank the difference in depths were noted during pumping and no pumping for a few days at time intervals of 1 hour, in order to obtain the discharge with the help of measured areas of the tanks. For finding out the ideal requirements at all the distribution points, the WHO standards for per capita were used for household supply, while the garden and irrigation use was measured by FAO standards per area.

The total supply to the distribution points of the overhead tank was calculated by measuring the difference in depth of the tank levels at pumping and no pumping and thereby calculating the volume. The supplies at men's and ladies' hostel were measured in the same way. The supply to rest of distribution points were measured with the help of meter readings obtained at a day's interval. For calculation of the total supply at places like apartments and houses where only one or two of them were metered, the discharge values were estimated by taking the total discharge as the product of the discharge a single point and the number of points. The per capita requirement was found out with the help of product of standard

average usage with the number of people contributing to the usage at the distribution point. The irrigation and garden requirements were found out by product of the standard value with the area irrigated or watered. The dairy requirements were also found out similarly by taking the product of number of animals and the standard usage per animal.

The difference between the supply from overhead tank and sum of the usages at the distribution points, yielded the amount of water losses occurring per day, which amounted to 50000 l for one day, approximately. The comparison between the water required and the actual water used was also made at every distribution point. The canteen used about 100 l of more water per day. The water supplied to quarters exceeded the requirement by a whopping 9000 l. The apartments used an extra water of 600 l per day. The farm supply exceeded the requirement by 150 l, while the excess was 600 l and 4000 l for PFDC and KVK respectively.

The results depicted a bulk of water wasted by leaks or real losses and over usage of water at most of the distribution points. Methods like inspection, replacement and repairs of corroded pipes and ill fittings were suggested. Generating awareness to limit wastage of water at households and hostels were also suggested.

Water audit study is indeed a very efficient way towards water and thereby environment conservation by keeping a check on the losses incurred and finding out ways to minimize them. It can also help reduce the capital and operating costs of pumps as an added advantage. Thus, a water audit should be performed in almost all major water supply systems in order to conserve the most precious resource for mankind which is water.

> REFERENCES:

- A.A., Patil, A., Ranveer, A.C., and Deshmukh, G.K. 2014. Leak Detection of Water Supply System by Water Audit— A Case Study of Ahmedpur. Int. J. Software & Hardware Res. in Eng. Vol. 2, pp.101.
- Renukumar, K.S., and Tuppad, P. 2014. Water Audit in Distribution Network by Establishing District Metered Area (DMA). Int. J. of Civil Eng. & Technol. Vol. 5.
- Shruthi, C.G., Sathisha, N.S., and Jeevitha, P.2013. Water Auditing of Chikmagalur Water Supply Scheme. J. on Environ. Sci., Comput. Sci. and Eng. & Technol. pp. 1088-1093.
- Addo, K.B., Akanwariwiak, W.G., and Isaac B. 2013. Water Audit of Breweries: A Case Study of a Modern Brewery in Ghana. Universal J. of Environ. Res. and Technol. Vol. 3, pp. 311-317.
- Jones, R.N., and Durack, P.J. 2005. Estimating the impacts of climate change on Victoria's runoff using a hydrological sensitivity model. CSIRO Atmospheric Research, Melbourne.
- Kearney, B., Foran, B., Poldy, F., and Lowe, D.B. 2003. Modelling Australia's fisheries to 2050: policy and management implications. Fisheries Research and Development Corporation.
- Kenway, S., Turner, G., Cook, S., and Baynes, T.M. 2008. Water-energy futures for Melbourne—the effect of water strategies, water use and urban form. CSIRO Water for a Healthy Country.
- Kirby, M., Van, D.A., Mainuddin, M., Guerschman, J.P., Liu, Y., and Marvanek, S.2008. River water balance accounting to evaluate model adequacy and uncertainty in climate and development scenario assessment. Water down under Adelaide.
- Loucks, D.P., and Beek, E. 2005. Water resources systems planning and management: an introduction to methods, models and applications. Stud. and Rep. in hydrol. UNESCO Publishing, Paris.
- Lowe, D., Poldy, F., Kearney, B., Foran, B., and Turner, G. 2003. Australian fish futures: 2020 and beyond. Rep. to the Fish. Res. and Dev. Corporation. CSIRO Sustainable Ecosystems.
- Neal, B., Radcliffe, J., McMahon, T., and Nathan, R. 2007. Urban water—review of water supply planning for Australia's non-metropolitan urban water utilities. The Australian Academy of Technological Sciences and Engineering, Parkville. O'Neill, V.G. 2008. Super modelling the Murray–Darling. Ecos, pp 8–11.
- Perera, B.J., James, B., and Kularathna, M.D. 2005. Computer software tool REALM for sustainable water allocation and management. J. of Environ. Manag. Vol. 77, pp. 291–300.
- Poldy, F., Foran, B., and Conroy, J. 2000. Future options to 2050: Australian stocks and flows framework. Rep. to Dep. of Immigration and Multicultural Affairs. Silva, H., Martin, R., Alarcon, T., and Alfredo, G.O. 2008. Mathematical modelling for the integrated management of water resources in hydrological basins. Water Resour. Manag. Vol. 23, pp. 721–730.

- Turner, G.M., Baynes, T.M., and West, J. 2007. Combined pressures and climate change impacts on the Victorian water system and possible responses. Land, water & environ. Manag. : Integrated syst. from sustain., pp. 567–573.
- Winz, I., Brierley, G., and Trowsdale, S. 2008. The use of system dynamics simulation in water resource management. Water Resour. Manag. Zhang, L., Dawes, W.R., and Walker, G.R. 1999. Predicting the effect of vegetation changes on catchment average water balance. Integrated Water Resour. Manag. Vol. 272, pp. 83–89.
- Pandit, M., and Magar, S. 2015. Green Audit: a case study of Arts, Science & Commerce College, Manmad. IOSR J. of Environ. Sci., Toxicol. and Food Technol. Vol. 9, pp. 105-108.
- Matthew, H. 2007. Water Use Auditing. New Mexico Rural Water Assoc., pp 1-20.
- Fanner, V.P., Sturn, R., and Thornton, J. 2007. Evaluating Water Loss and Planning. Manual. Vol. 7. pp 75-93.
- Dinesh, R. 2005. Water audit in National scenario. Natl conf. on water manag. Conserve. And sustain. dev. Vol. 1, pp 26-27.

