IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Analysis Of The Factors For The Effective Growth Of Smart Cities

Mr. Sumit kumar^{#1}, Miss. Priya Gangwar^{#2}, Mr. Abhishek Kumar Singh^{#3}
IIMT Engineering College in Greater Noida, UP, India

Abstract: Smart cities are the basis of the development of any nation worldwide. Evolution in smart cities gives rise to urban development, which leads to overall development of the nation, helping to address various challenges while promoting sustainable growth and development. But this evolution is not as easy as it seems; many factors affect the development of cities into smart cities. However, the realization of this vision hinges upon a nuanced understanding of the diverse factors driving smart city development. This paper helps in the analysis aimed at unveiling the basis for the effective growth of smart cities.

Through a diversified examination of urban landscapes for various places across the world, we identify and study a varied array of factors encompassing technological innovation, governance structures, socioeconomic dynamics, environmental considerations, and community engagement. We will mostly focus on air pollution and energy management in smart cities. Using a mixed-methods approach, including qualitative and quantitative research methods and case studies, we construct a framework that covers the complex give and take of these factors. Our findings help in lighting the

complex dynamics shaping smart city evolution and offer actionable ideas for policymakers, urban planners, and stakeholders. By describing what, why, and how of smart city development, this research tries to find out the barriers stopping urban development and sustainability across the globe, as well as the ways to overcome these barriers.

Keywords: Smart City, urban development, qualitative and quantitative methods, air pollution, energy management.

Introduction

With the rapid change in technology around the world, the urban landscape evolves, and with it rises the innovation

and progress in smart cities. With rapid urbanization, climate change, and resource unavailability, understanding

the drivers behind smart city development become increasingly crucial for policymakers, urban planners, and stakeholders. The increasing population is putting the city developers under great pressure to provide good services and infrastructure for a healthy and comfortable lifestyle. The competition to provide a better and comfortable lifestyle is increasing on a global level. Smart cities or intelligent cities are the conjectural development models that use ICT to achieve sustainable development and make human life more sustainable.

Why do we need to analyze? What will be the outcome of this analysis? How will the analysis help in smart city innovation? The need for empirical research transcending informal evidence and estimation is paramount in the discourse surrounding smart cities. Analysis is important for identifying patterns, critical drivers, and clarifying the influence of factors forming smart city development. We use Python as it is a powerful tool for analysis. Python's adaptability and various libraries make it ideal for handling the mixed nature of smart city data. Through Python, we aim to conduct a wide analysis of the factors driving smart city growth, empowering stakeholders with better insights.

How shall we tackle this investigation? Our approach will be integral and interdisciplinary, drawing upon Python's abilities in data analysis, visualization, and machine learning. By leveraging Python libraries such as Pandas, NumPy, Matplotlib, and Scikit-learn, we will analyze datasets containing urban planning, technology, economics, sociology, and environmental science.

Through Python, we will construct a nuanced framework that captures the intricate dynamics of smart city development. From data preprocessing to model building, Python will enable us to generate actionable insights that resonate with real-world contexts.

In summary, our research endeavors to unravel the puzzle of smart city development using Python, shedding light on the factors driving this transformative phenomenon. Through rigorous analysis and collaborative scholarship, we aspire to empower communities, policymakers, and

practitioners to foster smarter, more sustainable urban futures.

Literature review:

In smart cities, the need to upgrade urban living through ICT integration and innovation is apparent. A smart city is characterized as a well-managed urban center that emphasizes sustainability and efficiency, aiming to enhance the quality of life for its residents by effectively utilizing its resources. While Technical Quality of Service (QoS) concentrates on performance metrics, the core principle lies in assessing user satisfaction, referred to as Quality of Experience (QoE). Smart cities prioritize meeting people's needs, striving for service improvement, better governance, and ultimately, enhanced well-being. The shift towards QoE highlights the broader challenge of ensuring development aligns with people's lifestyles. Many countries have utilized a central information system that collects data on the energy consumption of public sector buildings. However, what they lack are intelligent models based on machine learning and big data strategies capable of processing this vast data. amounts of data to optimize energy consumption in these cities.

Air pollution is also a major concern in big cities, and to deal with it, predicting its level is very important for preventing its lethal effects on the health of citizens living in cities. In recent years, there has been much research regarding air pollution and its effects. Air quality prediction using machine learning technologies, which is based on sensor data, discusses the challenges and opportunities of air pollution prediction in urban areas. AI and IoT-based prediction model for accurately predicting the quality of air in smart cities. This system was accurate, cost-effective, and had real-time monitoring, which helps the stakeholders to handle the situation accordingly.

Many other factors were discussed as barriers in the development of smart cities, such as citizen involvement, governance, traffic management, infrastructure management, city planning, and other environmental factors. Despite the growing focus on smart city evaluation, persistent shortcomings hamper progress. Notably, citizen engagement remains lacking, overlooking crucial user perspectives essential for diversified assessment. Furthermore, current models often fall short in effectively measuring the efficacy of smart city construction. Issues like limited sample sizes and incomplete data sources compromise the reliability and representativeness of evaluation outcomes. Quantitative analysis also falls short, with many methods lacking transparency in indicator weighting. Additionally, overlooking interlinkages among urban subsystems disregards the intricate dynamics within cities. Moreover, the absence of tailored guidance for action planning impedes effective policymaking in urban development.

To ease these challenges, future research ventures should prioritize citizen engagement, integrate robust quantitative analysis, and consider the interconnectedness among urban subsystems. Customized assessment approaches, customized to local contexts, are indispensable in steering effective urban development. By bridging the gap between theory and practice, comprehensive evaluation models can inform evidence-based policymaking, promoting sustainable smart city initiatives.

A comprehensive analysis of smart city research has been conducted by multiple scholars, revealing several recurring themes. Among the prominent topics identified are strategy and vision, frameworks, enablers and inhibitors, citizen participation, and benefits. Notably, the integration of a knowledge management perspective underscores the significance of knowledge sharing and collaborative learning among cities as essential factors for success. Another review focuses on the role of smart cities in promoting sustainable urban communities, offering valuable insights for further research in this domain. Additionally, technological aspects such as IoT, cloud computing, and Bluetooth emerge as key components in smart city development, as described in previous studies. Moreover, an examination of hurdles to smart city development, utilizing the analytic hierarchy process (AHP) method, categorizes obstacles into governance, economic, technology, social, environmental, legal, and ethical dimensions, providing valuable insights into challenges faced in this field.

Factors influencing smart city growth:

From the early 1950s, cities covered one-fourth of the world's population, and later it increased at a tremendous rate, doubling the value to half of the world's population living in cities. Now, it is estimated that it will reach 66% by 2050. This increment is seen in both developed as well as developing countries of the world. But this constant 3influx of population in cities is parallel to the increase in the development of technology.

For a sustainable city, population is one of the driving factors, and to keep people in the cities, development in technology is required periodically and accordingly.

There are three key factors influencing smart city growth: economic development, environmental pollution, and sustainability. Other than these, there can be different factors depending on the local criteria.

Methodology:

In today's world, cities are the basis of the development of any nation, as they serve as the foundation for national progress, helping in economic growth, innovation, and social development. That's why the development of these cities into smart cities is crucial for the overall development of any nation. Numerous projects and initiatives are underway in various parts of the world for finer smart cities, which were deployed in many countries by city planners. However, as technology rapidly advances, lifestyles evolve, necessitating ongoing innovation in deploying new technologies and ideas to continually improve smart cities.

The objective of a smart city is to minimize energy wastage and enhance the quality of life for its inhabitants. Air pollution causes numerous health diseases, and in an estimation of 2024 report, there seems to be a decline in people's life expectancy who are living in polluted cities. Every city has the prospective to change into a smart city by focusing on improving its foundational sectors. A smart city is identified by its efficiency, liveability, and sustainability, embodying a community that thrives on these principles.

The method used for analysing these factors involves a structured approach containing several key steps using Python. Initially, a comprehensive list of some case studies and previous research papers regarding the factors influencing smart city development, ranging from pollution and technology adoption to citizen engagement and energy efficiency, is identified. Then, relevant datasets are collected, including publicly available datasets and other literature work, ensuring reliability and relevance to the smart city context under study. The collected data goes through preprocessing to ensure consistency and compatibility, followed by exploratory data analysis (EDA) to relate patterns and relationships using visualization techniques. Statistical analysis techniques are then employed to quantify relationships between factors and smart city growth, including descriptive statistics, correlation analysis, and predictive modelling using machine learning algorithms such as linear regression and decision trees.

First, we need to consider the change in the usage of energy with the change in seasons, and then classify this household into different groups based on their energy consumption. We will first preprocess the data and group it according to dates. Then we create a K-means clustering model to divide households into different clusters. This clustering is done based on the energy consumption in different seasons. With this, we will get the information about the energy consumption in households in smart cities.

After the household energy consumption, the air pollution in cities will be considered, and we will use linear regression, support vector machine, and random forest algorithms for this. This can help organisations to take proactive measures to relieve air pollution and its health risks. First, the data will be collected from different sources. After that, data preprocessing is done, then data cleaning, converting into a useful format, analysis, model training and testing, and finally deployment of the model. In this, the libraries will be NumPy, Pandas, Matplotlib, Seaborn for heatmap, Sklearn, and other useful libraries of Python.

The results of the analysis help derive actionable insights for stakeholders involved in smart city planning and development, easing decision-making. Methodology is undertaken based on feedback and emerging trends, ensuring continuous improvement and relevance to real-world smart city contexts. With the help of this paper, stakeholders can gain valuable insights into the factors driving smart city growth, enabling them to effectively navigate the complexities of urban development and promote sustainable and inclusive cities.

Analysis and Result:

With accurate data and previous studies' findings, analysis using Machine learning is very useful for this research. Energy consumption and air quality are important factors for a suitable life in smart cities. There are other components also, like Smart public services and IT communication, Smart transportation, Smart governance, etc. While analyzing the data for household energy consumption, an unsupervised clustering model is used.

This can be done using the k-means model, which is a very useful clustering algorithm. It stores n centroids, which define clusters. The elbow method is used to find the optimal number of clusters.



Figure 1. Optimal numbers of clusters using the elbow method.

Some households have large differences in their energy consumption in different seasons, while others don't have any difference at all. So now, we need to check only the users who have notable variations between their use in different seasons. The main reason for this is the difference in usage during different seasons, and with this, it will most likely switch between clusters for summer and winter.

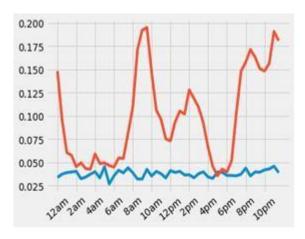


Figure 2. An example household with difference in consumption between seasons.

Now we will use different clusters for different households to check the intensity of their energy consumption.

We will take three clusters to show the most efficient and less efficient households in terms of energy consumption.

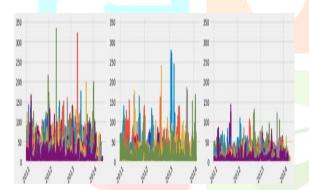


Figure 3. Clusters on the basis of the intensity of energy consumption.

After this, we will analyze the data for the air pollution in the cities caused by industrial emissions and other factors. The dataset taken here is about the pollution in Indian states. We will import the required libraries such as:

NumPy - for statistical analysis, linear algebra, like matrix multiplication and solving linear equations.

Pandas – for handling two-dimensional tabular data and one-dimensional arrays. Also used for handling missing data, duplication, and other cleaning tasks.

Matplotlib – for data visualization that allows to creation of animations in Python. It supports plots, bar charts, scatter plots, and more.

Seaborn for heatmap – it is based on matplotlib. It is used to create beautiful and complex statistical visualizations.

Sklearn – it is used for analysis and data mining. It has lots of machine learning algorithms for different tasks.

Now the data will be cleaned and converted into a suitable format to perform the EDA to get the most polluted cities in India.

After this, we will perform EDA of different cities to get the data of the most polluted cities and its following order. We will plot a pie chart to show the order of top 4 most polluted cities by AQI.

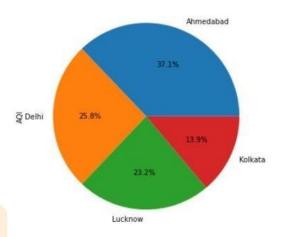


Figure 4. The top 4 most polluted cities in India.

Now we will do EDA for each of the top-polluted cities to get the year-wise pollution graph of these cities. In this, both vehicle and industrial pollution are measured and shown in a graph.

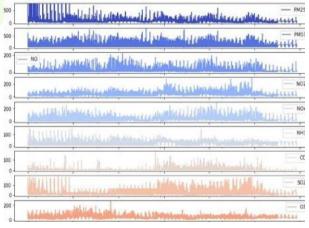


Figure 5. This shows the distribution of pollutants during 2015-2020.

For modelling, first, support vector regression is used. Then we used a linear regression algorithm to map the points in optimized linear functions. After that, we used a random forest algorithm, which combines multiple decision trees' outputs to predict the correct output. Lastly, we compared these three models' accuracy, and the random forest accuracy was best among the three.

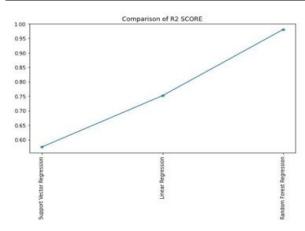


Figure 6. Comparison of the three models.

Conclusion:

The experience of working on the project was amazing. Before starting the project, it became clearer that planning, designing, and implementation are crucial steps to get good results. The topic was very important as it focuses on the overall development of any nation and also concerns the lives of people living in it.

Using machine learning methods, previous case studies, and recent research helped in this project and are presented in this paper, mainly focusing on two factors, i.e., energy efficiency and air quality in smart cities. The project helped in getting insights about the main barriers that influence the smart city planning and development. The approach used for energy efficiency in this paper allows us to target inefficient energy consumers and target them with programs that allow energy efficiency. The use of clusters we were able to segment households into different clusters. We analysed the data for the air quality index of smart cities in India. EDA helped in an examination of features distributed across our datasets. we checked the data to look for any noisy data in the dataset and cleaned the data. We calculated the correlation between the independent variables. After testing the data with various methods, we compared the results and got an accuracy of 98%..Undoubtedly, further research possibilities are there, as our surroundings always require some changes for our betterment. Energy efficiency and air pollution are major challenges that are going to affect us all soon. We should take these matters seriously and find efficient solutions.

References:

- 1. Rudolf Giffinger, Christian Fertner, Hans Kramar, Evert Meijers, "Smart Cities: Ranking of European Medium-Sized Cities", Centre of Regional Science: Vienna, Austria, pp.1-12,2007.
- 2. Houbing Song, Ravi Srinivasan, Tamim Sookoor, Sabina Jeschke, "Smart Cities: Foundations, Principles, and Applications", John Wiley & Sons, Hoboken, 2017.
- 3. L. Bai, J. Wang, X. Ma, and H. Lu, "Air pollution forecasts: an overview," International Journal of

- Of Environmental Research and Public Health, vol. 15, no. 4, p. 780, 2018.
- 4. Biau, Gerard, and Erwan Scornet. "A random forest guided tour." Test 25.2 (2016): 197-227.
- 5. D. Zhu, C. Cai, T. Yang, and X. Zhou, "A machine learning approach for air quality prediction: model regularization and optimization," Big Data Cognitive Computing, vol. 2, no. 1, pp. 5–15, 2018.
- 6. Kumar, Dinesh." Evolving Differential evolution method with random forest for predicting Air Pollution." Procedia computer science 132 (2018): 824-833.
- 7. Jiang, Ningbo, and Matthew L. Riley." Exploring the utility of the random forest method for forecasting ozone pollution in
 - SYDNEY Journal of Environment Protection and Sustainable Development 1.5 (2015): 245-254
- 8. Al Nuaimi E, Al Neyadi H, Mohamed N, and Al-Jaroodi J (2015) Applications of big data to smart cities. Journal of Internet Services and Applications 6: 25
- 9. | Shweta Taneja, Dr. Nidhi Sharma, Kettun Oberoi, Yash Navoria," Predicting Trends in Air Pollution in Delhi using Data Mining", IEEE(2016)

