
www.ijcrt.org                                                       © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882 

IJCRT25A5015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i855 
 

Real-Time Fire Segmentation Using Deep 

Learning For Intelligent Emergency Response 

Systems 
 

            Amirtha Preeya Venkatacahalam                           

               Department of Computer Science 

                      and Engineering                                                  

                 Presidency University                              

                     Bengaluru, India                       

 

              

                       Anusha R M 

         Department of Computer Science 

                  and Engineering                                                 

              Presidency University                              

                  Bengaluru, India  

                    

                          P. Ayeesha Anjum                    

                 Department of Computer Science 

                           and Engineering                                                  

                      Presidency University                              

                          Bengaluru, India  

 

                             Advi S R                                                                           
            Department of Computer Science 

                       and Engineering                                                 

                  Presidency University                              

                      Bengaluru, India      

 

           

Abstract— Fire detection is vital for preventing 

disasters and managing emergencies. Conventional 

systems that use smoke detectors and thermal 

imaging frequently experience delays in response, 

limited adaptability to different environments, and 

elevated false alarm rates. This study introduces a 

deep learning-driven real-time semantic 

segmentation model designed for precise fire 

detection and localization in both video streams 

and still images. The approach combines 

convolutional neural networks (CNNs) with vision 

transformer architectures, allowing for pixel-level 

identification of fire areas with improved accuracy. 

The model is tailored for deployment at the edge, 

utilizing techniques such as quantization and 

pruning to guarantee real-time functionality on 

low-resource devices like drones and surveillance 

cameras. Additionally, the system features a cloud-

based dashboard that facilitates visualization, alert 

generation, and predictive analytics. Experimental 

evaluations using benchmark fire datasets indicate 

that it outperforms conventional methods regarding 

detection speed, rate of false positives, and 

resilience in difficult environmental conditions. 

This proposed system plays a crucial role in 

enhancing early fire detection in smart cities, 

industrial areas, and forests, leading to quicker 

responses and minimized fire-related damages. 

Keywords - Real-Time Fire Detection, Deep 

Learning, Semantic Segmentation, Edge 

Computing, CNN, Vision Transformers, 

Emergency Response, IoT, Smart Cities, 

Environmental Monitoring 

I Introduction 

Fire, recognized both as a natural occurrence and a 

human-created danger, has always been noted for 

its capacity for destruction across a variety of areas, 

spanning from crowded cities and industrial sites to 

vast rural landscapes and forests. The rising 

occurrence and severity of fire events in the past 

few years, primarily linked to climate change, 

industrial growth, and poor environmental 

stewardship, have heightened the need for effective 

and advanced fire monitoring systems. These 

occurrences jeopardize human safety and 

infrastructure, while also causing considerable 

harm to the environment, interrupting public 

services, and leading to significant economic 
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setbacks. Conventional fire detection methods, 

such as smoke alarms, infrared cameras, thermal 

sensors, and human monitoring, have played a role 

in the. For many years, these systems have been 

fundamental to fire safety infrastructure. 

Nevertheless, they face significant limitations due 

to their reactive approach, restricted detection 

abilities, vulnerability to environmental factors, 

and frequently excessive costs when implemented 

on a large scale in complex environments. 

 

The shortcomings of traditional methods become 

particularly evident in situations where a quick 

response is crucial. For instance, smoke detectors 

work best in closed indoor areas and only trigger 

when a specific concentration level is attained. In 

large or open spaces like forests, farmland, 

chemical plants, or extensive industrial sites, these 

detectors do not perform well due to their restricted 

coverage and reliance on being close to the source 

of the fire. Likewise, Thermal cameras and infrared 

sensors rely heavily on having a clear line of sight 

and can be affected by weather conditions such as 

fog, dust, or smoke. Moreover, manual monitoring 

through closed-circuit television (CCTV) systems 

depends on the attentiveness of individuals, which 

can be flawed due to fatigue, cognitive overload, 

and limited attention spans. The combined 

limitations of these conventional systems highlight 

the need for a shift from reactive and isolated 

detection methods to intelligent and integrated 

solutions that can provide real-time situational 

awareness and proactively identify threats. 

 

In the changing realm of safety technology, 

artificial intelligence (AI)—particularly deep 

learning—has become a significant facilitator of 

advanced fire detection systems. Utilizing the 

computational power of convolutional neural 

networks (CNNs), vision transformers, and various 

other sophisticated architectures, researchers are 

starting to tackle the fundamental drawbacks of 

traditional detection methods. Deep learning 

models, centered on semantic segmentation, 

provide a distinct benefit: they can analyze intricate 

visual patterns and conduct detailed, pixel-level 

classification of both images and video frames. 

This capability is vital in fire detection, as 

distinguishing between genuine fire, smoke, 

reflections, or bright illumination goes beyond 

basic thresholding or heat-based methods. These 

models can be trained to identify the distinct visual 

features of fire in different intensities, forms, 

settings, and lighting situations, allowing precise 

identification and continuous monitoring. 

The incorporation of deep learning-driven fire 

segmentation models with live video feeds marks a 

major progress in technology for emergency 

response and safety. In contrast to conventional 

classification models that yield a yes or no answer 

(fire or no fire), segmentation models provide 

spatial context by identifying the precise outlines 

and areas where fire exists. This degree of 

specificity is crucial in emergencies, as it helps 

assess the magnitude, path, and strength of the fire, 

enabling more accurate and informed responses. 

Additionally, by incorporating these models into 

edge computing devices such as drones, 

surveillance cameras, and embedded systems like 

NVIDIA Jetson and Raspberry Pi, it becomes 

possible to perform complex inference tasks right 

at the data sourceThis architecture removes the 

delay linked to cloud-based systems, decreases 

reliance on constant internet access, and guarantees 

prompt responses in urgent situations. 

 

Real-time processing is not just a performance 

enhancement—it is an essential requirement in 

high-risk situations. Fires can increase in size 

quickly, frequently doubling every minute if 

conditions permit. A lag of just a few seconds in 

detection and response can be transformative, 

determining whether an incident remains 

controllable or escalates into a major catastrophe. 

Edge-centric systems, after being enhanced with 

model compression methods such as pruning and 

quantization, offer an extremely efficient 

deployment model that strikes a balance between 

computational speed and hardware constraints. 

These streamlined architectures are capable of 

functioning within limited power and memory 

resources, rendering them ideal for applications in 

remote and mobile environments. Examples 

include forest watchtowers, highway monitoring 

units, and self-operating firefighting robots. In 

these applications, the system can constantly assess 

video streams, identify fires instantaneously, and 

promptly initiate alerts via integrated 

communication methods such as SMS, email, or 

control center dashboards. 

 

The efficiency of a fire detection system is 

evaluated not only by its ability to detect fires but 

also by how well it adjusts to varying 

environmental conditions. Fires seldom happen 

under consistent circumstances; they can ignite at 

any time of day, in either arid or moist 

environments, amid smoke, haze, or blockages, 

and across diverse landscapes and materials. To 

effectively generalize in various settings, the 

foundational deep learning models need to be 

trained on extensive and diverse datasets that 

encompass the complete range of potential fire 

situations. This brings forth an additional 
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challenge: obtaining, labeling, and ensuring the 

training data is properly balanced. An imbalance in 

classes, where pixels representing fire are 

substantially outnumbered by those representing 

the background, can hinder performance. The 

performance of the model can be impacted, causing 

increased rates of false positives or false negatives. 

To tackle this issue, it is essential to meticulously 

curate datasets, employ advanced data 

augmentation techniques, and utilize tailored loss 

functions that fairly impose penalties for 

misclassification. In addition, leveraging transfer 

learning and adjusting models based on real-world 

data can be beneficial. Datasets allow models to 

adjust more rapidly and operate effectively in real-

world applications. A thorough fire detection 

system should encompass more than just visual 

identification; it should provide complete 

operational assistance. This includes not only 

detecting fires but also facilitating communication, 

visualization, decision-making support, and system 

integration. A cloud-linked dashboard is pivotal in 

this ecosystem. Crafted as an adaptive, geospatial 

interface, the dashboard consolidates data from 

various edge devices, displays fire detection 

outcomes as heatmaps and segmented overlays, 

and enables users to filter and prioritize alerts 

according to severity, location, and timestamp. 

Additionally, the dashboard can feature map-based 

interfaces with real-time pin updates, status 

tracking, and the incorporation of weather APIs to 

simulate fire behavior based on present 

meteorological conditions. By delivering 

situational awareness in a unified and accessible 

format, such dashboards enable first responders, 

safety officials, and local authorities to respond 

promptly and efficiently. 

 

Additionally, the suggested system facilitates two-

way communication between the cloud and edge 

components, allowing for real-time updates to 

detection thresholds, model improvements based 

on feedback, and seamless integration with Internet 

of Things (IoT) infrastructure. For example, when 

the model identifies a fire in a specific area, it can 

automatically activate water sprinklers, shut fire 

doors, or deploy drones to the This scenario 

warrants closer examination. These characteristics 

illustrate a transition from passive observation to 

proactive intervention, evolving fire monitoring 

from mere surveillance into a tool for decision-

making. Additionally, this system design improves 

scalability, enabling organizations to broaden 

surveillance capabilities across various geographic 

areas while keeping operational procedures 

streamlined. Every edge device functions 

autonomously yet plays a role in a cohesive safety 

system that is both smart and decentralized. 

 

The importance of this study goes beyond 

technological advancement; it tackles pressing 

issues related to public safety, environmental 

protection, and climate adaptability. In urban areas 

with smart technology, real-time fire detection 

systems can be incorporated into traffic monitoring 

infrastructure, allowing for automated emergency 

routing, crowd evacuation, and smart firefighting 

coordination. In industrial environments, these 

systems help minimize downtime, avert equipment 

damage, and maintain compliance with safety 

regulations. In forest management, they provide a 

valuable substitute for traditional watchtowers and 

surveillance routes that offer ongoing, automated 

monitoring capable of identifying even minor 

flame incidents before they escalate into severe 

wildfires. From a social standpoint, adopting these 

systems can lower casualty figures, lessen damage 

to properties, and contribute to sustainable 

development objectives focused on reducing 

disaster risks and enhancing urban resilience. 

 

As the underlying technology for these systems 

advances, research efforts should shift toward 

practical implementation, verification, and 

ongoing enhancement. Difficulties persist in 

aspects like generalization across different 

domains and the ability to interpret. The decision-

making processes of models, management of 

atypical situations, and the ethical application of 

surveillance technology need to be addressed. 

Upcoming developments could involve federated 

learning to safeguard data privacy and the use of 

explainable AI. Strategies to improve system 

transparency and the incorporation of various input 

types, including audio, thermal, and environmental 

data. These advancements will not only boost the 

functionality of fire detection systems but also 

guarantee that they align with larger goals of 

technological fairness, environmental 

responsibility, and community protection. 

 

II Literature survey 

 

Research in fire detection has progressed 

dramatically in recent years, moving from simple 

threshold-based solutions to advanced artificial 

intelligence models that can reason and make 

decisions in real-time. Traditionally, fire detection 

systems were developed using a blend of thermal 

sensors, smoke detectors, and infrared imaging 

techniques. Although these approaches have 

demonstrated effectiveness in numerous situations, 

especially in confined areas like buildings, tunnels, 
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and industrial settings, they are fundamentally 

reactive, frequently triggering alarms only once a 

fire has progressed to a noticeable level. 

Additionally, these systems are susceptible to false 

alerts caused by non-fire factors like fog, dust, 

steam, or bright lighting. As a result, both 

researchers and practitioners are looking for more 

intelligent, flexible, and responsive solutions. 

 

The development of computer vision for fire 

detection represented a significant turning point in 

the discipline. Initial methods concentrated on 

identifying manually crafted features, including 

color distributions, texture indicators, and 

movement patterns from video images. These 

features were subsequently input into traditional 

machine learning classifiers, such as Support 

Vector Machines. Vector Machines (SVMs), 

Decision Trees, and k-Nearest Neighbors (k-NN) 

are utilized to differentiate between fire and non-

fire elements. Although these models showed some 

degree of success, they rely heavily on set rules and 

struggle to generalize across various contexts. The 

limitations of scenes impacted their performance. 

Differences in lighting, camera resolution, 

background intricacy, and fire dynamics frequently 

resulted in decreased accuracy and variable 

outcomes, especially in outdoor or uncontrolled 

settings. To address the challenges of manual 

feature engineering, the field shifted its focus to 

deep learning, especially convolutional neural 

networks (CNNs), which provided the advantage of 

automated feature extraction from unprocessed 

image data. Convolutional Neural Networks 

(CNNs) quickly became popular because of their 

achievements in object recognition tasks in 

extensive image classification challenges like 

ImageNet. Scientists started modifying CNN 

architectures to identify fire by training them on 

datasets with labeled images of fire events from 

various sources. Contexts. Models like AlexNet, 

VGGNet, and ResNet have been utilized and 

optimized for fire detection, resulting in notable 

enhancements in both accuracy and reliability. 

These models are capable of recognizing intricate 

visual indicators such as the shapes of flames, 

fluctuating flickering patterns, and changes in 

smoke density, which allows them to generalize 

more effectively than conventional methods. 

Nonetheless, using CNNs for fire detection has its 

drawbacks. While they are effective, conventional 

classification networks generally provide a single 

label for the whole image, which falls short for fire 

segmentation tasks that necessitate spatially 

detailed predictions. Consequently, semantic 

segmentation models such as U-Net and other 

similar architectures are required. DeepLabV3+ 

proved to be a more suitable option. U-Net, which 

was initially designed for segmenting biomedical 

images, features a balanced encoder-decoder 

architecture that maintains detailed spatial 

information while also addressing contextual 

relationships. DeepLabV3+, utilizing atrous 

convolutions and spatial pyramid pooling, enhances 

this approach further. Improved the capability to 

identify features across different scales—an 

important skill for detecting fires of different sizes 

and intensities in complex environments. These 

frameworks have subsequently been extensively 

utilized in fire detection studies, allowing for pixel-

level classification that supports accurate fire 

localization and boundary definition. 

 

Simultaneously, the advent of transformer-based 

architectures in computer vision, especially Vision 

Transformers (ViT), has paved the way for new 

possibilities in fire detection. In contrast to CNNs, 

which depend on local receptive fields and a tiered 

approach to feature extraction, transformers capture 

long-range relationships by utilizing self-attention 

mechanisms. This allows them to more effectively 

grasp global context, which is advantageous for 

examining large-scale fire propagation or the 

interactions between fire and nearby factors like 

vegetation, buildings, or weather events. Although 

the use of transformer-based segmentation in fire 

monitoring is increasing, particularly due to the 

emergence of lightweight versions and hybrid 

models that merge CNN backbones with 

transformer heads. 

 

Aside from the structure of the models, the existing 

literature highlights the significant role that training 

data plays in influencing model effectiveness. A 

common issue noted is the scarcity of extensive and 

varied fire segmentation datasets. Numerous 

datasets that do exist often have a narrow focus, 

typically documenting only particular categories of 

fire (for instance, indoor flames, wildfires, or 

vehicle fires under regulated circumstances. The 

lack of variety in environments, such as urban, 

rural, and industrial, and the disparity between fire 

and non-fire categories limit the applicability of the 

trained models. Labeling fire-affected areas for 

pixel-level segmentation is notably difficult 

because of their irregular shapesThe clarity and 

changing characteristics of flames and smoke have 

led recent research to investigate the generation of 

synthetic data, techniques for data augmentation 

(such as rotating, flipping, and adjusting 

brightness), and methods of domain adaptation to 

enhance training datasets and bolster model 

resilience across various situations. 
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A crucial aspect of fire detection research is the 

implementation and functioning of models in live 

settings. This is especially vital for uses like smart 

city monitoring, drone surveillance, and self-

operating firefighting robots. Real-time systems are 

required to adhere to strict standards for latency, 

throughput, and energy efficiency. Consequently, 

researchers have explored optimization methods to 

minimize the size of large models while 

maintaining their performance. Commonly 

employed techniques include model pruning, which 

eliminates unnecessary weights or neurons, and 

quantization, which lowers the precision of 

computations, to achieve size reduction. The 

resulting efficient models can be implemented on 

edge devices like Jetson Nano, Google Coral, or 

mobile ARM-based processors, allowing for on-site 

inferencing with little latency. Numerous recent 

research efforts have concentrated on the system-

level integration of fire detection models within IoT 

frameworks. By linking smart sensors, video 

cameras, and environmental monitoring tools to 

cloud-based fire response systems, these setups 

facilitate automated notifications and data 

collection. Researchers have highlighted the 

importance of cloud-edge hybrid systems, in which 

edge devices are responsible for initial detection 

and generating alerts, while cloud servers oversee 

data storage, system updates, and analytical 

processes. This setup improves scalability, 

decreases bandwidth consumption, and facilitates 

deployment in areas with limited bandwidth, like 

forests or rural industrial regions. The existing 

literature also underscores the Utilization of online 

dashboards featuring real-time mapping 

functionalities, push notification features, and 

remote configuration capabilities. These 

dashboards are crucial for leaders to rapidly 

evaluate incidents, distribute resources, and 

orchestrate response plans. 

 

III Proposed Model 

 

The suggested model presents an innovative 

framework based on deep learning for real-time 

fire segmentation, specifically developed to 

address the needs of emergency response systems 

in intricate and ever-changing settings. Grounded 

in the concepts of semantic segmentation, the 

model combines convolutional neural networks 

(CNNs) with elements of vision transformers to 

facilitate accurate, pixel-wise detection of fire 

areas. The suggested model presents an innovative 

framework based on deep learning for real-time 

fire segmentation, specifically developed to 

address the needs of emergency response systems 

in intricate and ever-changing settings. Grounded 

in the concepts of semantic segmentation, the 

model combines convolutional neural networks 

(CNNs) with elements of vision transformers to 

facilitate accurate, pixel-wise detection of fire 

areas. 

At the core of the suggested system lies a dual-

branch structure aimed at capturing local 

characteristics and global contextual details. The 

convolutional branch utilizes a Utilizing a 

pretrained encoder-decoder backbone like 

DeepLabV3+ with either a ResNet-101 or 

EfficientNet-B4 foundation, allowing for capturing 

detailed texture and edge details. 

 

 These models have shown excellent results in 

segmentation tasks, thanks to their capacity to 

capture features at multiple scales while The 

encoder systematically decreases spatial resolution 

using downsampling layers, which enables it to 

capture high-level abstract features, while the 

decoder works to rebuild the spatial resolution to 

produce a complete segmentation map. To 

maintain spatial accuracy and retrieve delicate 

details that are typically lost during downsampling, 

skip connections are included between 

corresponding layers of the encoder and decoder. 

Simultaneously, the transformer segment analyzes 

image patches via multi-headed self-attention 

layers to gather global context and capture long-

range relationships. This functionality is essential 

for detecting fires in intricate scenes where flames 

might be partially hidden, spatially dispersed, or 

located within visually busy backgrounds. Vision 

Transformers (ViT) and their more streamlined 

versions, like Swin Transformers, are recognized 

for their capability to understand distant pixel 

relationships without depending on the limitations 

of convolutional locality. In the suggested 

framework, the outputs from the transformer are 

combined with CNN features at the intermediate 

stage. The representation stage enables the model 

to leverage both spatial locality and overall 

semantics. This combined approach tackles a 

significant drawback of models that rely solely on 

CNNs, which can find it challenging to interpret 

ambiguous or extensive fire patterns due to limited 

receptive fields. 
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Fig. 1. Fire detection system architecture 

combining various sensing modalities and AI-

driven methods. 

 

The features amalgamated from both branches are 

processed through a fusion network that includes 

convolutional and normalization layers, enhancing 

the combined representation before the creation of 

the final segmentation mask. A softmax activation 

function is utilized in the last layer to yield fire 

probabilities for each pixel, and a binary 

thresholding method is employed to produce the 

divided fire areas. To improve the stability and 

effectiveness of the model, the network is trained 

with both Dice loss and focal loss, which together 

tackle the class imbalance present in fire 

segmentation datasets. Dice loss guarantees the 

accuracy of overlap between predicted masks and 

ground truth, while focal loss focuses on penalizing 

easy negatives, thereby emphasizing challenging 

pixels that are frequently found along fire edges or 

in areas with partial lighting. 

 

Training utilizes a carefully selected dataset made 

up of authentic fire images gathered from public 

repositories, surveillance videos, and synthetically 

enhanced scenarios to encompass a diverse range 

of fire types, settings, and lighting conditions. 

Augmentation methods involve random cropping, 

altering colors, flipping images horizontally, and 

applying Gaussian transformations. Incorporating 

blurring and synthetic smoke overlays enhances 

generalization and robustness. Transfer learning is 

utilized to initialize model weights using networks 

that have been pretrained on extensive datasets like 

ImageNet, which shortens training duration and 

accelerates convergence. 

Real-time performance is a key goal of the model 

being proposed, with significant focus placed on 

optimization for deployment at the edge. After 

training, model compression methods are utilized 

to lessen the memory usage and computational 

demands. Reduce the computational load while 

maintaining a high level of accuracy. Pruning is 

utilized to remove unnecessary filters and neurons, 

while quantization transforms model weights from 

32-bit floating point to 8-bit integers. These 

methods facilitate quicker inference on embedded 

devices like the NVIDIA Jetson Nano and 

Raspberry Pi 4, not only cutting down on energy 

usage but also enhancing the feasibility of the 

system for applications in remote or mobile 

contexts, such as UAV-operated fire surveillance 

or intelligent monitoring cameras in industrial 

environments.  

 

 
 

Fig. 2. System architecture. 

 

The suggested model is crafted to be modular and 

compatible with various hardware, allowing it to be 

used in diverse operational environments. It can be 

incorporated into video processing workflows on 

independent devices or connected to cloud 

platforms for distributed analysis. In scenarios 

where only edge processing is utilized, the model 

conducts inference locally, initiating alerts and 

executing safety measures. In hybrid setups, the 

edge device sends inference results to a central 

dashboard that consolidates outputs from various 

sites, visualizes heatmaps, and delivers incident 

analytics for operators. The segmentation results 

are also geo-tagged and time-stamped, allowing for 

spatiotemporal analysis and the identification of 

long-term patterns to inform risk mitigation 

strategies. The architecture of the model also 

includes an alerting system that relays detection 

outcomes to appropriate stakeholders in real-time. 

When fire is detected with a confidence level 

surpassing a specified threshold, the system 

triggers notification components that can send 

alerts through email, SMS, or mobile push 

notifications. These alerts include evidence from 

snapshots, location data, and fire spread 

predictions derived from the expansion of 

segmentation masks across consecutive frames. 

This comprehensive process, from identifying 

incidents to distributing alerts, shifts the model 
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from being a mere observer to an engaged 

contributor in emergency response operations. 

 

To enable ongoing learning and adjustment to new 

fire situations, the suggested system incorporates a 

feedback loop mechanism. Operators can assess 

identified events and give input on false positives 

or overlooked detections, which are kept in a 

feedback buffer. These instances are regularly 

assessed, refined, and utilized to enhance the model 

through continuous learning phases. This 

guarantees that the system progresses in alignment 

with its operational environment, adjusting to new 

fire behaviors, seasonal changes, or regional 

environmental factors. 

 

IV.EXPERIMENT RESULT 

 

The assessment of any real-time system, especially 

one focused on a vital area like fire detection, 

necessitates a comprehensive evaluation approach 

that encompasses both numerical and descriptive 

aspects. Regarding the suggested fire segmentation 

system, the experimental framework was 

meticulously designed to evaluate performance 

across multiple dimensions: detection precision, 

processing delay, false positive rate, adaptability to 

environmental conditions, scalability, and 

practicality in real-world applications. This 

segment details each of these factors in detail, 

illustrating not only the raw results but also their 

implications in practical deployment scenarios. 

 

 
 

 

Fig. 3. Real-time emergency vehicle dashboard 

showing live status updates, vehicle type 

categorization, dispatch history, and recall 

actions. 

 

The first phase of the experimentation process 

focused on creating a training dataset that captures 

the varied and frequently unpredictable 

characteristics of actual fire incidents. Fire is not 

uniform; it differs in aspects such as shape, size, 

color intensity, background, and behavior, 

influenced by factors including fuel type, 

environmental conditions, and time. As a result, it 

was essential to assemble a dataset that reflected 

this variability. To accomplish this, we created a 

hybrid dataset that included publicly accessible 

wildfire datasets, surveillance video from 

industrial areas, drone footage from fire simulation 

exercises, and labeled frame sequences from 

synthetic datasets that were generated. For research 

objectives, the completed training dataset included 

over 15,000 labeled frames featuring detailed 

segmentation masks. This ensures that various 

types of fires are represented across forested 

regions, urban environments, nocturnal scenarios, 

and areas with heavy smoke. The chosen deep 

learning model combines a U-Net backbone with 

transformer encoder layers, following initial 

evaluations of various candidate architectures such 

as DeepLabv3+, SegNet, and FPN (Feature 

Pyramid Networks). The U-Net foundation proved 

to be especially efficient in pinpointing fire at the 

pixel level because of its encoder-decoder 

structure. The model's structure incorporated 

transformer elements that enhanced its ability to 

grasp global spatial context, allowing it to 

distinguish between visually similar anomalies and 

genuine fire behavior. Training was conducted for 

120 epochs utilizing the Adam optimizer, 

alongside a learning rate decay schedule optimized 

through Bayesian methods. The loss function 

integrated Dice loss with categorical cross-entropy 

to ensure a balance between segmentation 

precision and robustness in class distribution. 

 

After finishing the training, the model underwent 

thorough testing with data it had not encountered 

before to mimic real-world deployment scenarios. 

Performance metrics were evaluated across five 

major benchmarks: accuracy, precision, recall, 

mean Intersection over Union (mIoU), and F1-

score. The segmentation model regularly attained 

mIoU scores. The accuracy surpassed 84.5%, with 

maximum figures reaching 87.3% on drone footage 

datasets showcasing overhead perspectives of 

firelines. Precision was particularly impressive at 

91.6%, reflecting the model's ability to reduce false 

positives—a vital necessity for emergency 

systems, as excessive alerts can result in 

unwarranted resource allocation and fatigue among 

responders. 
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Fig. 4. Interactive geospatial interface enabling 

zone classification, location-based search, and 

map-based visualization for fire risk assessment. 

 

An interesting result was observed when the 

system was evaluated with frames featuring non-

fire anomalies, such as bright headlights, welding 

sparks, streetlights, and fog-reflected light. 

Conventional threshold-based detection systems, 

which mainly depend on color histograms or 

thermal indicators, struggle in these scenarios. 

Gradients were often confused by these factors. In 

comparison, the suggested model demonstrated 

stable performance, showing a false positive rate of 

only 4.3% in contrast to more than 21% in color-

thresholding methods. These findings highlight the 

advantages of semantic segmentation and 

contextual modeling in intricate and unclear visual 

contexts. In addition to precision, the system's 

responsiveness—its capability to analyze and react 

to visual data instantaneously—was also vital. The 

entire system workflow, which comprised video 

frame collection, preprocessing, inference by the 

model, post-processing of segmentation masks, 

and generation of alerts, was evaluated for latency. 

On high- On high-performance GPU platforms like 

the NVIDIA Tesla V100, the system was able to 

process 1080p video at a rate of 30 frames per 

second, exhibiting a latency of only 150ms. 

Furthermore, on edge computing platforms such as 

the NVIDIA Jetson Nano and the Raspberry Pi 4 

with a Coral Edge TPU, real-time processing time 

remained feasible at 18–24 FPS, with latency 

consistently below 500ms. This renders the system 

appropriate for use in drones, surveillance cameras, 

and mobile fire reconnaissance units, where low 

power and restricted computational resources are 

factorsThe model's scalability and robustness were 

assessed by implementing it in a simulated smart 

city grid, where multiple camera feeds were 

transmitted simultaneously to a central server and 

cloud instances. The system exhibited the ability to 

effectively manage video feeds from as many as 20 

cameras at the same time, utilizing a load-balanced 

containerized setup. 

 

 
 

Fig. 5. Real-time fire inspection map with incident 

localization and filter controls for situational 

awareness. 

 

 The deployment utilized Docker and Kubernetes 

on AWS infrastructure. Each video stream was 

handled separately, and alerts were produced 

concurrently without any reduction in 

performance. This confirms the system's ability for 

implementation across an entire city, especially in 

urban regions or industrial zones at risk of chemical 

or electrical fires. 

 

The experimental assessment also involved a 

usability study conducted in partnership with local 

fire departments. A dashboard interface, which was 

created as a component of the system's frontend 

module, offered a real-time visual representation of 

ongoing fire areas, past incident records, and 

environmental data. The visual aids, including 

overlays and predictive spread maps, were 

designed with contributions from emergency 

responders to ensure that the system met the 

cognitive and operational requirements of its users. 

During usability testing, more than 92% of 

participants indicated that the interface was user-

friendly and effective, expressing a preference for 

it over the older GIS-based fire tracking systems 

because of its real-time feedback and alert 

functionalities. 
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Fig. 6. Fire department dashboard interface 

showing real-time incident update and vehicle 

assignment module. 

 

Regarding environmental adaptability, the model's 

durability was evaluated in diverse weather 

scenarios such as high humidity, fog, rain, and 

reduced visibility during nighttime. The decrease 

in performance in these difficult conditions was 

minimal—usually under A 7% reduction in 

accuracy occurred, attributed to the augmentation 

techniques used during training that mimicked 

those visual artifacts. Moreover, when paired with 

infrared and thermal camera overlays during 

extended testing, the system showcased 

possibilities for multimodal enhancement, 

indicating avenues for increased accuracy in future 

versions. 

 

 
 

Fig. 7. Emergency response interface for case 

reporting, inspection status updates, situation 

descriptions, and manual vehicle deployment. 

 

One of the most significant outcomes resulted from 

simulating fire incident scenarios utilizing actual 

GIS data along with flame spread modeling tools. 

In these simulations, the prompt identification of 

the system's abilities led to quicker response times. 

Fires that were identified and confirmed by the 

segmentation system initiated automated drone 

deployment in just seconds, unlike the several 

minutes it previously took. The lag is associated 

with conventional methods that depend on manual 

visual assessments or slower satellite data updates. 

Simulations carried out in collaboration with 

environmental scientists and firefighting experts 

demonstrated that early intervention enabled by 

this system could decrease the affected area by as 

much as 35% under moderate wind circumstances, 

underscoring the practical life-saving and resource-

saving capabilities of advanced fire monitoring 

technology. 

 

 

 

 

V. CONCLUSION 

 

In today’s world of disaster management, timely 

detection and swift action are crucial. Of all the 

natural threats to human safety and environmental 

stability, fire stands out as one of the most erratic 

and devastating elements. It is within this critical 

framework that the real-time fire segmentation 

system, detailed and developed in this study, 

represents a significant advancement that is set to 

transform fire detection, monitoring, and response 

strategies in both urban and rural environments. 

 

At its essence, the system embodies a seamless 

combination of artificial intelligence, edge 

computing, and user-focused interface design. 

Utilizing the extensive capabilities of deep learning 

along with the contextual awareness provided by 

transformer architectures, the model attains a 

subtle comprehension of Visual information that 

goes beyond mere detection to offer detailed, pixel-

level semantic segmentation. This transition from 

binary classification to a deeper spatial awareness 

facilitates more targeted and localized firefighting 

efforts, transforming general alerts into practical 

intelligence. 

 

Additionally, this study questions the traditional 

reliance on centralized, high-performance 

computing for deep learning inference. By utilizing 

model quantization, pruning, and implementing 

solutions on smaller-scale hardware, we have 

shown that intelligent systems can now function at 

the edge—on drones, surveillance poles, and 

mobile firefighting units— Without compromising 

on speed or precision, this distribution of 

intelligence enhances latency and fosters resilience 

in emergency response systems, guaranteeing 

operational stability even when there is no reliable 

internet connection or centralized data facilities. 

 

However, the real power of this work is its capacity 

to convert technical complexity into effective, life-

saving results. The thorough experimental trials 

performed across a diverse range of situations and 

limitations validate the system’s dependability and 

resilience. The model demonstrates exceptional 

accuracy. Prevents emergency responders from 

being inundated with false alarms, while its high 

recall guarantees that no genuine threats are 

overlooked. This careful equilibrium is a 

characteristic of a sophisticated, ready-for-

deployment AI system, designed not for 

experimental success but for practical use in the 

real world. 

Equally important is the wider effect this system 

has on environmental preservation and 
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sustainability. The prompt identification of 

wildfires not only safeguards human lives but also 

reduces greenhouse gas emissions, safeguards 

biodiversity, and conserves essential carbon sinks 

such as forests. The system's capability to reduce 

the extent of fire destruction corresponds with 

worldwide climate action objectives, positioning it 

as a technological resource with both ecological 

and humanitarian significance. 

 

However, this journey is still ongoing. Like all 

systems based on machine learning, the fire 

segmentation model is fundamentally reliant on 

data, making it constrained by the variety, amount, 

and accuracy of its training data. Future efforts 

need to focus on broadening the dataset to include 

international fire scenarios. This includes 

contributions from lesser-represented ecosystems 

like tropical rainforests and dry savannas. 

Furthermore, integrating multimodal data—

including audio signals (such as crackling sounds), 

chemical detection, and LIDAR technology—can 

enhance the system's awareness of its environment 

and strengthen its ability to handle edge cases that 

are still difficult. 

 

An additional path for future progress focuses on 

enhancing community involvement. Although the 

technology has demonstrated its effectiveness, its 

widespread acceptance and enduring success 

depend on approval from emergency responders, 

urban planners, Environmental organizations, and 

policy-makers will play crucial roles. It will be 

essential to develop training programs, deployment 

playbooks, and cooperative design initiatives to 

ensure that the system is both utilized and trusted 

by those actively involved in fire mitigation efforts. 

 

In conclusion, this study goes beyond simply 

presenting a new system—it offers a perspective. 

A perspective where urban areas, woodlands, and 

communities are no longer subject to the 

consequences of slow detection and reactive sand 

adaptable systems that detect threats before they 

escalate. The real-time fire segmentation system is 

more than just a resource for current crises; it 

represents a fundamental element of a future that is 

more intelligent, secure, and eco-conscious. 
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