

AGRITECH SUITE: DATA-DRIVEN FARMING SOLUTIONS

¹Swastik Gavhane, ²Kushal Tilke, ³Kedar Jasud, ⁴Anurag Pawar, ⁵ Asst. Prof. S. T. Powar

¹²³⁴Students, ¹Asst. Professor

¹²³⁴⁵Department of Data Science,

¹²³⁴⁵D. Y. Patil College of Engineering and Technology, Kolhapur, India

Abstract: The proposed system delivers an all-in-one solution for the accurate detection and treatment of plant diseases. It leverages advanced image processing to examine plant images and precisely identify a wide range of plant ailments. By integrating real-time weather data, the system also accounts for environmental factors that may influence plant health. Upon identifying a disease, the system provides comprehensive details about the condition, including its symptoms, underlying causes, and effective treatment strategies. It also recommends appropriate pesticides, offers usage instructions, and provides links for convenient online purchasing. This holistic approach enables users to manage plant health proactively and reduce the risk of further damage.

Index Terms - Precision agriculture, multi-model system, crop recommendation, plant disease detection.

I. INTRODUCTION

Agriculture remains the main pillar of support for the majority of economies globally, yet crop diseases remain a significant threat to food sustainable agriculture and security. The diseases could lead to decreased yields of crops, loss of quality, and loss of economic values to farmers. Early detection of plant diseases at the appropriate time is very crucial for effective management and to avoid extensive outbreaks. Yet orthodox diagnostic approaches are dependent on trained subjective visual estimation and can be very slow and lab-intensive

and prone to errors. With the widespread use of smartphones and rapid progress in computer vision and machine learning, there is a growing opportunity to develop smart, technology-driven solutions for plant disease detection. Smartphones, equipped with high-resolution cameras and internet connectivity, offer a practical platform for building intelligent systems capable of accurately recognizing plant diseases from images.

Apart from that, climate conditions such as temperatures, humidity, and rainfall also contribute significantly to the development and spread of plant diseases. Having the capability to retrieve real-time weather information can greatly improve the accuracy of disease forecasts, enabling farmers to act proactively in preventing risks.

This project aims to create a mobile-based plant disease prediction system that combines image analysis through machine learning, computer vision, and real-time weather integration. Users will be able to take pictures of diseased plants, and the system will analyze the images to detect the type of disease. Alongside the diagnosis, the system will offer detailed information about the disease, its symptoms, causes, treatment methods, and even recommend suitable pesticides with purchase links. By harnessing modern technologies and real-time data, this solution seeks to boost productivity, reduce losses, and promote sustainable farming practices

II. LITERATURE SURVEY

Gupta, Hans, and Chand [1] explored the classification of plant leaf diseases using machine learning methods integrated with image preprocessing. Their process included steps like resizing images, eliminating noise, and enhancing image quality to boost classification performance. They employed Support Vector Machines (SVM) and K-Nearest Neighbors (KNN) for classifying various plant diseases, emphasizing that image preprocessing significantly enhances classification accuracy.

Militante, Gerardo, and Dionisio [2] proposed a system for plant leaf detection and disease identification using deep learning. Their approach leveraged Convolutional Neural Networks (CNNs) for automatic feature extraction and classification, achieving promising accuracy levels. The dataset consisted of multiple diseased leaf types, and the system minimized manual intervention, improving efficiency in disease diagnosis.

Rajak et al. [3] introduced a crop recommendation system aimed at enhancing agricultural productivity using machine learning. The system utilized parameters such as soil type, temperature, humidity, and pH level to suggest optimal crops. Models like Decision Tree and Random Forest were used to deliver precise recommendations tailored to environmental conditions.

Hasan, Uddin, and Chowdhury [4] investigated weather event prediction through machine learning. Their work focused on analyzing historical weather data to forecast events like rainfall, droughts, and storms. This predictive system serves as a valuable tool for agriculture, helping farmers prepare for climate-related impacts on crops.

Kumar and Raghavendra [5] provided a review of image processing techniques used in identifying plant diseases. Their analysis covered methods such as image segmentation, feature extraction, and classification. The paper addressed common challenges in disease detection, including variability in lighting conditions, background noise, and different leaf orientations, while comparing the effectiveness of several techniques.

P. V., Das, and K. V. [6] developed a system that combines preprocessing, feature extraction, and classification for plant disease detection. They used methods like K-means clustering to segment diseased leaf areas and SVM for classification. Their results demonstrated the effectiveness of image processing in early disease diagnosis.

Jasim and Al-Tuwaijari [7] explored the integration of image processing with deep learning for plant disease detection. Their model employed CNNs for both feature extraction and classification. Trained on a large dataset, their approach achieved high accuracy and efficiency, suggesting that deep learning models outperform traditional techniques for complex image classification problems.

An article in the Journal of Big Data [8] reviewed the role of big data in agricultural disease detection. The study discussed how big data, machine learning, and deep learning contribute to smart farming. It also identified challenges such as data handling, storage, and real-time analysis and emphasized the importance of integrating these technologies into modern agriculture for improved decision-making.

III. METHODS AND SYSTEM IMPLEMENTATION

3.1 System Overview

The system is designed as an integrated agricultural support platform combining crop recommendation, fertilizer advice, and plant disease detection. Users access the platform through a centralized login/signup module, which manages requests to all other components. The crop recommendation and fertilizer modules process respective datasets, build machine learning models, and deliver results through a user-friendly interface. The plant disease detection module utilizes image data, preprocessing, and model inference using TensorFlow Lite for mobile compatibility. The system also connects to an open-source weather API and a centralized database to enhance decision-making with real-time environmental data and secure data storage.

3.2 Data Collection

“PlantVillage Dataset”

Source: <https://www.kaggle.com/datasets/tushar5harma/plant-village-dataset-updated>

3.3 Machine Learning Algorithms

- **CNN:** This is the machine learning algorithm applied for Plant Disease detection, which had 95% accuracy.
- **Random Forest:** It is a machine learning algorithm for fertilizer recommendation that suggests fertilizers against parameters provided.

3.4 Database Design

- **Users:** Takes users information input.
- **Password:** Stores passwords for users for login.

3.5 Frontend and Backend Implementation

- **Frontend:** This project is built on HTML, CSS and JavaScript as frontend.
- **Backend:** For Backend, this project uses flask to handle the backend work.

3.6 System Architecture

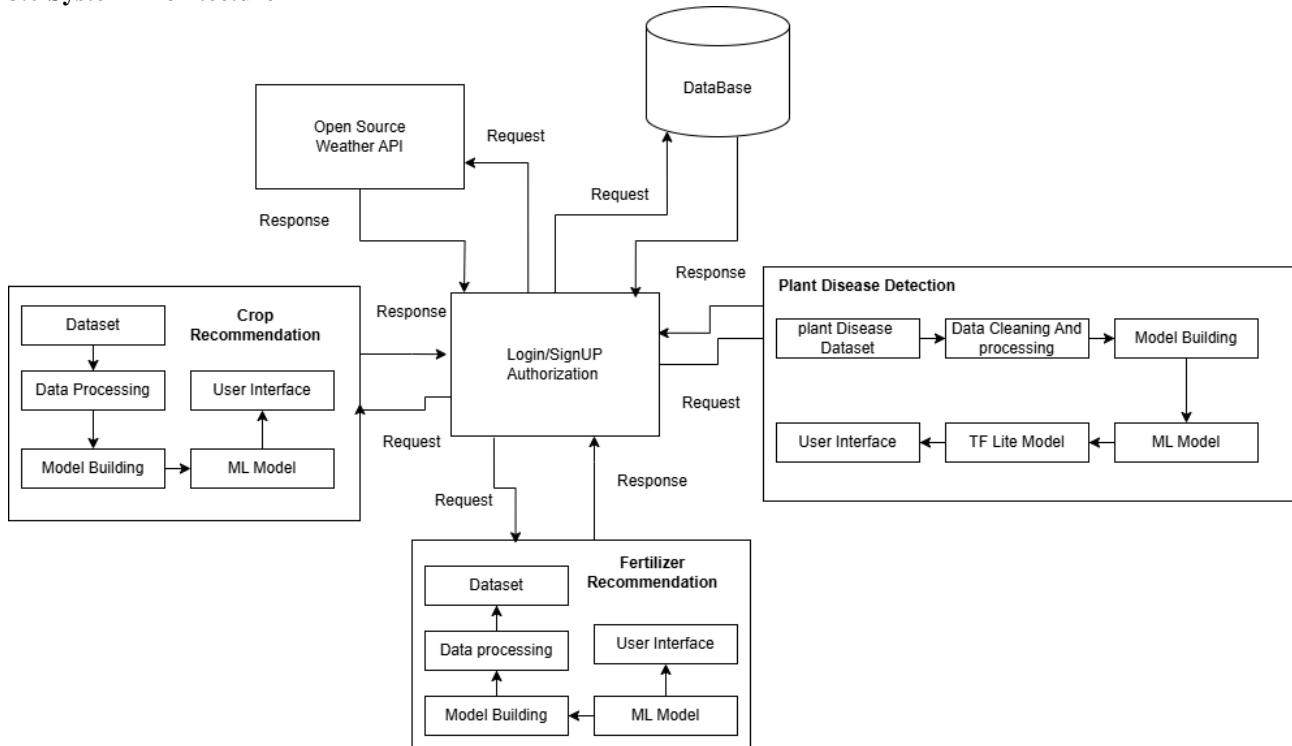


Fig. 1. System Architecture

System consists of models crop management, plant disease and AI-chatbot are connected to login/signup page. Plant Disease model creates a machine learning model with provided dataset with Tensorflow and CNN methods. Crop management model uses random forest machine learning method to select crops. Open-source weather Api is used in this model.

IV. RESULTS AND DISCUSSION

4.1 Model Performance Evaluation

Table 4.1: Descriptive Statics

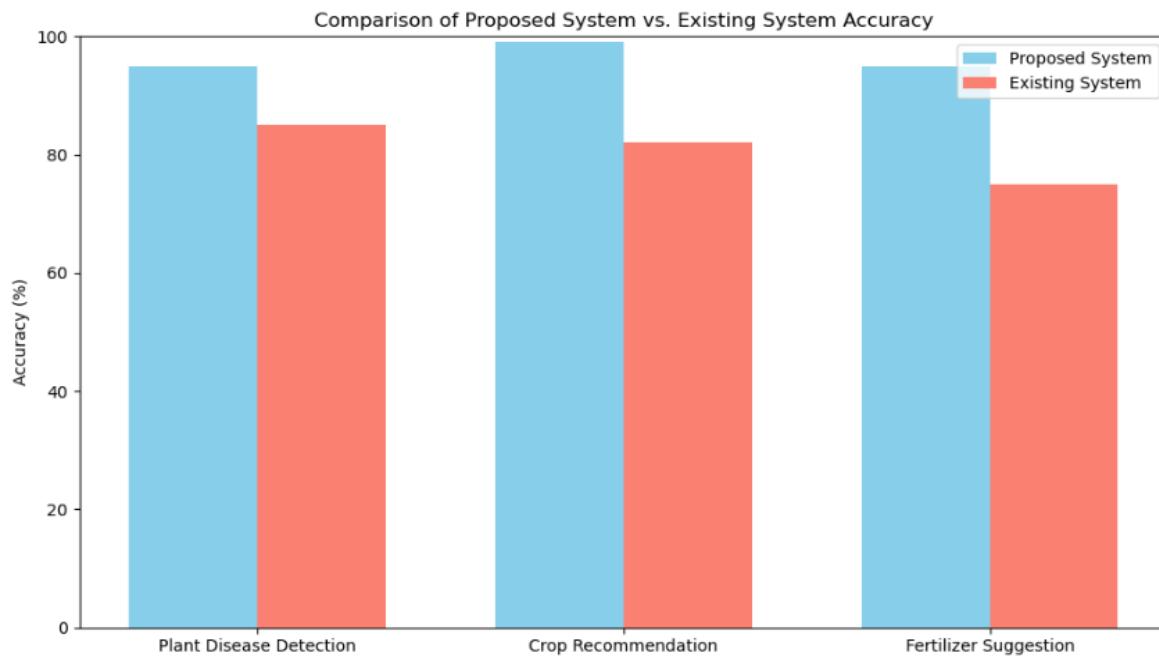
Module	Accuracy
Disease Detection	95%
Crop Recommendation	99%
Fertilizer Advice	95%

The system comprises three core modules—Disease Detection, Crop Recommendation, and Fertilizer Advice—each demonstrating high accuracy levels, indicating strong performance in real-world scenarios. The Disease Detection module achieves an accuracy of 95%, allowing it to reliably identify plant diseases from leaf images, aiding farmers in early diagnosis and treatment. The Crop Recommendation module, with an impressive accuracy of 99%, suggests the most suitable crops based on environmental and soil parameters, helping farmers make informed decisions to maximize yield. The Fertilizer Advice module also records a 95% accuracy, ensuring that users receive appropriate fertilizer suggestions tailored to the crop and soil conditions. Together, these modules provide a comprehensive and reliable support system for modern agricultural practices.

4.2 User Feedback Sentiment Integration

- Top Features:** Fertilizer calculator (68%).
- Improvements:** Regional language support, offline mode.

4.3 Result


The figure displays four screenshots of the proposed system's user interface:

- Crop Recommendation Results:** Shows input parameters (Nitrogen: 22.0 kg/ha, Phosphorus: 44.0 kg/ha, Potassium: 45.0 kg/ha, Temperature: 25.0 °C, Humidity: 50.0%, Soil pH: 4.0, Rainfall: 5.0 mm) and a recommended crop: **mothbeans** (Best suited for your conditions).
- Enter Your Farm Details:** A form for entering farm details including Temperature (45 °C), Humidity (45%), Soil Moisture (25%), Soil Type (Sandy), Crop Type (Maize), Nitrogen Content (45 ppm), Phosphorous Content (5 ppm), and Potassium Content (8 ppm). It also lists recommended fertilizer details for **Urea**.
- Weather Forecast:** A section for Pune showing current temperature (37.36°C) and weather (few clouds). It includes a line graph of the next 24 hours' temperature (°C) and a quick weather quiz.
- Prediction Result:** Shows a leaf image with a dark spot and a prediction: **Disease: Apple__Black_rot** with a confidence of **99.95%**. It also includes a description and prevention measures.

Fig. 3. Results

V. COMPARATIVE ANALYSIS WITH EXISTING SYSTEM

System	Plant Disease Detection	Crop Recommendation	Fertilizer Suggestion
Proposed System Accuracy	95%	99%	95%
Existing System Accuracy	85%	82%	75%

Fig. Comparison of Proposed System vs. Existing System Accuracy

VI. CONCLUSION AND FUTURE WORK

5.1 Conclusion

The project successfully identified plant disease using state-of-art machine learning and deep learning techniques. By offering accurate diagnosis, detailed treatment guidance, and continuous crop monitoring, it enhances both agricultural productivity and home gardening efforts. The integration of technology not only empowers users to address plant health issues promptly but also supports sustainable farming practices and biodiversity conservation. This is an innovative approach that represents a significant step forward in modern plant pathology and agricultural technology.

5.2 Future Scope

The future scope of this work includes optimizing the TensorFlow Lite (TFLite) model to ensure efficient performance in real-time mobile applications, making it suitable for on-field use by farmers. Additionally, the system can be enhanced by incorporating a more comprehensive recommendation engine that includes detailed insights into crop management practices, such as irrigation schedules, pest control measures, and seasonal guidance. To further improve accessibility and user experience, especially among users from varied linguistic backgrounds, the application can be upgraded with multilingual support and voice recognition features. These enhancements aim to make the system more inclusive, user-friendly, and effective in supporting diverse agricultural communities.

VII. ACKNOWLEDGMENT

We sincerely thank [Institute Name] for providing the support and resources needed for this research. We are deeply grateful to our mentor, S. T Powar Sir, for their guidance and encouragement throughout the project.

REFERENCES

- [1] P. S. Gupta, P. Hans, and S. Chand. 2020. Classification Of Plant Leaf Disease Using Machine Learning and Image Preprocessing Techniques.
- [2] S. V. Militante, B. D. Gerardo, and N. V. Dionisio, "Plant Leaf Detection and Disease Recognition using Deep Learning," 2019 IEEE Eurasia Conf. IOT, Commun. Eng., pp. 579-582, 2019.
- [3] Rohit Kumar Rajak et al., "Crop recommendation system to maximize crop yield using machine learning technique", International Research Journal of Engineering and Technology, vol. 4 no. 12, pp. 950-953, 2017
- [4] N. Hasan, M. T. Uddin and N. K. Chowdhury, "Automated weather event analysis with machine learning", Proc. IEEE 2016 International Conference on Innovations in Science Engineering and Technology (ICISET), pp. 1-5, 2016
- [5] Kumar S, Raghavendra BK. Diseases detection of various plant leaf using image processing techniques: a review" 2019 5th. Comput Commun Int Conf Adv. 2019.
- [6] P. V., R. Das, and K. V. Identification of plant leaf diseases using image processing techniques. 2017 IEEE Int. Conf. Technol. Innov. ICT Agric. Rural Dev. (TIAR 2017), pp. 130 133, 2017.
- [7] Jasim MA, Al-Tuwaijri JM. Plant leaf diseases detection and classification using image processing and deep learning techniques. Int Comput Sci Soft Eng Conf. 2020.
- [8] <https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00863-9>