

AGRIGROW WEBSITE

P.Rishita¹, N.Akshith², A.Eesha Sree³, S.Vishwen⁴, M.Pratussha⁵, B.Anusha Rani⁶,

^{1,2,3,4}Vardhaman College of Engineering, Narkhuda-Shamshabad Road, Kacharam, Telangana 501218

Abstract: Agrigrow is an innovative venture for the cause of changing farm practices for maintaining sustainability, promoting food security, and raising the livelihood of local farming communities. At a time when the world is facing the twin challenges of rising population and depleting resources, Agrigrow intends to bridge the gap between traditional farm practice and high-tech technologies. By adopting sustainable farming practices, Agrigrow intends to raise production while preserving the ecosystem. The project focuses on community engagement, guaranteeing farmers have the information and technology to thrive in a changing climate. The motivation for initiatives like Agrigrow is often led by a series of core drivers. With growing populations, a vital need is to produce more food in a sustainable way to ensure everyone can afford healthy food. The vast majority of farming methods are detrimental to the environment. There is a strong incentive to adopt measures that use natural resources sparingly and promote biodiversity. Technology advances have the potential to significantly enhance agricultural productivity and efficiency, prompting projects to pursue and adopt these advances. Farmers are our local partners, enabling local farmers with information, assets, and market access makes them stronger and enhances resilience. Promote ecologically friendly agriculture practice to sustain resources for future generations. Improve productivity and yields of crops through the use of innovative methods and technologies.

Keywords—crop management, efficiency, , farmer-friendly Chatbot, soil health, sustainable farming

I.INTRODUCTION

The driving force behind the AgriGrow Project is addressing the critical demands of farmers, such as lowering productivity, climate change[20], market uncertainty, and limited access to new technology. Agriculture remains the backbone of most economies, but farmers must endure outdated practices, wastage in the use of resources, and uncertainty in finances. AgriGrow strives to bridge this gap by uniting technology, eco-friendly methods, and support from the community to empower farmers and ensure food security. The project hopes to create a world where farming is not only a prosperous occupation but also a sustainable practice, allowing farmers to match modern expectations while preserving the planet for future generations. The AgriGrow Project aims to empower farmers and promote sustainable agriculture through the employment of cutting-edge technology, innovative practices, and community-based programs.

AgriGrow Project has a wide range of activities and programs for transforming agriculture and empowering farmers. It focuses on the following areas: Integration of Technology: of

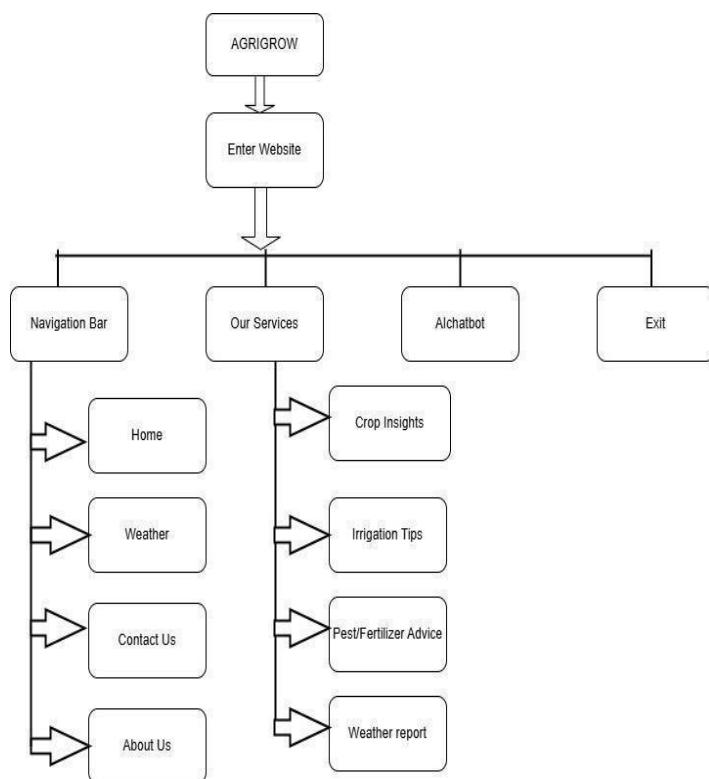
precision agriculture techniques through the application of drones, IoT sensors,[18] and AI for crop monitoring, soil health, and climate trends. Development of mobile apps and platforms for farmers to receive real-time data, market prices, and advisory services. Resource Efficiency: Implementation of efficient irrigation methods like drip and sprinkler irrigation in an effort to conserve water. Utilization of renewable energy resources, including solar pumps, to function at economical rates. Climate Action and Sustainability: Encouraging crop diversification and agroforestry to promote greater diversity.[7] Encouragement of carbon-reducing processes like composting and zero tillage. Market Access and Support: Crafting platforms to connect farmers to buyers directly to ensure fair pricing.[15] Establishing cooperatives and associations of producers to have greater bargaining power.

Geographic and Demographic Target: Focusing on rural and semi-urban farm villages initially, especially small and marginal farmers.

II.LITERATURE REVIEW

Agriculture has been the foundation of human survival for millennia, evolving from subsistence farming to industrial and technological advancements. The traditional farming techniques heavily relied on manual labor and natural processes, which had limited productivity. Nevertheless, the introduction of tools like the plow, irrigation systems, and crop rotation brought about a significant change in the history of agriculture.

These technological advancements led to increased efficiency and productivity, paving the way for future technological advancements.


The mid-20th-century green revolution was a significant milestone in the history of farming, characterized by the adoption of high-yielding crop varieties, chemical fertilizers, and mechanization. The revolution had a profound impact on food production, leading to increased self-sufficiency in many nations. As an illustration, wheat production in India rose from 10 million tons in the 1960s to 73 million tons by 2006. However, the green revolution also had negative environmental impacts, including soil erosion, water scarcity, and increased reliance on chemical inputs. Despite these challenges, the green revolution played a crucial role in ensuring sufficient food supply for a rapidly growing global population.

Contemporary agriculture is heavily reliant on digital platforms as they play a crucial role in addressing global challenges such as climate change and ensuring food security. [20] digital platforms offer real-time information and analysis, allowing farmers to make informed choices regarding crop management

and resource allocation.[5] they also allow farmers to communicate directly with consumers, cutting out intermediaries and enhancing market access for small-scale farmers. Initiatives like agrigrow demonstrate that technology can be harnessed to enhance agricultural production while promoting environmental sustainability and social equity.

The history of farming, from the early days of subsistence farming to the modern era of precision farming, demonstrates a continuous quest for productivity and efficiency. The green revolution was a significant milestone in the journey, but the environmental and social concerns it raised only strengthen the argument for technologically advanced sustainable solutions. Digital platforms like agrigrow are a promising approach to revolutionize agriculture in the present, enabling a more productive, fair, and environmentally friendly agriculture sector.

III. FLOWCHART

IV. EXISTING SOLUTION

Agri-Tech East: A business-focused agri-tech community in the UK that connects farmers with technology developers. Promotes innovation in agriculture through networking, knowledge sharing, and collaborative projects. Farmers First: A community-driven movement in different areas that equips farmers with knowledge and promotes environmentally friendly farming methods. The organization focuses on community-driven agricultural development and promotes sustainable farming practices. The sustainable agriculture research and education (sare) program in the u.S. provides funding for research and education projects that focus on promoting sustainable agriculture practices. Assists farmers in embracing sustainable farming methods and shares the results with a wider audience.

These include the use of GPS-guided tractors, drone satellite imaging, and IoT sensors to optimize resource use and improve crop yields. By reducing waste and enhancing efficiency, precision agriculture promotes sustainable farming practices that are crucial for meeting global food demands while minimizing environmental impact. Farm automation technologies are also revolutionizing agricultural practices. Autonomous tractors, laser scarecrows, and robotic farming tools are examples of how technology is saving time and labor while increasing precision and productivity. These innovations not only enhance farm operations but also contribute to reducing the physical strain on farmers, allowing them to focus on strategic decision-making. The combination of iot and ai is revolutionizing the agricultural industry, enabling farmers to streamline their operations. Iot sensors enable real-time monitoring of crop conditions, while ai algorithms provide predictive analytics and decision support systems[1]. These technologies boost productivity, minimize waste, and enhance crop management, empowering farmers to make well-informed decisions using data-driven insights.

Carbon sequestration practices are becoming increasingly important in agriculture as a strategy to mitigate climate change [20]. Techniques such as reforestation, afforestation, and soil carbon sequestration help absorb CO₂ from the atmosphere, improving ecosystem health and supporting sustainable agriculture. By integrating these practices into farming operations, farmers can contribute to global efforts to combat climate change.

Finally, innovative methods like aquaponics and aeroponics are gaining traction for their efficiency and sustainability. These systems use minimal water and land to grow crops, making them ideal for urban areas where space is limited. By providing high yields with reduced resource use, aquaponics and aeroponics offer a promising future for urban agriculture, enhancing food security and reducing environmental impact.

V. PROPOSED SOLUTION

The AgriGrow Project proposes a comprehensive solution to modernize agriculture by integrating cutting-edge technologies, including AI chatbots. This approach aims to address key challenges faced by farmers, such as inefficiency, resource wastage, and vulnerability to environmental factors. By leveraging AI chatbots, farmers can access real-time advice on crop management, weather forecasts, irrigation strategies, and pest/fertilizer recommendations. The chatbot will employ natural language processing (nlp) techniques to comprehend user queries in their preferred language., ensuring that farmers can interact with the platform intuitively, even with limited digital literacy.

Technical Implementation of the AI Chatbot: The AI chatbot will be developed using frameworks like Rasa, which allows for the creation of personalized AI models using Python and NLU (Natural Language Understanding). This will enable the chatbot to provide tailored advice based on specific agricultural conditions and user queries. The system will undergo extensive training using datasets relevant to agricultural practices, ensuring that it can offer accurate and relevant information. For instance, the chatbot can assist farmers in identifying nutrient deficiencies in plants by analyzing symptoms and suggesting appropriate fertilizer applications.

Additionally, it can provide insights on optimal feeding strategies for livestock and data-driven decision-making tools to enhance farm productivity. Similar projects, such as Agrosahakar and Farmer's Assistance Chatbot, have shown the effectiveness of using machine learning models to provide crop and fertilizer recommendations.

AGRIGROW - Cultivate With Confidence

AGRIGROW is a user-friendly platform designed to provide farmers with essential information on crop, farming techniques, and best practices. The platform offers expert insights, tailored advice, and real-time weather reports to help farmers maximize crop yields, improve sustainability, and make informed decisions. AGRIGROW empowers farmers to cultivate more effectively, ensuring a thriving and productive harvest.

Our Services

- Crop Insights
- Pest/Fertilizer Advice
- Weather Report
- Irrigation Tips

Terms and conditions
Copyright: AgriGrow.com © all rights reserved

Fig-1: Home page for AGRIGROW Website

Technical Implementation of the AI Chatbot: The AI chatbot will be developed using frameworks like Rasa, which allows for the creation of personalized AI models using Python and NLU (Natural Language Understanding). This will enable the chatbot to provide tailored advice based on specific agricultural conditions and user queries. The system will undergo extensive training using datasets relevant to agricultural practices, ensuring that it can offer accurate and relevant information. For instance, the chatbot can assist farmers in identifying nutrient deficiencies in plants by analyzing symptoms and suggesting appropriate fertilizer applications. Additionally, it can provide insights on optimal feeding strategies for livestock and data-driven decision-making tools to enhance farm productivity. Similar projects, such as Agrosahakar and Farmer's Assistance Chatbot, have shown the effectiveness of using machine learning models to provide crop and fertilizer recommendations based on local conditions.

Crop Insights for South Indian Farmers

Explore detailed insights about popular crops grown in South India. Learn about investment needs, common damages, cultivation practices, sowing details, and the best times for sowing to achieve high yields.

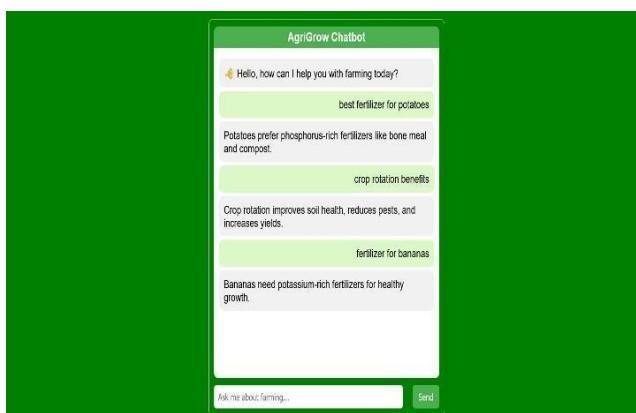
Crop	Investment per hectare	Potential damage	Cultivation practices	Seeding per hectare	Best time to sow	Yield period
Rice	₹30,000 - ₹60,000/acre	Floods, pests (Brown Planthopper, Rice Borer)	Requires well-drained, fertile soil with good water retention.	60-80 kg of seeds per hectare.	June - August (Kharif season)	90-120 days
Sugarcane	₹60,000 - ₹180,000/acre	Rust, insect damage, waterlogging	Thinner in tropical climates with drier, loamy soil.	50-60 kg of nodica per hectare.	October - November	12-18 months
Cotton	₹25,000 - ₹40,000/acre	Pests (Bollworm, bollworm), drought conditions	Prefers loamy soil with adequate moisture and drainage.	50-60 kg of seeds per hectare.	April - May	150-180 days
Turmeric	₹10,000 - ₹15,000/acre	Pest damage, leaf spot disease	Requires well-drained loamy soil with good organic content.	2,000 kg of rhizomes per hectare.	June - July	45-60 days
Groundnut	₹15,000 - ₹25,000/acre	Rust, leaf spot, root rot	Prefers light sandy loamy soil with proper drainage.	50-60 kg of seeds per hectare.	June - July	90-120 days
Millets	₹8,000 - ₹15,000/acre	Pest infestations (armyworm, white fly)	Grows well in dry, sandy, and nutrient-poor soils.	4-6 kg of seeds per hectare.	June - July	90-120 days
Banana	₹80,000 - ₹120,000/acre	Root rot, leaf spot, wind damage	Requires well-drained, alluvial soil with high organic content.	1,000-2,000 plants per hectare.	August - October	12-18 months

Terms and Conditions
Copyright: AgriGrow.com © all rights reserved

Fig-2: Crop Insights Page

The proposed solution will be implemented through a phased approach, beginning with pilot testing in specific regions to evaluate user engagement and gather feedback. This will be followed by wider implementation across various agricultural communities, with continuous support offered through chatbots and help desks to address user queries and technical problems. Collaborating with local experts and agricultural associations will be vital in guaranteeing the accuracy and relevance of the information provided by the chatbot. By incorporating AI chatbots into the agrigrow project, we strive to establish a comprehensive and resilient agricultural assistance system that boosts productivity, efficiency, and profitability for farmers globally. Previous projects have demonstrated that artificial intelligence chatbots can be instrumental in tackling a range of challenges in the agricultural industry, including resource conservation and reducing unproductive activities.

To guarantee a smooth user experience and accessibility, the chatbot will be seamlessly integrated into the agrigrow platform, enabling farmers to access it effortlessly through the website or mobile app. The platform will be designed to accommodate multiple languages and will offer voice-over capabilities to assist farmers with different levels of literacy. The chatbot will be programmed to handle both text-based and voice-based interactions, ensuring accessibility across various devices and connectivity conditions. Additionally, the system will incorporate mechanisms for ongoing learning, where user feedback and new queries can be utilized to enhance and expand the chatbot's knowledge base, guaranteeing its continued relevance and effectiveness. This approach aligns with initiatives like ulangiziai, which offers multilingual support to farmers in Africa, improving accessibility and usability.


Fertilizer Usage for Different Crops

- Cotton Fertilizers**
Fertilizer: Urea, DAP, Potash, Gypsum
Usage: Apply 80-100 kg of Urea, 120-150 kg of DAP, 50-60 kg of Potash per hectare.
Time Period: Apply Urea and DAP at planting, Topdress with Potash and Gypsum after 40-50 days.
- Banana Fertilizers**
Fertilizer: Urea, DAP, MOP, Gypsum
Usage: Apply 100g of Urea per plant, 150g of DAP, 200g of MOP per plant.
Time Period: Apply Urea and DAP at planting and then every 30 days. MOP every 3 months.
- Millets Fertilizers**
Fertilizer: Urea, DAP, SSP, MOP
Usage: Apply 60g of Urea, 100g of DAP, 50g of SSP, 50g of MOP per plant.
Time Period: Apply DAP and Urea at planting. Topdress with MOP after 2 months.
- Rice Fertilizers**
Fertilizer: Urea, DAP, MOP, Zinc Sulfate
Usage: Apply 80g Urea, 80g DAP, 120g MOP and 30g Zinc Sulfate per hectare.
Time Period: Apply Urea at planting, DAP and Zinc Sulfate at 30 days. MOP after 2 months.
- Groundnut Fertilizers**
Fertilizer: Urea, DAP, Gypsum, Potash
Usage: Apply 80g of Urea, 100g of DAP, 100g of Gypsum and 50g of Potash per hectare.
Time Period: Apply UAP and Urea at planting. Topdress Gypsum and Potash after 1 month.
- Sugarcane Fertilizers**
Fertilizer: Urea, DAP, Potash, Zinc Sulfate
Usage: Apply 100g Urea, 150g DAP, 200g Potash per hectare.
Time Period: Apply Urea and DAP at planting. Potash at 30 days. Zinc Sulfate every 3 months.
- Turnips Fertilizers**
Fertilizer: Urea, DAP, SSP, MOP
Usage: Apply 80g of Urea, 100g of DAP, 100g of SSP and 50g of MOP per hectare.
Time Period: Apply Urea and DAP at planting. Topdress with SSP and MOP after 1 month.

© 2024 AGRI GROW All Rights Reserved

Fig-3:Fertilizers Information

The integration of AI chatbots into agricultural platforms, such as agrigrow, provides numerous advantages. Firstly, it improves accessibility by providing farmers with easier access to agricultural information, particularly those who may have limited digital literacy or reside in remote areas. Additionally, it enhances decision-making by offering real-time and precise information, enabling farmers to make well-informed decisions regarding crop management and sales. Furthermore, AI chatbots enhance efficiency by automating repetitive inquiries, allowing farmers to concentrate on more important responsibilities. Additionally, these chatbots can encourage sustainable practices by providing guidance on regenerative agriculture and resource optimization, thereby fostering a more eco-friendly agricultural industry.

Fig-4:Agrigrow AI Chatbot

Despite the potential advantages, there are challenges and limitations to implementing AI chatbots in agriculture. One of the main challenges is making sure that farmers have the skills and knowledge to use these digital tools effectively. Furthermore, the reliability and precision of the data utilized by chatbots are vital for their efficiency. Future advancements should prioritize the integration of chatbots with other agricultural technologies, such as drones, sensors, and blockchain, to amplify their overall impact. This combination can result in more holistic and eco-friendly farming methods, which can be advantageous for both farmers and the natural surroundings.

Maintenance and support will encompass the continuous monitoring of website uptime and performance to promptly address any technical issues that may arise. Continuous support will be available through chatbots or help desks, enabling users to seek assistance for any queries or issues they may encounter. This thorough approach guarantees that the agrigrow project is designed with a strong emphasis on user requirements, technological reliability, and long-term sustainability. Consistent updates and feedback mechanisms will be crucial in ensuring the platform's continued relevance and effectiveness in the long run.

VI. RESULTS & DISCUSSIONS

The AgriGrow Project is a revolutionary project that weaves cutting-edge agricultural technology into age-old farming traditions. Using digital platforms, it seeks to bring farmers and consumers closer together, increasing transparency, equity, and sustainability in agriculture. One of the key features of this project is the incorporation of an AI chatbot intended to offer real-time advice and assistance to farmers. This chatbot provides essential services like crop management guidance, disease protection measures, market price information, and fertilizer suggestions. By solving critical problems like pest control or crop diseases quickly, the chatbot enhances decision-making and enhances productivity as a whole. In addition, it improves access by providing agricultural knowledge to farmers who live far away or have limited digital literacy, and also by encouraging sustainable methods through guidance on regenerative agriculture and resource conservation.

Although these benefits exist, their integration in agriculture has challenges that will need to be overcome in order for them to be used extensively. Farmers having the right digital literacy to utilize the tools is a big challenge. The quality and accuracy of data the chatbots will use are also paramount to making them successful. Future development should aim at combining chatbots with other farm technologies like drones, sensors, and blockchain systems to develop more holistic solutions for sustainable agriculture. Such a combination can enhance their effect by promoting eco-friendly practices and enhancing efficiency in farm operations. While the potential for AI chatbots to revolutionize agriculture is huge, overcoming these challenges through ongoing research and development will be crucial to realizing their full potential and ensuring they are of benefit to farmers and the environment.

VII. CONCLUSIONS & FUTURE SCOPE

AgriGrow Project is a groundbreaking initiative towards transforming agriculture and enhancing the living standards of smallholder farmers through technology. Through offering tools such as crop insights, weather forecasts, irrigation advice, and pest/fertilizer recommendations assist in addressing challenges like inefficiency, resource wastage, and vulnerability to environmental conditions. The up-to-the-minute information provided by the platform empowers farmers to make informed choices that optimize agricultural productivity, leading to increased crop yields, reduced expenses, and

enhanced resource management. Additionally, its focus on risk reduction, such as crop loss due to climate events or infestations, promotes sustainable farming methods. These challenges can be addressed by embracing offline modes, organizing hands-on training workshops, and designing user-friendly interfaces while collaborating with local experts to maintain data accuracy.

Looking to the future, AgriGrow's scalability makes it a one-size-fits-all solution for global agricultural reform by being responsive to various regions and types of farming. It can be augmented with new technologies such as drones, sensors, and blockchain to further boost its precision farming and supply chain capabilities. Collaborative alliances with governments, local stakeholders, and global organizations will play a key role in guaranteeing data accuracy and reaching out to vulnerable farming communities. Capacity-building programs like extensive training programs can bridge the digital literacy gap among farmers to enable them to leverage the full potential of the platform. With a strong focus on sustainability, AgriGrow can help reduce environmental footprints while building resilience in the agricultural industry. These developments make AgriGrow a key driver of economic growth for farmers and environmentally sustainable practices worldwide.

VIII. ACKNOWLEDGEMENTS

We extend our sincere gratitude to all individuals and organizations whose contributions have been invaluable to the development and success of the AgriGrow Project. This project would not have been possible without the collaborative efforts and support of our partners, stakeholders, and team members. We appreciate the feedback from our users and clients, which has been instrumental in refining our tools and ensuring they meet the precise needs of farmers. Additionally, we acknowledge the role of local experts and external services that have provided critical data and insights, enabling us to tailor our projections to specific agricultural setups and local conditions.

We are also deeply grateful to our development team, whose dedication and innovative spirit have driven the integration of cutting-edge technologies like AI chatbots into our platform. Their efforts have significantly improved the user experience and expanded the platform's capabilities. Furthermore, we appreciate the support from academic institutions and research organizations that have provided valuable research insights and data. Their contributions have enriched our understanding of agricultural challenges and informed our approach to addressing them. Finally, we thank all the farmers and agricultural communities who have participated in our project. Their engagement and feedback have been crucial in shaping our platform into a tool that truly serves their needs. We are honored to work alongside such a diverse and committed group of individuals and organizations.

IX. REFERENCES

[1]. I.M. Al-Harkan, M.N. Azaiez, M.A. Hariga, A.A. Alazba, M.A. Al-Fawzen, A decision support system for optimal use of irrigation water and crop selection, *J. King Saud Univ., Eng.*

- [2]. F. Alam, R. Mehmood, I. Katib, N.N. Albogami, A. Albeshri, Data fusion and IoT for smart ubiquitous environments: a survey, *IEEE Access*
- [3]. P. Allen, D. Van Dusen, J. Lundy, S. Gliessman, Integrating social, environmental, and economic issues in sustainable agriculture, *Am. J. Altern. Agric.*
- [4]. L.G. Angelini, S. Tozzi, N. Nassi o Di Nasso, Environmental factors affecting productivity, indican content, and indigo yield in *polygonum tinctorium* ait., a subtropical crop grown under temperate conditions, *J. Agric. Food Chem.*
- [5]. Y. Bhojwani, R. Singh, R. Reddy, B. Perumal, Crop selection and IoT-based monitoring system for precision agriculture, in: 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic- ETITE), IEEE, 2020.
- [6]. L. Bodin, S.I. Gass, On teaching the analytic hierarchy process, *Comput. Oper. Res.* (ISSN 0305-0548) 30 (10) (2003) 1487–1497, [https://doi.org/10.1016/S0305-0548\(02\)00188-0](https://doi.org/10.1016/S0305-0548(02)00188-0)
- [7]. P. Bodin, S. Olin, T. Pugh, A. Arneth, Accounting for interannual variability in agricultural intensification: the potential of crop selection in sub-Saharan Africa, *Agric. Syst.* (ISSN 0308-521X) 148 (2016) 159–168, <https://doi.org/10.1016/j.agry.2016.07.012>.
- [8]. S. Bolboaca, L. Jäntschi, M. Bălan, M. Diudea, R. Sestră, State of art in genetic algorithms for agricultural systems, *Not. Bot. Horti Agrobot. Cluj-Napoca* 38 (2010) 51–63.
- [9]. F. Boone, Weather and other environmental factors influencing crop responses to tillage and traffic, *Soil Tillage Res.* (ISSN 0167-1987) 11 (3–4) (1988) 283–324, [https://doi.org/10.1016/0167-1987\(88\)90004-9](https://doi.org/10.1016/0167-1987(88)90004-9).
- [10]. M.S. Bowman, D. Zilberman, Economic factors affecting diversified farming systems, *Ecol. Soc.* (ISSN 1708-3087) 18(1) (2013), <https://doi.org/10.5751/es.05574-180133>.
- [11]. E. Brenjkar, E. Biniaz Delijani, Computational prediction of the drilling rate of penetration (rop): a comparison of various machine learning approaches and traditional models, *J. Pet. Sci. Eng.* (ISSN 0920-4105) 210 (2022) 110033, <https://doi.org/10.1016/j.petrol.2021.110033>.
- [12]. P. Chaihuadjaroen, P. Thanapirompokin, Applied genetic algorithm per environment zone to solve problem of crops selection for intercropping by modified parameter of fitness function, in: 2019 4th International Conference on Information Technology (InCIT), IEEE, 2019.
- [13]. R. Chand, S.K. Srivastava, Changes in the rural labour market and their implications for agriculture, *Econ. Polit. Wkly* 49(10) (2014) 47–54, <http://www.jstor.org/stable/24479229>.
- [14]. Mirzaei M and Amirhosseini M 2017 Analysis of information sharing model in the traditional market and its comparison with a proposed model of developing information and knowledge sharing in e-commerce in the agricultural sector of Iran.
- [15]. Soegoto E S 2014 Entrepreneurship Menjadi Pebisnis Ulung Edisi Revisi (Bandung: Elex Media Komputindo).
- [16]. C.Zhang, L. Zhao, and Y. Li, "Precision agriculture: An integrated approach for managing farming systems," *Journal of Agricultural Engineering*, vol. 38, no. 2, pp. 32–45, 2020.
- [16]. C.Zhang, L. Zhao, and Y. Li, "Precision agriculture: An integrated approach for managing farming systems," *Journal of Agricultural Engineering*, vol. 38, no. 2, pp. 32–45, 2020.
- [17]. M. M. Rao, R. Kumar, and P. K. Mishra, "Leveraging mobile technology for agricultural extension services: A case study in rural India," *International Journal of Agricultural Innovations*, vol. 7, no. 4, pp. 11–20, 2022.
- [18]. M. D. Kumar and V. R. K. Rao, "The role of Internet of Things (IoT) in modern farming: Opportunities and

challenges," *Agricultural Systems*, vol. 175, pp. 66-74, 2019.

[19]. H. A. Oladipo, "Overcoming the challenges in digital farming adoption: A survey of smallholder farmers in Africa," *Proceedings of the 3rd International Conference on Smart Agriculture*, pp. 89-94, 2021.

[20]. M. J. Smit, "The impact of climate change on agricultural productivity: Understanding the role of weather forecasting systems," *Environmental Sustainability Journal*, vol. 14, no. 3, pp. 156-167, 2018.

