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Abstract: Battery packs in electric vehicles and energy storage systems can suffer various faults that pose
safety hazards, including cell internal short circuits (ISC), thermal runaway (TR), sensor failures, and battery
management system (BMS) malfunctions. Data-driven machine learning methods have shown promise in
detecting such faults early, but their black-box nature raises trust and safety concerns. Explainable Artificial
Intelligence (XAI) techniques have emerged to bridge this gap by providing insight into model decisions. This
review surveys recent research on XAl-based fault diagnosis in multi-cell lithium-ion battery packs. We
discuss traditional model-based approaches (using first-principles battery models and state observers) versus
data-driven approaches (machine learning classifiers and anomaly detectors), highlighting how XAI methods
can augment the latter. Key XAl techniques including feature attribution methods like SHAP and LIME,
attention-based deep learning models, and surrogate modeling are explained and compared. Recent studies
have applied XAl to identify the sensor signals and features most indicative of faults (e.g. sudden drops in
cell voltage or rises in internal resistance). We compile these findings, noting each method’s strengths and
limitations. Challenges such as the need for large labeled fault datasets, real-time explainability, and validation
of XAl outputs are identified as open issues. Overall, XAl can enhance the transparency and reliability of
data-driven fault diagnosis in multi-cell battery packs, enabling safer battery management through human-
interpretable insights.

Index Terms - Battery Fault Diagnosis, Explainable Al, Lithium-Ion Battery, Multi-Cell Battery
Pack

|. INTRODUCTION

Lithium-ion battery packs are widely used in electric vehicles (EVs) and stationary storage, where reliability

and safety are paramount [1]. As these battery systems age or encounter abuse, they can develop faults that
lead to performance degradation or catastrophic failures. Prompt detection and diagnosis of faults — such as
BMS malfunctions, cell imbalance or degradation, internal short circuits (ISC), overcharging, over-discharging,
and thermal runaway (TR) — is essential to mitigate risks and prevent accidents [1]. In multi-cell packs, faults
may originate at the cell level (e.g. an ISC in a single cell) or at the pack level (e.g. a faulty sensor or cooling
failure), with potentially severe consequences if left unaddressed.
Conventional fault diagnosis approaches fall into two broad categories: model-based methods and data-driven
methods [2, 3]. Model-based methods use physics-based or equivalent-circuit battery models combined with
observers or analytical redundancy to detect inconsistencies caused by faults [3]. For example, state observers
can estimate each cell’s state-of-charge or resistance, and deviations from the expected model behavior can
indicate a fault. Such approaches benefit from physical interpretability and can sometimes detect certain faults
early [3]. However, model-based methods require accurate models and can be sensitive to modeling errors,
parameter uncertainties, and varying operating conditions [3]. They may also be computationally intensive and
require extensive tuning for complex multi-cell systems [1, 3].
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In contrast, data-driven approaches rely on patterns learned directly from data (e.g. voltage, current,
temperature measurements) using statistical or machine learning techniques. These methods, which include
signal processing algorithms, machine learning classifiers, and neural networks, can handle large amounts of
data and automatically adapt to complex fault signatures [4, 5]. Machine learning has become increasingly
popular for battery fault diagnosis due to its ability to capture nonlinear relationships and multivariate
interactions beyond what first-principles models can easily provide [4]. Indeed, numerous studies have applied
classifiers (SVM, random forest, neural networks, etc.) or anomaly detection algorithms to identify faulty
batteries or predict failures [2, 6, 7]. However, a major drawback of purely data-driven models is their lack of
transparency: high accuracy models often act as “black boxes,” making it difficult for engineers to trust their
predictions or understand the reasons behind a detected fault [4, 5]. This lack of explanation is both a practical
and an ethical issue in safety-critical applications [4]. It is in this context that Explainable Artificial Intelligence
(XAI) techniques have a critical role to play.

XAl refers to methods that make the decision-making process of Al models understandable to humans [8].
Instead of simply outputting a fault alarm, an XAl-enabled model can provide additional information such as
which sensor readings or features most contributed to the alarm, or how different input conditions would affect
the model’s output. Such explanations can increase user trust, aid in root-cause analysis, and ensure the model
is aligning with domain knowledge (rather than exploiting spurious correlations). In the field of battery
management, XAl is especially important because of the high stakes: an incorrect fault diagnosis can lead to
unsafe operation or unnecessary shutdowns, so operators need confidence and insight into automated decisions.
Moreover, regulatory frameworks and safety standards increasingly demand transparency from Al systems in
vehicles and energy grids.

Recent research on battery fault diagnosis has begun incorporating XAl techniques to interpret data-driven
models. A 2021 critical review by Samanta et al. noted that while many machine learning approaches for
battery fault detection show high performance, they often do not explain their results, making it hard to assess
their reliability in real-world conditions [2]. Similarly, Faraji Niri et al. (2023) observed that despite the
proliferation of data-driven battery management algorithms, only a small number of studies have focused on
explainability, indicating a significant gap in the literature [9]. This review addresses that gap by surveying the
state-of-the-art in XAl applications for battery fault diagnosis. We first outline the main approaches to battery
fault detection and diagnosis, then discuss the XAl techniques applied in this domain — from feature attribution
methods like SHAP and LIME to interpretable model architectures and surrogate modeling. We highlight
representative case studies, compare the strengths and weaknesses of different methods, and identify open
challenges and future research directions for XAl in battery fault diagnosis.

Il. APPROACHES TO BATTERY FAULT DIAGNOSIS IN MULTI-CELL PACKS

Battery fault diagnosis methods can be broadly categorized as model-based (or physics-based) and non-
model-based (data-driven) approaches [1, 3]. In practice, effective battery management often uses a
combination of both. Here we outline these approaches and their relevance to explainability.

Model-Based Methods:

Model-based fault diagnosis relies on mathematical models of battery behavior. Two common model
types are electrochemical models (describing the internal electrochemistry, e.g. using coupled differential
equations) and electrical equivalent circuit models (ECMs), which approximate battery dynamics with RC
circuits [3]. For fault diagnosis, models are typically augmented with estimation algorithms or observers (e.g.
Kalman filters, Luenberger observers) to track internal states and parameters [3]. Faults are detected by
monitoring residuals — deviations between measured outputs and model-predicted outputs — or by observing
parameter changes beyond normal ranges. For instance, an internal short circuit can be detected by a sudden
drop in estimated cell resistance or capacity in a model-based observer [6, 3]. Model-based approaches have
the advantage of built-in interpretability: when a fault is declared, it is usually because a physically meaningful
residual exceeded a threshold, directly indicating the type or location of anomaly (e.g. an increasing difference
between cell open-circuit voltage and model estimate may point to cell capacity loss or an ISC). These methods
leverage expert knowledge and are often preferred in high-trust settings. However, developing accurate battery
models that capture cell-to-cell variations, temperature effects, and aging is challenging [3]. Model-based
methods can also be computationally heavier and slower to respond [3]. They may fail if the actual fault
deviates from assumptions in the model. In summary, model-based diagnostics are interpretable by design (the
model’s parameters and residuals have physical meaning) but can be limited in adaptability and scope of
detectable faults.
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Data-Driven Methods:

Data-driven fault diagnosis uses patterns in data to detect anomalies or classify fault types without
requiring an explicit battery model. Early data-driven techniques include signal processing and statistical
analysis — for example, using the correlation between cell voltages in a series pack to identify a faulty cell (a
significantly lower correlation can indicate an out-of-line cell) [10]. More recently, machine learning
techniques have been applied, such as supervised classifiers to identify fault types from sensor features, or
unsupervised methods to flag abnormal behavior. Data-driven methods can utilize a wide range of measured
variables: cell voltages, pack current, temperatures, pressure, etc., often combined into features that capture
trends (voltage drops, dV/dt, entropy changes, etc.). These approaches are powerful in handling complex or
subtle fault signatures and do not require detailed battery knowledge upfront. For instance, a random forest or
neural network can learn to differentiate normal vs. various faulty conditions (like ISC vs. connection fault vs.
sensor drift) from training data [2, 6, 7]. A key limitation, however, is that complex ML models are typically
opaque — it’s not immediately clear why a certain decision was made. Purely data-driven diagnostics risk
overfitting to particular datasets and might pick up spurious correlations that don’t generalize. Without
explanations, it’s hard to trust these models in safety-critical applications. This lack of transparency has been
identified as a major barrier to deployment of advanced ML in battery management [2, 9]. XAl techniques aim
to address this by making data-driven methods more interpretable, as we explore in the next section.

It’s worth noting that the line between model-based and data-driven is increasingly blurred. Hybrid
approaches exist, where data-driven models are constrained by or informed by physical models (for example,
a neural network might estimate model parameters, or a diagnostic system might use a qualitative physics
model to validate ML outputs) [9]. Additionally, some simpler data-driven techniques (like decision trees or
linear regression models) are themselves interpretable and can be considered inherently explainable.
Regardless of approach, the goal is to accurately and promptly detect faults with understanding of the reasoning
— which is where XAl comes in for the more opaque methods.

I11. XAl TECHNIQUES FOR BATTERY FAULT DIAGNOSIS

Explainable Al techniques provide tools to interpret and visualize the decisions of complex models. In the
context of battery fault diagnosis, XAl can reveal which sensor readings or derived features most influenced a
model’s prediction of a fault, or how a model differentiates between fault types. This section reviews the main
XAl methods applied or applicable to multi-cell battery fault diagnosis, grouped by their approach: post-hoc
feature attribution, interpretable model architecture (attention mechanisms), and surrogate modeling and rule
extraction. We also provide examples from recent studies for each category (Ssummarized in Table 1).

3.1 Feature Attribution Methods (SHAP, LIME, and Feature Importance)

Feature attribution is a post-hoc XAl approach that assigns an importance value to each input feature of a
model for a given prediction. In battery fault diagnosis, features could be sensor measurements (voltages,
temperatures) or engineered features (e.g. voltage drop during a load pulse). By quantifying each feature’s
influence on the model’s output, engineers can verify if the model is attending to meaningful indicators of
faults.

e SHAP (SHapley Additive exPlanations): SHAP is a popular model-agnostic method based on
cooperative game theory [11]. It calculates feature importance by considering the contribution of each
feature to the prediction across many feature value combinations, using Shapley values for fair
attribution. A key advantage of SHAP is that it provides consistent global and local explanations — the
SHAP values for a single instance explain that particular prediction, and if we average SHAP values
over many instances we get each feature’s overall importance [11]. SHAP is also grounded in solid
theoretical guarantees (local accuracy and consistency) [11]. In battery applications, SHAP can be
applied to any trained fault detector model. For example, in a recent study on battery state prediction,
SHAP was used to identify the most influential inputs affecting the model’s estimation of battery health
and impending failure [12]. The output might show, for instance, that an abnormal drop in one cell’s
voltage contributed heavily (with a large negative SHAP value) to the model’s decision that an internal
short had occurred. This aligns with human expectations and thus builds trust. However, SHAP can be
computationally expensive for models with many features or complex correlations, as it requires
evaluating numerous feature subsets. Despite this, its use in battery diagnostics is growing; Faraji Niri
et al. (2023) found SHAP to be the second most frequently employed XAI method in battery research,
often used alongside tree-based models [9].
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LIME (Local Interpretable Model-Agnostic Explanations): LIME is another widely-used technique
that explains a prediction by training a simple interpretable model (such as a linear model) locally
around the instance of interest [13]. In practice, LIME perturbs the input features of the instance in
many ways, observes the complex model’s outputs, and then fits a weighted linear regression that
approximates the complex model in that local vicinity [13]. The coefficients of this local surrogate
model serve as feature importance scores. In a battery fault context, LIME could be used to explain
why a specific driving cycle was flagged as “thermal runaway risk” by an Al: it would generate slight
variations of the sensor readings (voltage, temperature profiles) and see how the black-box model
responds, then deduce which readings (perhaps a rapidly rising temperature in one module) drive the
prediction. LIME’s strength is its simplicity and model-agnostic nature — it can explain any classifier
or regressor. It tends to be faster than SHAP but can suffer from instability (different perturbations may
yield slightly different explanations). As of this review, LIME has been less commonly reported in
battery fault studies compared to SHAP, but it remains a valuable tool. It provides quick, human-
intelligible insights (e.g. “voltage sensor 5’s reading had the highest positive weight in the local linear
model, indicating that sensor was a main driver of the fault prediction”), which complements more
rigorous methods.

Permutation and Gini Importance: In addition to SHAP and LIME, many researchers use simpler
feature importance measures, especially with tree-based models. Permutation importance involves
shuffling one feature’s values among instances and observing how much the model’s error increases; a
large increase indicates the model was relying strongly on that feature [14]. Gini importance (used in
random forests) measures how much a feature reduces uncertainty or impurity across the decision splits
in the tree ensemble [14]. These methods were used, for example, by Jia et al. (2022) in a fault
classification model for lithium-ion cells [6]. Their machine learning model (comparing SVM, decision
tree (DT), random forest (RF), etc.) could classify whether a cell was experiencing an internal short or
thermal runaway with up to 95% accuracy [6]. To explain these predictions, they examined feature
importances via permutation and the RF’s Gini importance [6]. The results showed that features like
the initial and final voltage derivative, the end-of-discharge voltage, and the voltage integral were the
most significant indicators of an impending internal short circuit [6]. Such information is very useful —
it tells battery engineers that the model is focusing on sensible precursors (voltage drop patterns) rather
than any meaningless artifact. Similarly, Xu et al. (2022) trained a decision tree to classify multiple
fault types in a battery pack (normal vs. short circuit vs. connection fault vs. capacity degradation) [7].
By examining the tree’s structure, they found that it prioritized features related to the mean open-circuit
voltage difference between cells and the mean internal resistance difference as top decision nodes,
which contributed about 64% and 13% respectively to the model’s fault decisions [7]. This aligns with
intuition: a cell with an internal short will exhibit a notably lower open-circuit voltage and altered
resistance compared to its peers [7]. These feature-attribution approaches (permutation, Gini
importance) are less computationally intensive and easily applied to tree models, but they provide only
a global sense of importance and can sometimes be misleading if features are correlated. Nonetheless,
they have proven effective in validating that ML models for battery fault diagnosis are ‘paying attention’
to the right signals.

Overall, feature attribution XAl methods like SHAP and LIME (and simpler importance metrics) are a
cornerstone of explainability in battery diagnostics. They answer the critical question: “What sensor readings
or features caused the model to think the battery is faulty?” — which is invaluable for engineers performing
troubleshooting or deciding on control actions (such as bypassing a suspect cell).

3.2 Interpretable Model Architectures and Attention Mechanisms

Another route to explainability is to use or design models that are more transparent by their very structure.
In battery fault diagnosis, this can mean choosing inherently interpretable models (like decision trees or rule-
based systems), or incorporating architectural features like attention mechanisms in neural networks to
highlight important inputs.

Decision Trees and Rule-Based Models: Decision tree classifiers (and their ensembles, if combined
with careful interpretation) are often used because they produce human-readable rules. A decision tree
might, for example, first check if any cell’s voltage drops below a threshold under load (yes/no), then
check the difference between the highest and lowest cell voltage, and so on — forming a logical path to
a fault diagnosis. Such rules are relatively easy to interpret and verify against engineering knowledge.
In multi-cell battery packs, diagnostic decision trees can be used to isolate a faulty cell or determine the
fault type based on a hierarchy of symptom checks. The downside is that unconstrained decision trees
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can become very large and complex when fitted to data, but techniques like limiting tree depth or using
tree ensembles with global explanation tools (as described in 3.1) can mitigate this. In one case, decision
trees were used to classify battery faults and then the resulting tree was examined directly to understand
the model’s logic [7]. The tree’s splits confirmed known fault indicators (voltage and resistance
disparities), giving confidence in both the model and the diagnostic result.

Attention Mechanisms in Neural Networks: Attention mechanisms, widely used in sequence models,
allow a neural network to weight the importance of different parts of the input when making a prediction.
In battery systems, attention can be applied in time-series models (to highlight which time steps in a
voltage or temperature trajectory are most informative) or across different sensors/cells (to highlight
which cell in a battery pack is contributing most to an anomaly). For example, an LSTM-based model
for early fault prediction could include an attention layer that produces weights for each time step,
indicating where the model “attended” — perhaps strongly weighting a moment when a cell’s voltage
abruptly dropped. If that time aligns with a known fault initiation event, it provides an explanation for
the model’s prediction. Likewise, a neural network taking multiple cell measurements could employ an
attention mechanism over cells, effectively identifying the cell that is likely faulty by giving it a higher
attention weight. Although attention weights are not a perfect explanation (they highlight correlation,
not necessarily causation), they have been successfully used to interpret deep learning models in related
domains (e.g. machinery fault diagnosis) [14] and are beginning to find use in battery applications. One
recent work on battery state-of-health prediction developed a self-attention neural network that not only
improved accuracy but also indicated which segments of the cycle data were most predictive of battery
aging [9]. Such information can indirectly point to fault-related stress periods in usage (for instance,
attention might focus on high-temperature charging intervals which accelerate degradation). The
advantage of attention is that it provides an internal explanatory signal without separate post-processing.
However, interpreting attention requires caution: it tells us where the model looked, which is helpful,
but not exactly why the model made its decision in a causal sense.

Inherently Interpretable Models: Apart from trees, other inherently interpretable models include
linear models, logistic regression, and case-based reasoning (k-Nearest Neighbors with explanation by
similar cases). In battery diagnostics, linear models are sometimes too simplistic given nonlinear
behaviors. However, a notable example is the elastic net model used by Chen et al. (2017) for on-board
failure identification [15]. The elastic net is essentially a linear model with regularization that selects a
subset of features. Chen et al. trained this model on partial charging curves of cells to classify whether
a cell is healthy or failing due to capacity loss [15]. The model inherently performed feature selection,
effectively choosing the two most relevant voltage/capacity features and ignoring the rest [15]. This
yielded a simple linear decision boundary in that feature space — something that can be easily interpreted
by engineers (the selected features corresponded to peaks in the incremental capacity curve, which are
known indicators of cell aging) [15]. The interpretable nature of the model meant no separate XAl tool
was needed; the model’s coefficients directly indicated how much each feature contributed to the
diagnosis. The trade-off was a slight drop in predictive performance compared to black-box models,
but many would argue this is worthwhile in safety-critical diagnosis. This philosophy echoes the
viewpoint of Rudin (2019), who argues that whenever possible, one should use interpretable models
instead of explaining black-boxes — to avoid the risk of misleading explanations [4]. In battery fault
diagnosis, if a simple rule-based algorithm or linear model achieves near-human accuracy, it is often
preferable for operational use due to its transparency and ease of validation.

1V. SURROGATE MODELING AND HYBRID EXPLANATIONS

Surrogate modeling involves creating a secondary, interpretable model that approximates the original
complex model’s behavior. This is similar in spirit to LIME (which uses local surrogates), but here we discuss
global surrogates and other hybrid strategies combining model-based and data-driven insights.

Global Surrogate Models: A global surrogate is an interpretable model (like a decision tree or a set
of if-then rules) trained to mimic the predictions of a complex model over the entire input space. For
instance, suppose we have a trained neural network that flags cells as faulty or healthy based on a
plethora of features. We could generate a large number of examples, get the neural network’s
predictions, and then train a decision tree on this synthesized dataset (inputs vs. the network’s outputs)
to serve as a stand-in. If the tree achieves high fidelity in reproducing the neural network’s decisions,
it effectively becomes a concise explanation of the network. Researchers have not extensively reported
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global surrogates specifically for battery fault models yet, but this approach is promising. It could
yield a set of human-understandable rules like: “IF cell 5 voltage drop > X and temperature >Y THEN
Fault = True” which approximate the neural net’s complex boundary. The risk is that the surrogate
may not perfectly capture the original model, especially if the model is highly nonlinear. Still, even a
partial fidelity surrogate can provide insight. Rule-based surrogate extraction has been noted as a
viable path for explaining ensemble models in related power systems, which by analogy applies to
battery systems.

« Hybrid Physics-Data Explanations: In multi-cell battery packs, certain fault types can be more easily
explained by physics, while others emerge from patterns in data. An emerging idea is to use domain
knowledge to guide explanations of data-driven models. For example, if an ML model predicts an
“internal short” fault, one could automatically correlate that with known symptoms such as heat
generation and voltage divergence, and check if those were present. If the model’s prediction is indeed
based on those symptoms, the explanation can be phrased in those terms (e.g. “Cell 7 is predicted to
have an internal short because its voltage dropped 0.2 VV more than the pack average and its surface
temperature spiked”). This kind of explanation uses a surrogate description rooted in battery physics
to rationalize the black-box output. Another hybrid approach is supplementing data-driven models
with estimated parameters from a battery model. For instance, one might feed features like “estimated
cell resistance” or “capacity fade %” (obtained via a model-based estimation) into an ML classifier
alongside raw sensor data. The classifier’s use of those features can then be interpreted directly (if the
classifier heavily weights a high resistance estimate, it is aligning with the physical notion that
increased resistance indicates a fault). This merges interpretability with predictive power, and some
studies have found it improves both performance and explainability [9, 3].

o Case-Based Reasoning: Although not yet prominent in battery fault literature, case-based reasoning
can be intuitive: the system can retrieve similar fault cases from history to explain a new diagnosis.
For example, “Cell 12 is flagged faulty because it behaved similarly to Cell 8 in Pack 3 last year,
which had an internal short.” This approach requires a library of past fault data and a way to measure
similarity, but it provides a very human-friendly explanation by example. As more battery operational
data become available, one can envision XAl systems that provide such analogical explanations.

e Visualization Tools: Lastly, a mention should be made of visualization-driven XAl. In battery packs,
one can visualize the spatial or temporal patterns that led to a fault. Heatmaps showing cell-wise
anomaly scores or time plots highlighting segments where the model found anomalies can be effective
explanatory tools for engineers. For instance, a plot of all cell voltages where the faulty cell’s voltage
curve is highlighted at the points the model deemed problematic can immediately show when and
which cell diverged. These visual explanations often accompany formal XAl methods: the SHAP
values for each cell can be depicted on a pack diagram, etc. Such techniques are more supplemental
but are important for practical acceptance of XAl outputs.

Table 1. Key XAl methods for battery fault diagnosis — their approach, advantages, limitations, and example
applications.

Technique Explanation Pros Cons Example Usage
Approach

SHAP  (SHapley | Model-agnostic | Consistent, Computationally Identifying which

Additive feature theoretically fair; | intensive for large | sensor features

exPlanations) attribution based | provides local and | models; assumes | indicate an internal
on Shapley | global feature independence | short or thermal
values (game | explanations; (kernel SHAP) which | runaway in ML
theory). works with any | may not hold, | classifiers [6, 7].
Quantifies each | model. requiring careful | Widely used to
feature’s interpretation. explain battery
contribution to a health predictions
specific [12].
prediction [11].

LIME (Local | Post-hoc  local | Fast and flexible; | Local fidelity only | Explaining a

Interpretable surrogate easily  explains | (may not reflect | particular fault

Model-agnostic modeling. Fits a | individual global behavior); | decision by

Explanations) simple predictions in | explanations can vary | approximating the
interpretable human terms (e.g. | with sampling; less | battery =~ model’s
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model (e.0.

linear weights); no

effective if features

logic near that data

sensor channels)
for each output

interpretability
simultaneously.

indicators exist.

linear) around the | need for model | interact in complex | point. Not yet
neighborhood of | internals. ways. widely reported in
an instance to battery domain, but
explain a applicable for
complex model’s explaining e.g.
prediction [13]. “why this cycle
was flagged as
faulty.” [13]
Feature Measures Simple to | Global only (no|Used in Random
importance influence of each | compute;  gives | instance-specific Forest models to
(Permutation/Gini) | feature on model | quick global | insight); permutation | show voltage drop
performance importance can be misleading if | and dV/dt are top
(permutation ranking;  works | features are | fault indicators [6,
testing) or | out-of-the-box for | correlated. 7]. Helps validate
impurity tree ensembles. model focus aligns
reduction  (for with known fault
tree models) symptoms.
[14].
Attention Neural network | Offers built-in | Attention weights are | In a battery pack
Mechanisms layers that learn | indication of [not a complete | sequence  model,
weightings  for | “where the model | explanation; can | attention highlights
input is looking”; can | sometimes be diffuse | the time segment of
components improve  model | or hard to interpret if | an anomaly (e.g. a
(time steps, | performance and | multiple fault | sudden voltage

drop) as the reason
for fault prediction.

model (tree, rule
set) to mimic the
behavior of the
black-box model,
either globally or
for specific
regions.

approximation of
complex model;
leverages rich
forms like if-then
rules which align
with engineering
reasoning.

difficult to capture
highly nonlinear
behavior with simple
surrogates; risk of
oversimplification.

prediction. Emerging use in
deep learning for
battery state
forecasting [9].
Surrogate Models | Train an | Provides a human- | May sacrifice | Decision tree
/ Rules interpretable readable accuracy/fidelity; surrogates to

explain a neural net
that detects faulty
cells, yielding rules
like “IF cell#5
voltage drop > X
AND temp > Y
THEN fault.”
Conceptually
demonstrated  in
power system
diagnostics.

As shown in Table 1, each XAl technique has its strengths and trade-offs. In practice, multiple methods are
often used in combination to build a comprehensive picture. For example, a team diagnosing an EV battery
pack might use a neural network for fault detection (for high accuracy), apply SHAP to identify the top
contributing sensor signals for each alert, and also maintain a simple rule-based checklist as a sanity check
(e.g. any cell with >0.1 V deviation is flagged). The SHAP explanation might reveal that a particular cell’s
voltage anomaly is driving the network’s prediction, which matches the rule-based trigger — reinforcing
confidence in the diagnosis. If SHAP instead highlighted an unexpected feature (say, an auxiliary temperature
reading), engineers would know to investigate further before taking action, as it could indicate either a subtle
fault mechanism or a modeling issue.
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V. DISCUSSION: BENEFITS, CHALLENGES, AND FUTURE DIRECTIONS

Benefits of XAl in Battery Fault Diagnosis: Incorporating XAl offers several clear advantages. Firstly, it
increases operator trust in automated battery management systems. Technicians are more likely to act on a
model’s recommendation (such as disconnecting a module) if the model can explain its reasoning in familiar
terms (e.g. pointing out a specific cell’s abnormal behavior) [2, 9]. XAl also aids in root cause analysis: by
knowing which features were important, engineers can trace back to physical causes (for instance, a low-
voltage reading might be due to an open circuit or a failed fuse). In research and development, XAl helps model
validation — it can reveal when a model is relying on spurious correlations or noise. For example, if an
explanation shows a model focused on a temperature sensor that is known to be unreliable or far from the fault
location, that model can be scrutinized or retrained. Overall, XAl contributes to safer battery operation by
adding a layer of transparency and error-checking to the decision process. It also facilitates knowledge transfer:
insights gained from XAl (like which sensor patterns herald failure) can inform improved diagnostic rules and
sensor designs in next-generation BMS.

Despite these benefits, there are significant challenges and open questions in applying XAl to battery fault

diagnosis:

e Limited Fault Data and Ground Truth: Data-driven models, and by extension XAl analyses of them,
are only as good as the data they are trained on. Real battery failures (thermal runaways, internal shorts)
are rare and often not reproducible in volume due to safety. This means models might be trained on
simulated faults or accelerated aging data, which may not capture all real-world nuances. XAl might
faithfully explain a model’s reasoning on the training distribution, but if the model never saw a certain
fault scenario, its “explanation” might not correspond to the true cause. A related issue is the lack of
ground truth for some faults — we might know a model is detecting an anomaly, but verifying the exact
fault type or cause can be difficult without destructive analysis. As a result, one future need is the
creation of richer open datasets of battery fault events (including sensor logs from failed batteries) to
train and evaluate explainable models [9]. Researchers are beginning to share data from battery
lifecycles and abuse tests, which could be used to improve XAI methods’ reliability.

o Real-Time Constraints: Implementing XAl in an online BMS environment has computational and
usability constraints. Methods like SHAP can be too slow to run on-the-fly in an embedded processor
for every prediction. Simplified or approximate XAl methods might be required, or one might pre-
compute explanation templates offline. There is ongoing work on speeding up XAl algorithms and on
developing lightweight surrogate models that can run in real time.-Moreover, the BMS has limited user
interface capabilities — any explanation must be distilled to key information (e.g. which cell is faulty)
rather than overwhelming a technician with dozens of SHAP values. Balancing detail and clarity in
real-time explanations is an open challenge.

o Evaluation of Explanations: How do we know if an explanation is correct or useful? This is a general
challenge in XAIl. An explanation could be persuasive yet wrong (the model might be right for the
wrong reasons). For high-stakes systems like batteries, it is crucial to validate explanations. One
approach is to perform controlled experiments: if the model says “cell 7’s voltage triggered this alarm,”
one could manipulate cell 7’s data and see if the alarm changes accordingly (counterfactual testing).
Another is expert review — have battery engineers assess whether the explanations align with known
physics. Developing quantitative metrics for explanation quality in this domain (e.g. how well they
align with a first-principles simulator’s diagnosis) would advance the field. The work by Guidotti et al.
(2018) suggests a need to explicitly consider the fidelity and persuasiveness of explanations in
evaluations [16].

e Integration with Decision-Making: Ultimately, an explanation is only as useful as the actions it
enables. Future BMS may act autonomously (e.g. triggering pack reconfiguration or emergency
cooling). How should XAl inform automated actions? One idea is to set up human-in-the-loop systems
where the BMS provides an explanation and waits for a human override or confirmation for certain
critical decisions. This requires careful interface design and may involve training operators to interpret
XAl outputs correctly. Additionally, explanations could be logged for post-event analysis even if no
human is in the loop at runtime, creating a trace of “why”” decisions were made to satisfy regulatory or
forensic requirements (like investigating an EV fire).

o Generalizability and Robustness: Battery systems vary widely (chemistry, format, use profile). An
XAl technique or model explanation that works for one scenario might not directly transfer to another.
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For example, the importance of a feature like “voltage drop under 10C load” might be valid for one cell
type but irrelevant for another that fails in a different way. Ensuring that XAl methods remain robust
across different datasets and even detecting when a model is extrapolating beyond its trained conditions
(which might manifest as unusual or low-confidence explanations) is an open problem. Some research
is looking at uncertainty estimates alongside explanations to convey when a model is less sure about its
reasoning.

o Future Directions: We foresee several avenues for advancing XAl-based fault diagnosis in battery
packs. One is the development of standardized diagnostic explanation frameworks in BMS software —
analogous to OBD-II codes in gasoline cars, there could be standardized “explanation codes” for battery
faults (e.g. a code for “voltage discrepancy” fault cause) that an XAl system maps to. Another is
leveraging transfer learning and multi-modal data: combining mechanical, electrical, and thermal
models such that explanations draw from multiple domains (e.g. correlating an internal short’s electrical
signature with the thermal signature for a more complete explanation). As machine learning models
become part of digital twin frameworks for batteries, their explainability will be key to bridging the
virtual model with real-world understanding [12]. Additionally, regulatory bodies may start requiring
explainability for Al in safety applications; this will push XAl from a research topic to a required feature
in industry. Finally, interdisciplinary efforts between battery scientists and Al experts will be crucial —
to ensure explanations are grounded in electrochemical reality and to identify new fault indicators that
ML discovers. The ultimate goal is a transparent BMS where every alert or action is accompanied by a
clear rationale, thus enabling safer and more effective management of multi-cell battery packs.

V1. CONCLUSION

XAl-based fault diagnosis in multi-cell battery packs is an emerging and promising area that marries the
predictive power of advanced machine learning with the transparency needed for safety-critical systems. This
review has surveyed the landscape of techniques and studies at this intersection. Data-driven models can detect
subtle and complex fault patterns that traditional methods might miss, but explaining their decisions is vital for
trust and adoption. Techniques such as SHAP and LIME provide post-hoc insights into black-box models,
identifying which sensor measurements or derived features most strongly influence fault predictions [13, 11].
Interpretable model designs, like decision trees and attention-equipped networks, offer an alternative path by
incorporating explainability directly into the model structure [7, 15]. Early applications of these approaches to
battery packs have yielded intuitive and actionable explanations — for instance, pinpointing a single aberrant
cell out of hundreds as the root of a fault [7], or linking a sudden voltage dip to an internal short diagnosis [6].
These successes demonstrate that XAl can turn battery fault diagnosis from a mysterious verdict (“pack failure™)
into a transparent process with supporting evidence.

At the same time, our review highlights that XAl in this domain is still in its infancy. Only a handful of
works (spanning roughly the last five years) explicitly incorporate explainability into battery fault diagnostics
[9]. There is ample room for deeper exploration — from developing fast, real-time explainable diagnostics to
creating large-scale benchmarks for evaluating explanation methods in battery management. Challenges such
as ensuring explanation fidelity, handling data scarcity, and integrating XAl with human decision-making
processes will need to be addressed. Encouragingly, the trajectory is set by analogous fields (like healthcare
and finance) where XAl has moved from theoretical to practical, and battery research is following suit.

In conclusion, explainable Al has the potential to significantly enhance the safety and effectiveness of
battery fault diagnosis. It provides the means not only to detect faults but also to understand them. By opening
the black box of machine learning models, XAl allows engineers to validate diagnostic decisions against
domain expertise and thus bridges the gap between algorithm and operator. The synergy of model-based and
data-driven methods, under the unifying lens of explainability, offers a powerful toolkit for managing the
complexity of modern battery packs. As this field progresses, we anticipate that future battery management
systems will routinely employ XAl — delivering transparent diagnostics that can accelerate troubleshooting,
inform preventive maintenance, and ultimately contribute to the development of more resilient battery systems.
An explainable future is a safer future for energy storage technology.
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