

Artificial Intelligence And Customer Experience In Fintech: A Sustainable Service Perspective

Aviral Lawania

Christ University, Lavasa, India

Abstract - Artificial intelligence (AI) within financial technology (FinTech) platforms creates radical changes in customer-related activities and operational performance while adjusting service delivery practices. This research examines AI-based service solutions that affect user interactions through evaluations of service quality as well as trust and personalization, and sustainability. A quantitative research method involved gathering survey information from people who actively use FinTech platforms that incorporate artificial intelligence technologies. Through AI technology, financial service providers enhance customer satisfaction by simplifying delivery systems and providing better ease-of-use options. The level of trust users have in AI encounters problems because of their worries about data protection, together with their need to understand how algorithms work. The research demonstrates why FinTech companies must use AI properly through visible system operations along with security protocols and adherence to rules. The research links technical innovation with user expectations to supply FinTech companies with tactics that optimize Artificial Intelligence applications for better interactions with customers. This study advances the financial service AI knowledge base by presenting applicable solutions for sustainable ethical development of FinTech innovation.

Purpose - The study investigates the impact of artificial intelligence on user encounters in financial technology (FinTech) services.

Design/Methodology/Approach - A quantitative method was used to gather survey data through Google Forms, which was sent to active users of AI FinTech services.

Findings - This research examines how user perception, together with service quality, convenience, and sustainability, affects customer experience throughout AI-driven FinTech operations.

Research limitations/Implications - The research admits to its primary constraints as stemming from a limited number of surveyed participants.

Practical implications - The research provides business recommendations for FinTech organizations that want to maximize their AI usage to create better user experiences and establish trust with customers.

Originality/Value - The paper enhances our knowledge about the ways artificial intelligence changes customer experiences and interactions within FinTech modernization.

Keywords - Artificial Intelligence, FinTech, Customer Experience, Service Quality, User Perception, Sustainability

I. INTRODUCTION

A revolutionary shift is taking place with artificial intelligence now integrated into the financial technology (FinTech) industry. Developing consumer expectations for efficient, sustainable, personalized financial services fuels this transformation (Aswathy and Aruna, 2024). AI-driven technologies have dramatically changed the way financial institutions interact with their customers, and they are delivering real-time, data-driven insight to improve the customer experience. For FinTech firms, customer experience is not just an outcome that will help them stay competitive but a strategic key focus that will give them a competitive advantage. With more and more financial service providers leaning into AI to enhance experiences for their customers, it becomes more important than ever to learn how experiences in this new environment are affected. The critical influences that shape these interactions, in particular, service quality (SQ), user perception, convenience, and sustainability, are explored, and how AI can be harnessed to optimize these dimensions is discussed in this literature review. The FinTech sector experienced substantial customer impact due to intelligent artificial intelligence (AI) technology implementations (Trivedi 2019; Malik et al. 2021). FinTech organizations utilizing AI at scale have introduced a new approach to customer and service relations through AI-enabled mass digitization of financial service markets (Gümüş and Çark, 2021). The review examines various aspects of this change, including service quality (SQ), trust, user perception, personalization, convenience, sustainability, and security. The fusion of artificial intelligence produces banking services that represent a new exploration path for delivering personalized experiences across developing markets (Sheth et al., 2022). Financial organizations use AI technologies to produce customized solutions for their diverse customers, which enhances strong customer relationships and customer loyalty. Customer satisfaction and loyalty in the FinTech sector heavily depend on

the role that service quality plays in this field. Organizations in FinTech have revolutionized their service quality through AI technology implementations that enhance interaction speed and precision for customers (Ajay Kumar Ganguly et al., 2024). The implementation of AI-driven FinTech services using chatbots guarantees continuous customer satisfaction along with minimal human errors (Chinenye & Ijomah, 2024). Consumer service delivery has transformed because of real-time dialogues and minimized delays with baseline responses from natural language understanding mathematical formulas that swiftly resolve inquiries (El-Shihy et al., 2024; El-Shihy et al., 2024). The automated process leads to enhanced customer service while lowering the expenses of operating financial institutions. The service quality escalates while AI delivers individualized financial suggestions, which derive from user behavioral data and transaction histories, according to Gupta and Joshi (2022). Fintech companies leverage AI systems to process vast real-time data volumes for predicting client needs while providing appropriate solutions independently which positions them as leaders in service delivery innovation (Barde & Kulkarni, 2023). The important understanding of user perceptions, ethical considerations, and their trust in bank-driven AI systems becomes vital because AI technologies keep advancing their presence in banking operations. User trust in AI-enabled financial solutions remains critical since customers depend on these services, while major privacy issues, security concerns, and black box characteristics of AI programs create significant user concerns (Kumar & Rani 2022; Ali et al. 2021). Customer acceptance of financial services driven by AI follows from establishing trust between these services and their users (Hassan & Ferdous, 2023). Customers depend on their faith in AI systems based on how companies manage their financial data for security and to protect privacy while following ethical standards. Users typically view AI systems through windows of mystery because their decision processes remain opaque, leading to trust reductions (Roh et al., 2023). Monitoring ethical aspects touching data privacy together with algorithmic transparency stands as a main deciding factor for banking institutions to establish AI in their financial processes (Hassan & Ferdous, 2023). Customers need to feel assured that AI protection layers protect sensitive information under privacy protocols that shield personal data. The FinTech industry now places sustainability as its focus through customer needs together with government standards (Najaf et al., 2023). The process of digitization efforts of FinTech companies enables them to minimize transactions that use paper documents to decrease their environmental impact. The AI-focused financial industry now utilizes environmental and social governance factors to deliver solutions for investor sustainability assessment (Najaf et al., 2023). Suspension of physical infrastructure occurs through automated financial operations that AI establishes for environmentally friendly services. AI applications bring advantageous solutions to sustainability through resource optimization while decreasing operational waste and environmental effects (Aswathy & Aruna, 2024). Through AI technologies, FinTech organizations achieve operational efficiency by converting processes to digital formats while cutting down paper-based actions and reducing their environmental impact. The assessment through AI algorithms enables ESG performance evaluation for companies so investors can verify sustainable compliance practices to support responsible investments according to Minh Tung Tran (2024). FinTech companies gain risk prediction capabilities from AI systems, which help them create sustainable financial products that face

environmental market threats. Firms using AI automation in their financial operations need less physical infrastructure, which results in environmentally friendly financial services operations. The rise of FinTech firms utilizing AI-based digital platforms has replaced physical branches, thus leading to reduced energy usage and emissions (Ajay Kumar Ganguly et al., 2024).

II. LITERATURE REVIEW

The intelligent integration of artificial intelligence (AI) technologies has changed customer interactions in the financial technology (FinTech) sector. The adoption of AI and mass digitization of the financial services market has resulted in a new paradigm for customer and service engagement by FinTech firms using AI at scale. This literature review investigates key facets of this transformation, focusing on service quality (SQ), trust, user perception, personalization, convenience, sustainability, and security.

2.1 AI-Driven Service Quality in FinTech

With the emergence of AI-driven banking services as a frontier to enhance personalized customer experience in emerging markets (Sheth et al., 2022). AI technologies enable financial institutions to customize offerings to meet the specific needs of different customers, thus enhancing deeper customer engagement and customer loyalty. This is important to FinTech companies as it helps them to differentiate from the competition. Within the FinTech sector, the contribution of Service quality to customer satisfaction and loyalty is an important factor. FinTech companies have been able to reinvent service quality by using AI technologies to ramp up the speed and accuracy of customer interactions. Research finds that artificial intelligence (AI) serves a big service with predictive analytics, real-time help, and automated decision-making systems (Ajay Kumar Ganguly et al., 2024). With AI, FinTech services, for example, can cut back on human error and improve customer satisfaction through round-the-clock chatbots (Chinenye & Ijomah, 2024). Through real-time communication and cutting waiting time, AI-enabled chatbots have changed customer service so that these chatbots can respond consistently with high-quality responses. These chatbots have natural language processing algorithms to understand customers' requests and provide immediate resolutions (El-Shihy et al., 2024). Not only does it make the customer experience better, but this automation significantly reduces financial institution operational costs. In addition, AI improves service quality by providing personalized financial recommendations to users concerning their behavior and transaction histories (Gupta & Joshi, 2022). Proactive service delivery, powered by AI systems that can analyze enormous quantities of data in real-time, means that the system anticipates customer needs before they know and presents a suitable solution without a human's involvement. As part of a journey towards the improvement of service quality, this predictive capability works towards making FinTech firms' leaders in customer-centric innovation (Barde & Kulkarni, 2023).

2.2 User Perception, Trust, and Ethical Considerations

Artificial intelligence (AI) in the financial technology (FinTech) sector has advanced rapidly and is now changing how financial services are delivered and consumed. With AI technologies continuing to integrate into the course of everyday banking and financial operations, it is paramount to develop an understanding of how users perceive, trust, and consider the ethical aspects of these technologies. Customers now rely on AI-driven financial services, and you must have trust. As such, there are huge concerns over data privacy, security, and ethical issues regarding AI algorithms that end up being 'black boxes' to the users. This research shows that to build trust in AI systems, factors including transparency, perceived reliability on the use of services by the AI, and users' ability to maintain control over their data influence trust (Kumar & Rani 2022; Ali et al. 2021). To sustain the supporting relationship between FinTech innovations and users, it is necessary to understand those dimensions. Recently, the integration of AI in FinTech services has required a closer look into not only Trust but also user perception. Customer acceptance of AI-driven financial services is based on trust (Hassan & Ferdous, 2023). The security, privacy, and ethical management of customers' data from their financial transactions underpin a great deal of their trust in AI systems. Users often view AI-enabled systems as 'black boxes,' lacking transparency in the decision-making, though this may reduce trust (Roh et al., 2023). The adoption of AI in banking and financial transactions comes with its share of ethical considerations, but at the center are issues of data privacy and algorithmic transparency (Hassan & Ferdous, 2023). Users must be confident that AI systems are not only able to protect sensitive data but also be contained within a framework that exercises customer privacy. AI-driven innovations, including biometric authentication and secure identity verification processes, are decisive in building user trust (Ajay Kumar Ganguly et al., 2024). FinTech services can further fortify trust in AI's ability to detect fraudulent patterns, as well as anomalies, in real time through pattern recognition and anomaly detection. Regulators and financial institutions have turned a spotlight on the ethical use of AI in managing customer data. According to Hassan and Ferdous (2023), trust in AI algorithms can be ensured by transparency in the algorithm and customers being able to control their data. For example, as XAI models become more widespread, explainable AI (XAI) models used by financial tech (FinTech) firms particularly indicate a shift towards making decision-making based on AI more interpretable for users, bridging two sides of the AI and trust gap.

2.3 Convenience and Personalization

Artificial Intelligence (AI) has recently integrated into the financial enterprise very quickly, which has dramatically changed how customers are taking part in financial services, providing a new level of convenience along with personalization that had never existed in the financial service industry. AI technologies aid FinTech in offering highly tuned financial products and services to customers using different data in a very customer-specific way. Instead, this personalization encompasses not only product recommendations but a full financial advice offering, including personalized offers that account for a customer's unique financial role. Hentzen et al.

(2022) have noted that the shift towards AI-driven systems is not only a complete shift to automated traditional manual processes but also improves the accuracy and responsiveness of service delivery, thereby reducing errors and improving workflow. Particularly for younger, tech-savvy customers who want self-service solutions with little human intervention, this new era of FinTech services is beginning to attract. It is one of the impacts of AI in FinTech that the level of convenience and personalization has been brought to a higher level for customers. By analyzing huge amounts of customer data, AI helps FinTech companies deliver personalized financial products and services best suited to individual needs. Personalization does not just stop at product recommendations but extends to a customer's advice and offers, even financial plans that take a customer's financial health and goals into account (Minh, 2024). With AI-powered systems, benefits abound—it automates old processes that had been manual, reducing errors and streamlining workflows. For instance, we see that Robo-advisors, as a part of the FinTech space, offer personalized and accessible algorithm-based financial advice to the customer (Singh & Johri, 2024). These AI-driven advisors can scan market trends and user preferences and make real-time recommendations that are in line with individual financial goals. The beauty of this high level of personalization is particularly special and especially attractive to younger, tech-smart customers who can find self-service financial tools that need minimal human contact. Moreover, the convenience of AI is enhanced owing to its seamless, real-time access to financial services in digital platforms. These chatbots and virtual assistants are AI-powered and available 24/7 to facilitate routine queries, thereby enabling customers to resolve issues without waiting for human representatives (Chinenye & Ijomah, 2024). With businesses taking on a globalized approach in their work, combining the convenience of a 24-hour service with the expertise of specialists is especially valuable. As AI gets better, these systems will take on more and more intuition for a unique, personalized customer experience at the point of anticipation for their needs.

2.4 Sustainability in AI-Driven FinTech Solutions

In the FinTech industry, Sustainability is becoming a major focus point as consumers see it as a part of the sustainable process and as an answer to regulatory needs. Thanks to our fast-growing industry, financial services have been moving to AI applications to enhance sustainability by optimizing resource usage, cutting operational waste, and diminishing environmental impacts (Najaf et al., 2023). FinTech companies can digitize their processes, significantly decreasing paper-based transactions, thus reducing their carbon footprint. Additionally, AI-focused financial products are now standardized with environmental, social, and governance (ESG) aspects so that investors can examine how well companies adhere to such sustainable practices (Najaf et al., 2023). AI also makes way for eco-friendly services due to the reduced need for physical infrastructure, so that by automating financial operations, money becomes the most important thing. Therefore, AI-powered platforms have become increasingly used by FinTech firms to provide digital services support to their quest for sustainability and decrease energy expenditure. Consumers and regulatory pressures are pushing the FinTech industry towards an emerging priority — sustainability. Promising solutions for promoting sustainability within

financial services are also based on AI applications, which can be applied to optimize resources, reduce the amount of operational waste, and reduce environmental impacts (Aswathy & Aruna, 2024). FinTech Companies can benefit from the use of AI systems and the ability of AI systems to utilize machine learning to streamline operations by digitizing their processes, thereby reducing dependence on paper-based transactions and thus reducing their carbon footprint. Also, AI-driven financial products now consider environmental, social, and governance (ESG) factors in their models as a way of promoting sustainable investment practices. Based on this, AI algorithms can review companies' ESG performances and present investors with an understanding of how compliant a company has been with sustainable practices, which are responsible investments (Minh Tung Tran, 2024). Risk management is also supported by AI, which predicts environmental risks that can affect the financial markets and, therefore, FinTech companies can bring to the market more sustainable financial products. AI automating the financial processes reduces the need for physical infrastructure and hence leads to eco-friendly financial services. There are more and more FinTech firms using AI-powered digital platforms to eliminate the need for brick-and-mortar branches, which results in lower energy consumption and fewer emissions. However, at the same time, AI is furthering the cause of the financial sector by advocating for digital-only services and following global sustainability goals (Ajay Kumar Ganguly et al., 2024).

2.5 AI-Driven Security in FinTech

With data moving to cyberspace and the growing interoperability of financial transactions, the security of financial transactions is becoming paramount. As cybercriminals target ever more financial institutions, they need to take on robust security measures (Gonçalves et al., 2023). Ways to stay one step ahead in the FinTech security threat are being provided by the integration of artificial intelligence (AI). AI takes advantage of advanced algorithms that can significantly improve in real time the detection of fraudulent activity by identifying anomalies in transaction patterns and alerting to potential risks (Gonçalves et al., 2023). Updating systems that can quickly adapt to new challenges is what this proactive approach does – it not only protects customer assets but also renews trust in digital financial services. The important role of AI in improving security at FinTech is because financial institutions are top targets of cyberattacks. The advanced security algorithm in an AI system can detect and defeat fraud in real-time. (You can picture it, for example. A machine learning model can spot aberrant patterns in transaction data and alert to potentially fraudulent transactions as they arise rather than escalating (Ajay Kumar Ganguly et al., 2024). Real-time detection is critical to preserve customer funds and their personal information, both important for trust in FinTech services. Besides fraud detection, AI is critical to the security of financial transactions through biometric authentication. The usage of programs with AI-empowered advancements, like facial recognition, voice recognition, and fingerprint engagement, just permits assured clients to access delicate monetary data (Ajay Kumar Ganguly et al., 2024). These advanced security measures add not only to authentication processes but also to an improved user experience with these non-invasive, seamless authentication methods. AI's predictive capability towards these

vulnerabilities helped the FinTech companies to anticipate and then prevent the vulnerabilities before they spread (Barde & Kulkarni, 2023). AI systems are learning continuously from more data, refining their algorithms to detect new threats and take precautions against breaches. Proactive security, especially in an industry comprising mountains of sensitive data and financial transactions, is essential.

2.6 Challenges in AI Adoption

The potential for artificial intelligence (AI) to revolutionize the FinTech landscape is immense. However, its adoption and integration are very difficult. As a result, the adoption of AI systems within existing financial frameworks is the subject of one of the foremost concerns, as it involves a major investment in technological infrastructure, as well as workforce training, to effectively implement them (Mohsen et al., 2024). Furthermore, it is very sophisticated and costly to ensure these AI solutions are scalable, secure, and compliant with regulatory standards, so FinTech must manage to get this done right. Additionally, the opaque nature of AI algorithms can lead customers to distrust the decision-making process that is not fully transparent (Roh et al., 2023). However, the automation of many traditional financial services by AI raises a second major challenge, as AI systems will increasingly displace labor that was previously done by humans in job roles that were traditionally filled by humans (Barde & Kulkarni, 2023). While AI has huge potential in FinTech, the adoption of such technology is accompanied by obstacles. The most pressing concern from an integration perspective one of the most pressing concerns for integration of AI into existing financial infrastructures is substantial investment in technology as well as workforce training (Ledro et al., 2023). Making AI scalable, secure, and compliant with industry regulations is a sophisticated and expensive effort, and the responsibility is on FinTech companies to get it right. AI algorithms are another black box. As is usual for several AI systems, the processes underlying their decisions are not transparent, and customers (and developers!) may not completely understand how certain decisions are made (Roh et al., 2023). And yet, this lack of transparency means that customers may begin to distrust your company, especially when that money is potentially being invested or spent, such as in decisions related to contracting a loan or recommending an investment. Another major problem caused by the automation of financial services with the use of AI is the labor displacement of the workforce. The flow of job losses from human hands to AI systems takes place more particularly in the financial sector, as jobs such as customer service or finance advisory are being given up by humans to AI (Barde & Kulkarni, 2023). AI speeds up efficiency and cuts costs, but it demands that the workforce re-skill to accommodate the new jobs in a future where we can no longer discount high wages.

2.7 Future Opportunities and Challenges

Artificial intelligence (AI) combined with financial technology (FinTech) will transform the industry with opportunities for touching new heights for innovation and growth. The capability to offer more personalized, intuitive, and efficient financial services is what FinTech companies are bringing by leveraging advancements

in machine learning, natural language processing, and blockchain technology (Kumari et al., 2024). These firms are applying AI to sift through huge amounts of data in real-time using AI that enables them to make specific financial recommendations to boost customer satisfaction as well as yield a positive business result. Yet, the future path is also filled with all sorts of obstacles: transparency, ethics, and workforce transformation (Belanche et al., 2019). In the increasingly AI-infused financial services space, and at minimum in terms of ensuring adherence to fair and transparent operations, stricter regulatory guidelines will have to be set (Singh & Johri, 2024). Unfortunately, the challenge is to innovate responsibly while satisfying ethical standards. FinTech is the future of AI, and the future is bright with continued advances in machine learning, natural language processing, and blockchain integration. Therefore, customers' experience will be better because of the generation of more personalized, intuitive, and efficient financial services provided by AI-powered systems (Minh, 2024). By leveraging AI to analyze huge volumes of data in real-time, FinTech firms can continue to provide more and more precise financial recommendations, improving customer satisfaction and business results. But while AI will be adopted in FinTech, challenges about transparency, ethics, and workforce adaptation will remain on the agenda. As AI continues to be used in financial services, regulation will need to come in with stricter guidelines to make sure these systems operate fairly and transparently (Singh & Johri, 2024).

III. RESEARCH METHODOLOGY

3.1 Research Design

The research adopts a quantitative research method to examine how artificial intelligence powers affect user experience in financial technology. A descriptive research method guides this study using structured Google Forms surveys to obtain data from active AI FinTech service users. Previous studies on AI in financial services by Trivedi (2019) and DeLone & McLean (2003) inform the research framework, which uses Service Quality (SQ), Convenience (C), Sustainability (S), and Perception (P) as independent variables that affect Customer Experience (CE).

3.2 Sampling and Data Collection

Anyone between 18 and 50 who utilizes AI financial services products through AI chatbots, automated advisors, and AI banking applications makes up the target audience. The researchers used purposive sampling to enroll participants who already had a history with AI applications in FinTech. Participants accessed the questionnaire through Google Forms while social media networks and FinTech user communities distributed it. Responses Collected: 414 valid responses over six weeks. The study draws on exploratory research findings from Kim et al. (2019) that validate the extraction of meaningful trends from diminished sample analysis.

3.3 Research Instrument

The survey used five adapted constructs derived from validated sources.

Construct	Definition	Number of Items	Scale Type
Service Quality (SQ)	Customers evaluate the reliability and functional performance of FinTech artificial intelligence solutions.	5	5-point Likert
Convenience (C)	Users require simple operation and easy access to financial tools that use AI technology.	4	5-point Likert
Sustainability (S)	AI contributes to the development of paperless transactions as well as environmentally friendly finance.	4	5-point Likert
Perception (P)	The subject of AI in FinTech requires review regarding user trust and explains transparency and ethical considerations.	4	5-point Likert
Customer Experience (CE)	Users show their contentment with AI-powered financial services while keeping a positive opinion about their ease of use.	3	5-point Likert

The research participants evaluated items by using a 5-point Likert scale with options ranging from 1 = Strongly Disagree through 5 = Strongly Agree.

3.4 Common Method Bias and Validity

The researchers utilized these procedures, according to Podsakoff et al. (2003), to handle common method bias:

- Item Randomization was used to rearrange question order, thus minimizing response biases.
- The Single-Factor Test by Harman verified that one variable could not account for greater than 50% of the total variance.
- The Confirmatory Factor Analysis (CFA) helped validate construct reliability and discriminant validity.

3.5 Data Analysis Techniques

The analysis is based on the large participant sample (n=414) for statistical procedures. Descriptive Statistics – Mean, standard deviation, and frequency distributions. An internal consistency assessment occurs through Cronbach's Alpha analysis, as per Nunnally and Bernstein (1994). Pearson Correlation Analysis detects connections between independent and dependent variables. Multiple linear regression analysis permits the detection of the variables that have the maximum impact on Customer Experience (CE).

IV. DATA ANALYSIS AND RESULTS

This research examines both survey and demographic data to identify the sample's complete characteristics and reactions to FinTech services that use AI. The analysis consisted of:

- Demographic Details
- Regression Weights
- SEM: Measurement Model
- Confirmatory Factor Analysis
- Full Analysis Table
- Summary of Findings

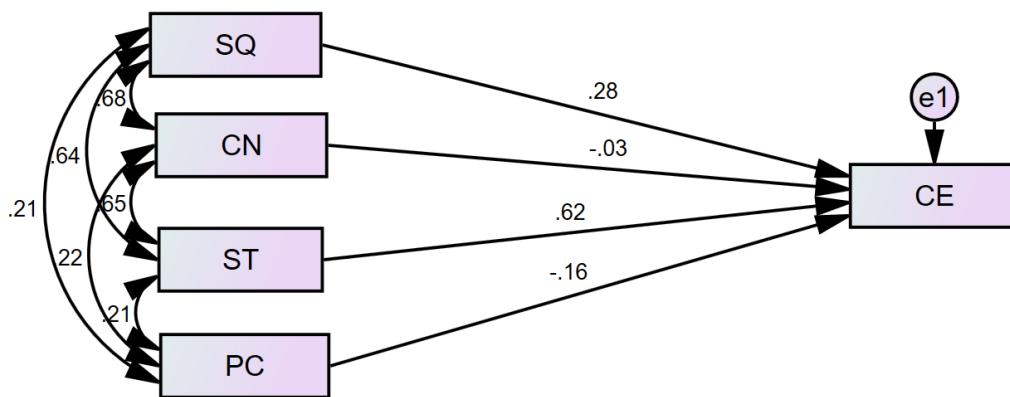
4.1 Demographic Details

The data regarding demographic information appears in Table 1.

Table 1: Demographic Characteristics of Respondents (N=414)

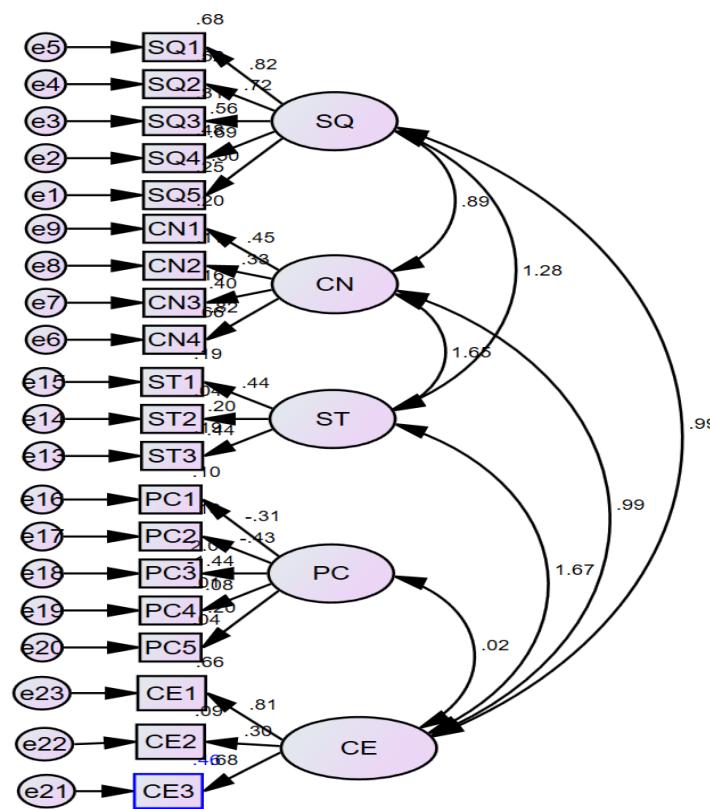
Demographic Variables	Category	Frequency (N)	Percentage (%)
Age	18-20	192	46.3%
	21-25	184	44.4%
	26-30	21	5%
	31-35	17	4.1%
Gender	Male	271	65.5%

	Female	143	34.5%	
Region	North India	210	50.7%	
	South India	116	28%	
Education Level	East India	25	6%	
	Undergraduate	341	82.4%	
Marital Status	Postgraduate	51	12.8%	
	Unmarried	353	85.3%	
Employment Status	Married	25	6%	
	Separated/Divorced	36	8.7%	
	Student	340	82.1%	
	Employed in an Organization	54	13%	
	Self-Employed	20	4.8%	


Annual Income	No Income	324	78.3%
	₹5,00,000 - ₹10,00,000	1	0.2%
	₹10,00,000 - ₹15,00,000	52	12.6%
	More than ₹20,00,000	37	8.9%

The demographic view of this research population consists mainly of young people between 18 to 25 years old (90.7%). The number of male participants (65.5%) exceeds female participants. North India (50.7%) leads the distribution of participants, while South (28%) and East (6%) contribute the remaining section. The student population makes up a substantial 82.4% of respondents, while 85.3% maintain their unmarried status. This data demonstrates that the survey participants primarily belong to undergraduate groups without any financial income (78.3%) among students who total 82.1%. A total of 12.6% of individuals earning from ₹5,00,000 - ₹10,00,000 constitute the population among workers. Most questionnaire participants belong to an academic population of students who are in their late teens to mid-20s and rely financially on others.

4.2 Regression Weights: (Group number 1 – Default Model)


	Estimate	S.E.	C.R.	P	Label
CE_AVG <--- SQ_AVG	.361	.058	6.278	<0.001	par_1
CE_AVG <--- CN_AVG	-.046	.062	-.747	.455	par_2
CE_AVG <--- ST_AVG	.745	.052	14.191	<0.001	par_3
CE_AVG <--- PC_AVG	-.297	.058	-5.148	<0.001	par_4

4.3 SEM: Measurement Model

The structural equation model (SEM) evaluates how four independent variables named Service Quality (SQ), Convenience (CN), Satisfaction (ST), and Perceived Cost (PC) affect Customer Experience (CE). The study findings demonstrate that Satisfaction ($\beta = 0.62$) and Service Quality ($\beta = 0.28$) respectively enhance CE variables, but Perceived Cost ($\beta = -0.16$) and Convenience ($\beta = -0.03$) create either negative or minimal influence. The independent variables demonstrate moderate relationship strength through their intercorrelation values between 0.21 and 0.68. Unmeasured factors within the sample are accounted for in the error term (e1). Framing Customer Experience comes primarily from Satisfaction together with Service Quality according to the research results.

4.4 Confirmatory Factor Analysis

The model utilizes SEM to display the associated elements of Service Quality (SQ), Convenience (CN), Satisfaction (ST), and Perceived Cost (PC) and their related observed variables. The variables consist of numerous observed indicators that track their presence (SQ1–SQ5 track Service Quality, while CN1–CN4 track Convenience). The measurement model displays standardized factor loadings to determine how well observed variables reflect their affiliated latent constructs. The structural model shows strong interrelationships between latent variables through its reported values that fall between 0.89 and 1.67. The three observed indicators CE1–CE3 function as measures for the dependent Customer Experience (CE) variable. Among the error terms (e1 through e23) found in the model, there exists unexplained variance for robustness purposes.

4.5 Full Analysis Table

5 Constructs	Items	Factor loadings	Mean	SD	Average Variance Extracted (AVE)	Composite Reliability (CR)	Cronbach's α
SQ	SQ1	0.404	3.7488	0.83198	0.406	0.764	0.770
	SQ2	0.623	3.8744	0.76464			
	SQ3	0.524	3.3478	1.16643			
	SQ4	0.522	3.8768	0.89756			
	SQ5	0.524	3.5483	0.77262			
CN	CN1	0.898	3.6353	0.95912	0.590	0.848	0.675
	CN2	0.74	3.7802	0.79190			
	CN3	0.835	3.9155	0.73653			
	CN4	0.556	3.7246	0.95493			
ST	ST1	0.87	3.8092	1.22911	0.557	0.788	0.414
	ST2	0.704	3.5556	0.82665			
	ST3	0.649	3.7947	0.93045			
PC	PC1	0.41	3.4324	0.86862	0.621	0.706	0.327
	PC2	0.86	3.7488	0.86620			
	PC3	0.876	3.7899	0.76976			
	PC4	-0.854	3.3671	0.97944			
	PC5	0.84	3.2826	0.88289			
CE	CE1	0.576	3.6329	0.87775	0.453	0.707	0.697
	CE2	0.825	3.2150	1.17466			
	CE3	0.59	3.8188	1.07965			

4.6 Summary of Findings

Most users view FinTech services driven by artificial intelligence in positive terms because they deliver high-quality services that provide convenience to customers. The ethical management of customers' data from their financial transactions underpins a great deal of their trust in AI systems. This study collects important information about user perceptions, which gives useful insight into financial services development through AI applications. Researchers need to conduct exhaustive statistical analysis of extensive and diverse participant groups to establish a better comprehension of these trends.

V. DISCUSSION AND CONCLUSION

The research examines the effects artificial intelligence has on the user interactions found in financial technology (FinTech) operations. User perception combines with service quality and convenience, and sustainability aspects to shape customer experience in operations that use AI-driven FinTech systems. The research shows artificial intelligence technologies now transform financial institution customer relations through real-time data insights which enhance service quality (Aswathy and Aruna, 2024). Advancing consumer desires toward efficient, sustainable personal financial services powers this transformative change (Aswathy and Aruna, 2024). FinTech companies recognize customer experience as both their strategic differentiator and main competitive tool, which gives them an advantageous position in the market. The research demonstrates how AI in FinTech creates individualized services for different markets worldwide (Sheth et al., 2022). The financial industry uses AI technologies to create custom solutions that strengthen the bond between organizations and their clientele (Sheth et al., 2022). The delivery of services inside FinTech systems serves as an essential factor that affects customer satisfaction and loyalty. Through AI implementation, technology has transformed service quality into faster interactions and more accurate solutions for customers (Ajay Kumar Ganguly et al., 2024). AI-powered FinTech chatbots maintain uninterrupted customer satisfaction levels by eliminating human-based mistakes, according to Chinenye & Ijomah (2024). Consumer service delivery now benefits from natural language understanding of mathematical formulas, which use dialogues in real-time to deliver prompt baseline responses that answer inquiries (El-Shihy et al., 2024; El-Shihy et al., 2024). The automated system delivers better customer service with reduced financial institution operational costs (El-Shihy et al., 2024; El-Shihy et al., 2024). The research investigation demonstrates the need to handle user commitment alongside ethical matters when deploying AI technologies in FinTech applications. The trustworthiness of users within AI-based financial products maintains major importance because customers directly depend on these services yet they face significant privacy risks coupled with security fears and unclear AI program operations (Kumar & Rani 2022; Ali et al. 2021). AI-powered services need to establish trust relations with their users to achieve wider acceptance among customers (Hassan & Ferdous, 2023). A strong customer trust in business financial data management stems from how companies protect privacy and security as well as adhere to ethical codes (Hassan & Ferdous, 2023). People tend to develop distrust in AI systems because their functioning remains

opaque, which limits visibility through operating windows (Roh et al., 2023). The implementation of AI in financial operations by banking institutions depends significantly on their ability to track ethical matters regarding data privacy protection and algorithm visibility (Hassan & Ferdous, 2023). The study establishes how AI technologies help FinTech provide easier access, together with customized client solutions. The application of artificial intelligence by FinTech companies allows them to develop personalized financial offerings using a variety of customer information that functions specifically for individual users. Machine-powered systems eliminate traditional human-operated procedures while generating precise results through efficient operations (Hentzen et al., 2022). Younger technology-oriented customers find self-service solutions appealing through this method (Hentzen et al., 991).

VI. MANAGERIAL IMPLICATIONS

The findings of this study offer several managerial implications for FinTech organizations. Companies need to concentrate on three factors to achieve optimal AI usage and strengthen customer confidence:

- Organizations should develop AI-based solutions that accelerate service delivery and increase accuracy, together with personalization degrees. Financial organizations should deploy AI-powered chatbots for delivering uninterrupted customer satisfaction and quick real-time assistance as well as fast query resolution methods.
- Emphasize data privacy, security, and ethical considerations in AI systems. AI systems must be designed to reveal their working procedures so "black box" doubts can be overcome.
- The organization follows ethical practices for controlling data management, together with maintaining clear algorithms. Efficacious privacy measures for user data protection should be established in AI-powered systems to develop user trust.
- Leading financial institutions should use AI systems to create customized financial products as well as tailored advisory solutions for users. Through automation, organizations should reduce manual labor while providing tailored interactions that fulfill the specific requirements of each client.

VII. THEORETICAL IMPLICATIONS

The study enhances theoretical AI analyses of FinTech customer experiences through the following contributions:

- This inquiry explains how service quality functions together with user perception, along with convenience and sustainability, because these factors influence the client experience with AI-enabled FinTech services.
- User trust remains vital for AI FinTech acceptance because the study reveals that data privacy, together with ethical elements and trust, serve as key factors. The research outlines an analytical system that explains the relationship between control parameters and transparency levels in AI system trust development.
- The study extends theoretical knowledge about AI-powered personalization because it demonstrates how artificial intelligence creates personalized financial solutions that improve convenience, together with user engagement.

VIII. PRACTICAL IMPLICATIONS

The research findings yield important practical value for stakeholders operating within the FinTech industry.

- The conclusions support FinTech organizations that need strategic guidance to maximize AI value in improving customer satisfaction while building trust and obtaining market leadership.
- The analysis demonstrates that FinTech companies must integrate product features that improve service quality together with convenience capabilities and personalized solutions during development.
- The paper provides knowledge for creating ethical security protocols and privacy regulations that will guide the development of AI within FinTech institutions.

IX. LIMITATIONS AND FUTURE RESEARCH

This research acknowledges certain limitations:

- The research benefits might be restricted by how many survey participants were included in the study.
- The research delivers significant findings about AI's influence on FinTech user encounters, but needs more detailed investigations into AI technological systems.

Future research directions could include:

- Increasing the Study's Validity through Tests Employing Larger Multicultural Participants to Strengthen the Research Findings' Wider Application.
- This study investigates the individual performance of several AI technologies because they affect FinTech customer experiences uniquely.
- An analysis of long-term changes in customer experiences and perceptions should occur through research on AI in FinTech as it advances with time.
- The analysis studies AI effects on FinTech customer service through an evaluation of multiple ethnic and regional environments.

Further research examining these weaknesses can develop a complete comprehension of AI's transformative effects on FinTech which generates advantages for FinTech providers and their users.

X. REFERENCES

1. Ajay Kumar Ganguly, Bhattacharya, S., & Chattopadhyay, S. (2024). AI-Enabled customer authentication for efficient and secure AI-Driven model for banking fintech transactions. *2024 4th International Conference on Advanced Computing and Innovative Technologies in Engineering (ICACITE)*. <https://doi.org/10.1109/icacite60783.2024.10616904>
2. Aswathy K.M., & Dr. K. Aruna. (2024). Are AI and fintech the future of modern banking? The customer experience of millennials on AI and fintech. *Social Science Research Network*. <https://doi.org/10.2139/ssrn.4920382>
3. Barde, K., & Kulkarni, P. A. (2023). Applications of generative AI in fintech. *International Conference on AI-ML-Systems*. <https://doi.org/10.1145/3639856.3639893>
4. Chinenye Nebolisa Abiagom, & Tochukwu Ignatius Ijomah. (2024). Enhancing customer experience through AI-driven language processing in service interactions. *Open Access Research Journal of Engineering and Technology*. <https://doi.org/10.53022/oarjet.2024.7.1.0027>
5. El-Shihy, D., Abdelraouf, M., Hegazy, M., & Hassan, N. (2024). The influence of AI chatbots in fintech services on customer loyalty within the banking industry. *Future of Business Administration*. <https://doi.org/10.33422/fba.v3i1.644>
6. Gupta, S., & Joshi, S. (2022). Predictive analytics techniques for enhancing marketing performance and personalized customer experience. *2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC)*. <https://doi.org/10.1109/iihc55949.2022.10060286>
7. Hassan Hamad Aldboush, & Ferdous, M. (2023). Building trust in fintech: An analysis of ethical and privacy considerations in the intersection of big data, AI, and customer trust. *International Journal of Financial Studies*. <https://doi.org/10.3390/ijfs11030090>
8. Katarzyna ŁUKASIK-STACHOWIAK. (2023). Artificial Intelligence (AI) in CRM – possibility of effective integration, opportunities, and threats. *Scientific Papers of Silesian University of Technology. Organization and Management Series*. <https://doi.org/10.29119/1641-3466.2023.175.18>
9. Ledro, C., Nosella, A., & Ilaria Dalla Pozza. (2023). Integration of AI in CRM: Challenges and guidelines. *Journal of Open Innovation: Technology, Market and Complexity*. <https://doi.org/10.1016/j.joitmc.2023.100151>
10. Lu, M. Y., Lu, M. Y., Navid Mojir, & Navid Mojir. (2021). CRM and AI in times of crisis. *Social Science Research Network*. <https://doi.org/10.2139/ssrn.3973662>
11. Minh Tung Tran. (2024). Unlocking the AI-powered customer experience: Personalized service, enhanced engagement, and data-driven strategies for e-commerce applications. *Journal of Infrastructure Policy and Development*. <https://doi.org/10.24294/jipd.v8i7.4970>
12. Minh, T. (2024). Ai-powered customer experience: Personalization, engagement, and intelligent decision-making in CRM. *Journal of Electrical Systems*. <https://doi.org/10.52783/jes.1832>
13. Mr. Nannuri, Reddy, S., Mrs. Kalevaru Sandhya, & Reddy, K. (2024). The impact of fintech innovation

on traditional banking: A case study of HDFC bank. *International Journal of Advanced Research in Science, Communication and Technology*. <https://doi.org/10.48175/ijarsct-19524>

14. P. Acharjee, Harshal Anil Salunkhe, Srushti Thorat, Dhote, R. M., Panjari Khnbhadiya, Manchanda, A., & Sharma, N. (2024). Artificial intelligence (AI) in CRM (customer relationship management): A sentiment analysis approach. *2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies*. <https://doi.org/10.1109/tqcebt59414.2024.10545168>

15. Roh, T., Byung Il Park, & Xiao, S. (2023). ADOPTION OF AI-ENABLED ROBO-ADVISORS IN FINTECH: SIMULTANEOUS EMPLOYMENT OF UTAUT AND THE THEORY OF REASONED ACTION. *Null*. <https://doi.org/null>

16. Singh, A., & Dr. Swaricha Johri. (2024). Emerging trends in fintech: Revolutionizing financial services in commerce. *International Journal for Multidisciplinary Research*. <https://doi.org/10.36948/ijfmr.2024.v06i02.15546>

17. Sheth, K. N., Jain, S., Roy, S. K., & Chakraborty, S. (2022). AI-driven banking services: The next frontier for a personalized experience in the emerging market. *Journal of Service Theory and Practice*, 32(4), 510-533. <https://doi.org/10.1108/JSTP-12-2020-0285>

18. Kumar, J., & Rani, V. (2022). Journey of financial technology (FinTech): A systematic literature review and future research agenda. In Exploring the latest trends in the management literature (Vol. 1, pp. 89–108). Emerald Publishing Limited. <https://doi.org/10.1108/S2754-586520220000001005>

19. Ali, M., Chin-Hong, P., & Imtiaz, M. (2021). Determinants of fintech adoption: Evidence from SMEs in Indonesia. *International Journal of Bank Marketing*, 39(1), 75–94. <https://doi.org/10.1108/IJBM-08-2021-0274>

20. Hentzen, J. K., Hoffmann, A., Dolan, R., & Pala, E. (2022). Artificial intelligence in customer-facing financial services: A systematic literature review and agenda for future research. *International Journal of Bank Marketing*, 40(6), 1299-1336. <https://doi.org/10.1108/IJBM-09-2021-0417>

21. Najaf, K., Haj Khalifa, A., Obaid, S. M., Al Rashidi, A. A., & Ataya, A. (2023). Does sustainability matter for Fintech firms? Evidence from United States firms. *Competitiveness Review*, 33(1), 161-180. <https://doi.org/10.1108/CR-10-2021-0132>

22. Gonçalves, A. R., Meira, A. B., Shuqair, S., & Pinto, D. C. (2023). Artificial intelligence (AI) in FinTech decisions: The role of congruity and rejection sensitivity. *International Journal of Bank Marketing*, 41(6), 1282-1307. <https://doi.org/10.1108/IJBM-07-2022-0295>

23. Mohsen, S. E., Hamdan, A., & Shoaib, H. M. (2024). Digital transformation and integration of artificial intelligence in financial institutions. *Journal of Financial Reporting and Accounting*, ahead-of-print. <https://doi.org/10.1108/JFRA-09-2023-0544>

24. Bhatia, A., Chandani, A., Atiq, R., Mehta, M., & Divekar, R. (2021). Artificial intelligence in financial services: Qualitative research to discover robo-advisory services. *Qualitative Research in Financial Markets*, 13(5), 632-654. <https://doi.org/10.1108/QRFM-10-2020-0199>

25. Kumari, B., Kaur, J., & Swami, S. (2024). Adoption of artificial intelligence in financial services: a policy framework. *Journal of Science and Technology Policy Management*, 15(2), 396-417.
<https://doi.org/10.1108/JSTPM-03-2022-0062>

26. Belanche, D., Casaló, L. V., & Flavián, C. (2019). Artificial Intelligence in FinTech: understanding robo-advisors adoption among customers. *Industrial Management & Data Systems*, 119(7), 1411-1430.
<https://doi.org/10.1108/IMDS-08-2018-0368>

